JPH03290585A - Directional control type cluster downhaul drilling machine - Google Patents

Directional control type cluster downhaul drilling machine

Info

Publication number
JPH03290585A
JPH03290585A JP9216390A JP9216390A JPH03290585A JP H03290585 A JPH03290585 A JP H03290585A JP 9216390 A JP9216390 A JP 9216390A JP 9216390 A JP9216390 A JP 9216390A JP H03290585 A JPH03290585 A JP H03290585A
Authority
JP
Japan
Prior art keywords
fluid
pressure fluid
drill
fluid supply
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9216390A
Other languages
Japanese (ja)
Inventor
Masao Kitamura
北村 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO RIYUUKI SEIZO KK
Original Assignee
TOKYO RIYUUKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO RIYUUKI SEIZO KK filed Critical TOKYO RIYUUKI SEIZO KK
Priority to JP9216390A priority Critical patent/JPH03290585A/en
Publication of JPH03290585A publication Critical patent/JPH03290585A/en
Pending legal-status Critical Current

Links

Landscapes

  • Earth Drilling (AREA)

Abstract

PURPOSE:To facilitate the extent of control over a drilling machine by assembling a drill cluster in a circular case, and installing a drilling direction control mechanism, provided with a drill cluster driver, a fluid feeding means and a fluid inlet means, in the rear. CONSTITUTION:A drilling machine is assembled in a drill cluster circular case 100 made up of an outer circumferential drill 1A and a center drill 1C, and in the rear part, there are provided a drill cluster driver 124 and a drilling direction controller 120. Then, this drilling direction controller 120 is separately formed in these drills 1A, 1C with a fluid compounding means 102 with both pressure fluid feeding passages 107, 108 and a fluid feeding means 121 capable of rotation and movement to this center shaft and a fluid inlet means 122. Next, the fluid feeding means is made into a mechanism which selectively occupies an interval between a first position separated as far as the specified distance from the fluid inlet means 122 and a second position in contact with this first position, through which directional control over the drilling machine is thus facilitated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、−船釣には、地中掘さくの装置に間するもの
であり、さらに、詳しくいえば、複数のドリルを有する
グランホール穴掘さく装置の掘さく方向制御装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is applicable to - underground drilling equipment for boat fishing; The present invention relates to a digging direction control device for a hole digging device.

[従来の技術] 地中掘さく装置において複数のドリルを有するダウンホ
ールドリルは、例えば米国特許第3.144゜086号
、第3.297.099号、第3.387.673号、
第3゜682.258号及び第4.729.439号に
開示されている。これらの特許に開示されているクラス
タドリルは、中央のドリルとそれを取囲む複数の周辺ド
Jルからなり、各ドリルは、後方端を共通の支持板に取
付けられている8作動圧力流体は、共通支持板の中央に
接続された中空ロッドを通じて供給され、共通支持板の
中で各ドリルに均等に分配されるように構成されている
。このように構成されたクラスタダウンホールドリルを
回転しながら。
[Prior Art] Downhole drills having a plurality of drills in underground drilling equipment are disclosed, for example, in U.S. Pat.
No. 3.682.258 and No. 4.729.439. The cluster drill disclosed in these patents consists of a central drill and a plurality of peripheral drills surrounding it, each drill having its rear end attached to a common support plate. , is supplied through a hollow rod connected to the center of the common support plate and is arranged to be evenly distributed to each drill within the common support plate. While rotating the cluster downhole drill configured in this way.

圧力流体によって作動し、前方に押し進めてさく孔して
いる。
Operated by pressurized fluid, it pushes forward and drills holes.

したがって、掘さくする地質状態が一様ならば、ダウン
ホールドリルの直進性によってドリルを目標地点に向け
て直進させることができるが。
Therefore, if the geological conditions to be drilled are uniform, the straightness of the downhole drill allows the drill to move straight toward the target point.

地質の状態に変化があって一様でないところではは、さ
く孔方向に誤差が生ずる。
In areas where the geological conditions change and are not uniform, errors occur in the drilling direction.

前記特許のクラスタドリルによると、さく孔の直進性は
、ある程度保証されるが、掘さくする地盤の質によって
さく孔の方向は大きく左右されていた。したがって管の
埋設などの場合に目標地点に対して高精度のさく孔を地
盤の質に関係なく1工程で行なえる装置が望まれていた
According to the cluster drill of the above-mentioned patent, the straightness of drilling is guaranteed to some extent, but the direction of drilling is largely influenced by the quality of the ground to be drilled. Therefore, in the case of burying pipes, etc., there has been a desire for a device that can drill holes with high precision at a target point in one step, regardless of the quality of the ground.

[発明が解決しようとする課題] 地盤の質に関係なく目標地点に対して高精度のさく孔を
1工程で行えるように掘さくドリルの進行方向を任意に
制御できる手段を見出して、実用できるようにするには
、前記制御手段はクラスフダウンホールドリル全体を機
械的外力によって進行方向を変えるのではなく、簡単な
操作で各ドリルのさく死力を変化させることによって進
行方向を制御できるようにすることが望ましい。各周辺
トリルは、全体の中心軸に対して回転しながら作動する
ので、各周辺ドリルの角度位置の変わるとと6にさく死
力が変化し、しがも特定の角度位置について見れば、各
周辺ドリルが同じさく死力で作動しなければならない、
また、各周辺ドリルのさく死力が変化することは、常に
必要なのではないので、周辺ドリルのさく死力の変化す
る動作モードとさく死力の変化しない動作モードの両方
で作動できるようになっていることが必要である。
[Problem to be solved by the invention] A means to arbitrarily control the direction of advance of a drilling drill so that a highly accurate hole can be drilled at a target point in one step regardless of the quality of the ground has been discovered and put to practical use. In order to achieve this, the control means is capable of controlling the traveling direction of the entire Krasph downhole drill by changing the drilling force of each drill with a simple operation, rather than changing the traveling direction of the entire Clasp downhole drill by a mechanical external force. It is desirable to do so. Since each peripheral drill operates while rotating with respect to the overall central axis, the dead force changes as the angular position of each peripheral drill changes.However, if we look at a specific angular position, each Peripheral drills must also operate under dead power,
In addition, since it is not always necessary for the drilling force of each peripheral drill to change, it is now possible to operate in both an operation mode in which the drilling force of the peripheral drill changes and an operation mode in which the drilling force does not change. It is necessary that the

本発明は、上述の課題を解決し、圧力流体の各ダウンホ
ールドリルへの供給条件を制御することによってドリル
の進行方向を制御できるクラスフグランホールドリル掘
さく機を提供することを目的としている。
The present invention aims to solve the above-mentioned problems and to provide a class Fuglan hole drilling machine that can control the advancing direction of the drill by controlling the supply conditions of pressure fluid to each downhole drill. .

[課題を解決するための手段] 上記の目的は、本発明によれば、複数のダウンホールド
リルを円筒形ドリルケース内に含むドリル集合体と前記
ドリル集合体の後方端にドリル集合体駆動装置を取付け
、ドリル集合体駆動装置に対してそれの軸方向の運動及
び回転運動の可能な圧力流体供給装置を組合せることよ
って掘さく機を構成し、複数のダウンホールドリルのそ
れぞれに独立に連通ずる圧力流体通路を有する流体分配
手段と、前記圧力流体通路の各々にそれぞれ異なる圧力
流量で流体を供給する複数の流体送出口を有する流体供
給手段と、前記流体分配手段に配設されて、前記複数の
ダウンホールドリル集合体が前記流体供給手段に対して
回転しているときでち、前記流体供給手段から送出され
る流体が前記流体分配手段の各圧力流体通路に供給でき
るようにする流体導入手段とを設け、前記流体供給手段
は、前記流体導入手段からあらかじめ定めた距離だけ離
れた第1の位置と、前記流体導入手段に実賃上接触する
第2の位置との間を選択的に占めることができるように
構成することによって目的を達成できる。
[Means for Solving the Problems] According to the present invention, the above objects include a drill assembly including a plurality of downhole drills in a cylindrical drill case, and a drill assembly drive device at the rear end of the drill assembly. A drilling machine is configured by attaching a drill aggregate drive unit to a pressurized fluid supply device capable of axial and rotational movement of the drill assembly drive unit, and independently connecting each of a plurality of downhole drills. a fluid distribution means having a pressure fluid passage communicating therewith; a fluid supply means having a plurality of fluid delivery ports for supplying fluid at different pressure flow rates to each of the pressure fluid passages; fluid introduction for allowing fluid delivered from the fluid supply means to be supplied to each pressure fluid passage of the fluid distribution means when a plurality of downhole drill assemblies are rotating relative to the fluid supply means; and the fluid supply means selectively moves between a first position separated from the fluid introduction means by a predetermined distance and a second position in actual contact with the fluid introduction means. The purpose can be achieved by configuring it so that it can be occupied.

本発明の1実施例においては、掘さく機が複数のダウン
ホールドリルを円筒形ドリルケース内に含むドリル集合
体と前記ドリル集合体の後方端に取付けられたドリル集
合体駆動装置及び圧力流体供給装置からなり、前記ドリ
ルーシングの一端にあって、各ダウンホールドリルのバ
ックヘッドを受けるとともに、各ダウンホールドリルに
個別に通じる圧力流体通路が端面から伸びている端板と
、前記端板に固定して取付けられ、前記ドリル集合体を
軸方向駆動及び回転駆動させるためのドリル集合体駆動
機構の前端部を構成する円筒状駆動ロッドヘッドと、前
記駆動ロッドヘッドの前端部に取付けられて、前記端板
に固定接合され、前記端板の各前記圧力流体通路に個別
に対応する圧力流体導入チャンバを有する圧力流体導入
板と、前記駆動ロッドヘッドの中に摺動及び回転可能に
挿入されて、後退したときの第1の位置と、前進したと
きの第2の位置の間を選択的にとることのできる前端部
を有する細長い圧力流体供給管を備え、前記圧力流体供
給管の前記前端部は前記圧力流体導入板のチャンバの位
置に対応した位置に設けた出口を有する複数の圧力流体
流路を有する板状の蓋を形成し、前記複数の圧力流体流
路の構成は、2本の直交する直径の一方に対して対称で
In one embodiment of the invention, a drilling machine includes a drill assembly including a plurality of downhole drills within a cylindrical drill case, a drill assembly drive mounted at the rear end of the drill assembly, and a pressurized fluid supply. an end plate located at one end of the drill loosing for receiving the backhead of each downhole drill and having a pressure fluid passage extending from the end face individually communicating with each downhole drill; and an end plate fixed to the end plate. a cylindrical drive rod head attached to the front end of the drive rod head and constituting a front end of a drill assembly drive mechanism for axially and rotationally driving the drill assembly; a pressure fluid introduction plate fixedly joined to the plate and having a pressure fluid introduction chamber individually corresponding to each said pressure fluid passageway of said end plate; and slidably and rotatably inserted into said drive rod head and retracted. an elongated pressure fluid supply tube having a front end that can be selectively assumed between a first position when moving forward and a second position when moving forward; A plate-shaped lid is formed having a plurality of pressure fluid channels having an outlet provided at a position corresponding to the position of the chamber of the pressure fluid introduction plate, and the configuration of the plurality of pressure fluid channels is two orthogonal lines. symmetrical about one side of the diameter.

他方の直径に対して非対称に配置されており、前記圧力
流体供給制御管が前記第1の位置において、前記圧力流
体導入板と前記圧力流体供給制御管の前記前端部との間
に前記圧力流体供給制御管の各前記圧力流体通路から送
出される圧力流体を混合するのに十分な空間を生じ、前
記第2の位置において前記圧力流体導入板と前記圧力流
体供給制御管の前記前端部は実質上接触することを特徴
とする方向制御形グランホールクラスタードリル装置が
提供される。
The pressure fluid supply control pipe is arranged asymmetrically with respect to the other diameter, and when the pressure fluid supply control pipe is in the first position, the pressure fluid supply control pipe is arranged between the pressure fluid introduction plate and the front end of the pressure fluid supply control pipe. creating a space sufficient to mix the pressure fluid delivered from each pressure fluid passageway of the supply control tube, and in the second position the pressure fluid introduction plate and the front end of the pressure fluid supply control tube substantially A directionally controlled grand hole cluster drilling device is provided which is characterized by top contact.

[作 用] 本願発明では、圧力流体供給装置とドリル組立体駆動装
置が分離されているので、流体供給手段の複数の流体送
出口と、複数のダウンホールドリルの圧力流体通路の関
係が固定されずに、異なる流体送出口とダウンホールド
リルの圧力流体通路の間に流体を流すことができるよう
になった。
[Function] In the present invention, since the pressure fluid supply device and the drill assembly drive device are separated, the relationship between the plurality of fluid delivery ports of the fluid supply means and the pressure fluid passages of the plurality of downhole drills is fixed. It is now possible to flow fluid between different fluid outlets and the downhole drill's pressure fluid passages without having to do so.

流体供給手段が流体導入手段から離れる第1の位置をと
ると、流体供給手段の送出口の各々が異なる圧力流量で
流体を送出してち、それは特定のドリルの圧力流体通路
に入らずに各送出口からの圧力流量が平均されて、はぼ
均一に11って各圧力流(、*通路に入り、ドリル集合
体と流体供給装置が相体的に回転していて6、流体は、
両者が固定されて回転する従来の掘さく機の場合と同様
の作用を行う。
When the fluid supply means assumes a first position away from the fluid introduction means, each of the outlet ports of the fluid supply means delivers fluid at a different pressure flow rate so that it does not enter the pressure fluid passageway of a particular drill. The pressure flow from the outlet is averaged and almost uniformly enters each pressure flow (,*) passage, and as the drill assembly and fluid supply device rotate relative to each other, the fluid is
The function is similar to that of a conventional excavator in which both parts are fixed and rotate.

流体供給手段が流体導入手段に実質上接触する第2の位
置をとると、両手段の間に介在する流体導入手段のため
に、端板にある圧力流体通路の各回と流体供給手段の各
送出口が正対又は一部分が重なった状態になくても、各
送出口から出る流体は事実1別々の圧力流体通路に入る
0本発明の流体供給手段の各送出口は異なる圧力流量で
流体を送出するので、ドリル集合体が流体供給手段に対
して回転運動をしていれば、特定のドリルについて見れ
ば、回転をしている過程で、対向する流体供給手段の送
出口が変るごとに受入れる流体の圧力流量が変ることに
なる。すなわち、流体供給手段の送出口から見れば、各
送出口のある位置ごとにドリルの受ける流体の圧力流量
が変り、掘さく力が変っていることになる。掘さく力の
変化が、流体供給手段の断面で見て、たとえば、上方の
掘さく力が下方の掘さく力より大きくなるように流体供
給手段の送出口の形を定めれば、掘さく機は進路を変え
ることになる。
When the fluid supply means assumes a second position in which it substantially contacts the fluid introduction means, each passage of the pressure fluid passage in the end plate and each passage of the fluid supply means due to the fluid introduction means interposed between the means. Even though the outlets are not directly facing or partially overlapping, the fluid exiting each outlet does in fact enter a separate pressure fluid passageway. Each outlet of the fluid supply means of the present invention delivers fluid at a different pressure flow rate. Therefore, if the drill assembly is rotating relative to the fluid supply means, if we look at a particular drill, the amount of fluid it receives will change each time the outlet of the opposing fluid supply means changes during the rotation process. The pressure flow rate will change. That is, when viewed from the outlet of the fluid supply means, the pressure and flow rate of the fluid received by the drill changes depending on the position of each outlet, and the digging force changes accordingly. If the shape of the outlet of the fluid supply means is determined so that the change in digging force is such that, when viewed in the cross section of the fluid supply means, the upper digging force is larger than the lower digging force, the drilling machine will change course.

したがって、最初、流体供給手段を第1の位置に設定し
て、掘さく進路を測定しながら直進掘さくを行い、途中
で進路が曲がりそうになるのを検出したとき、流体供給
手段を第2の位置に移し、同時に進路を補正できるよう
な角度位置へ流体供給手段を回転することによって、掘
さく機の進路を正しく維持できる。
Therefore, at first, the fluid supply means is set to the first position and digging is carried out in a straight line while measuring the excavation course, and when it is detected that the course is about to curve midway, the fluid supply means is set to the second position. The correct course of the excavator can be maintained by simultaneously rotating the fluid supply means to an angular position that allows the course to be corrected.

[実施例] 第1図を参照すると、本発明による掘さく方向制御手段
を組入れたクラスタドリル掘さく機の要部が示されてい
る。それぞれに外周ドリルビット8A及び中央ドリルビ
ット8Cのついた外周ドリルIA及び中央ドリルlCが
円板形キー板101を下端に有する外側円筒形ケース1
00の中に組立てられている。ケース100の他方の端
には、ドリルIA、Icの作動流体導入端であるバック
ヘッド3A、3Cを受ける本発明に従って改変された端
板102がある。端板102には各ドリルのバックヘッ
ド3Aを受けるテーパ付き穴104があり、外周ドリル
IAに対応する穴104それぞれに通じる同一形状の圧
力流体供給通路108が端板102の上面から穴104
まで伸びている。各圧力流体供給通路108の入口は、
外周ドリルlAのテーパ付き穴104の半径方向に内側
で中央ドリル3Cのテーパ付き穴と同心の円周上に等間
隔に配置されている。
[Embodiment] Referring to FIG. 1, the main parts of a cluster drill excavator incorporating a drilling direction control means according to the present invention are shown. An outer cylindrical case 1 in which an outer periphery drill IA and a central drill LC each having an outer periphery drill bit 8A and a central drill bit 8C have a disc-shaped key plate 101 at the lower end.
It is assembled in 00. At the other end of the case 100 is an end plate 102 modified according to the invention that receives the backhead 3A, 3C, which is the working fluid introduction end of the drill IA, Ic. The end plate 102 has a tapered hole 104 that receives the back head 3A of each drill, and a pressure fluid supply passage 108 of the same shape that communicates with each hole 104 corresponding to the outer drill IA is connected to the hole 104 from the top surface of the end plate 102.
It is growing up to. The inlet of each pressure fluid supply passage 108 is
They are arranged at equal intervals on a circumference concentric with the tapered hole of the central drill 3C, radially inside the tapered hole 104 of the outer drill IA.

中央ドリル1Cのバックヘッド3Cは、外周ドリルIA
のバックヘッド3Aより短く、圧力流体の通路が中央に
上方まで突き抜けている。バックヘッド3Cのテーパ部
106は、端板の厚さのほぼ中央で終り、テーパ部の先
には、外周にねじを切った短い円筒部107があって、
端板102の中央に上表面からバックヘッド3Cのテー
パ部106の上端が止る位置まで伸びる穴109の中に
前記円筒部107が伸び、この円筒部107に、たとえ
ば、アレンレンチ用の六角穴のついたナツト110をは
めてバックヘッド3Cを固定する。ナツト110の上端
面は、事実上端@102の上表面と同じ高さになるよう
にされている。
The back head 3C of the central drill 1C is the outer drill IA.
It is shorter than the back head 3A of , and a passage for pressure fluid penetrates upward in the center. The tapered portion 106 of the back head 3C ends at approximately the center of the thickness of the end plate, and at the tip of the tapered portion is a short cylindrical portion 107 with a thread cut on the outer periphery.
The cylindrical portion 107 extends into a hole 109 extending from the upper surface to the position where the upper end of the tapered portion 106 of the back head 3C stops at the center of the end plate 102. Fit the attached nut 110 to fix the back head 3C. The top surface of nut 110 is essentially flush with the top surface of end@102.

端wt102の上面に総括的に102で表わされた掘さ
く方向制御機構がボルト締めで取付けられる。
An excavation direction control mechanism, generally designated 102, is attached to the upper surface of the end wt102 by bolting.

掘さく方向制御機構102は、各ドリルにそれぞれ通ず
る扇形の周辺チャンバ123Aと円形の中央チャンバ1
23Cを有し、端板102の圧力流体供給通路108の
入口に各チャンバが重なるように配置された圧力流体導
入板122及び一端で、導入板122を保持し、中に圧
力流体供給制御管121を摺動可能に含む駆動ロッドヘ
ッド124からなっている。駆動ロッドヘッドには公知
の方法で駆動ロッド連結管125が固定連結されている
The drilling direction control mechanism 102 includes a fan-shaped peripheral chamber 123A and a circular central chamber 1 that communicate with each drill.
23C, and is arranged so that each chamber overlaps the inlet of the pressure fluid supply passage 108 of the end plate 102, and one end holds the introduction plate 122, and the pressure fluid supply control pipe 121 is held in the end plate 102. The drive rod head 124 slidably includes a drive rod head 124. A drive rod connecting pipe 125 is fixedly connected to the drive rod head in a known manner.

駆動ロッドヘッド124は、大体中空円筒状で前方端に
はフランジ126がある。ヘッドの前方端の内径部は、
圧力流体導入板122を受は入れるために深座ぐりされ
ている。圧力流体導入板122の表面は、駆動ロッドヘ
ッド124のフランジ126の表面と同じ平面内にある
ように調整される。駆動ロッドヘッド124は、後方端
の内径部に直径の小さくなった環状突出部127を備え
、肩128及び129を形成している。駆動ロッドヘッ
ド124の後方端の外径部には駆動ロッド連結管125
を受ける肩130が設けられている。
Drive rod head 124 is generally hollow cylindrical with a flange 126 at its forward end. The inner diameter of the front end of the head is
A deep counterbore is provided to receive the pressure fluid introduction plate 122. The surface of the pressure fluid introduction plate 122 is adjusted to be in the same plane as the surface of the flange 126 of the drive rod head 124. The drive rod head 124 includes a reduced diameter annular projection 127 at the inner diameter of the rearward end forming shoulders 128 and 129. A drive rod connecting pipe 125 is provided at the outer diameter portion of the rear end of the drive rod head 124.
A receiving shoulder 130 is provided.

圧力流体供給制御管121は、前方端に少なくと63本
の圧力流体分配通路、本実施例においては周辺に6本の
通路111a〜111fと中央に一つの通路111g 
(第3図参照)を備えた前端部131とそれに続く中空
円筒部132からなり、中空円筒部132の外径は、前
端部131の外径より小さく、画部分の接合部に肩13
3が形成される。前端部131の厚さは駆動ロッドヘッ
ド124の中空円筒部134の前端から前方肩128ま
での長さより小さく、シール135を用いて駆動ロッド
ヘッド124の中空円筒部134の中に摺動可能かつ回
転可能に組立てられている。圧力流体供給制御管121
を後方に引き動かすと圧力流体供給制御管121の前端
部131の肩131の肩133が駆動ロッドヘッドの前
方肩128に接合し、前端部131の前表面と圧力流体
導入板122の後表面との間の蕗離がSだけ離れ、流体
圧力を均一化させる混合チャンバ137を形成する。
The pressure fluid supply control pipe 121 has at least 63 pressure fluid distribution passages at the front end, in this embodiment, six passages 111a to 111f on the periphery and one passage 111g in the center.
It consists of a front end 131 with a front end 131 (see FIG. 3) and a hollow cylindrical part 132 following it.
3 is formed. The thickness of the forward end 131 is less than the length from the forward end of the hollow cylindrical portion 134 of the drive rod head 124 to the forward shoulder 128 and is slidable and rotatable within the hollow cylindrical portion 134 of the drive rod head 124 using a seal 135. possible to assemble. Pressure fluid supply control pipe 121
When the is pulled rearward, the shoulder 133 of the shoulder 131 of the front end 131 of the pressure fluid supply control pipe 121 joins the front shoulder 128 of the drive rod head, and the front surface of the front end 131 and the rear surface of the pressure fluid introduction plate 122 connect with each other. The gaps between the two are separated by S to form a mixing chamber 137 that equalizes the fluid pressure.

圧力流体供給制御管121の前方への運動は、圧力流体
供給制御管の中空円筒部132の外径部に設けた止め部
材136が肩129に接合することによって限定され、
そのとき前端部131の前表面と導入板122の後表面
との間の距離は、わずかで実質上接触してもよいが、圧
力流体供給制御管121が導入板122に相対回転する
とき、圧力流体供給制御管121の前表面と導入板12
2の後表面が互いに損傷を受けないように調整される。
Forward movement of the pressure fluid supply control tube 121 is limited by a stop member 136 provided on the outer diameter of the hollow cylindrical portion 132 of the pressure fluid supply control tube joining the shoulder 129;
At that time, the distance between the front surface of the front end portion 131 and the rear surface of the introduction plate 122 may be small and they may substantially contact each other, but when the pressure fluid supply control pipe 121 rotates relative to the introduction plate 122, the pressure Front surface of fluid supply control pipe 121 and introduction plate 12
The rear surfaces of the two are arranged so that they do not damage each other.

駆動ロッドヘッド124は、クラスタドリル掘さく機を
動作させるとき、駆動ロッド連結管125を介して、回
転運動と前進運動を与えられ、その結果、クラスタドリ
ル集合体を回転、前進させる。
When operating the cluster drill excavator, the drive rod head 124 is given rotational and forward movement via the drive rod connection pipe 125, thereby rotating and advancing the cluster drill assembly.

圧力流体供給管121は、外部からの制御によって前進
、後退及び任意の角度位置への回転偏位を行わせること
ができる。
The pressure fluid supply pipe 121 can be moved forward, backward, and rotated to any angular position by external control.

動作について説明すると、非制御モードにおいては、圧
力流体供給管121を第1図に示した位置に後退させ、
この位置で駆動ロッドヘッド124に対して軸方向に相
対的に固定する。このとき、駆動ロッドヘッド124は
圧力流体供給制御管121に対して相対的に回転できる
ようにするが、圧力流体供給制御管121が駆動ロッド
ヘッド124に対して回転方向にも固定されて両方が一
体に回転するようにしてもよい、この非制御モードでは
、圧力流体が圧力流体供給制御管121の中空円筒部1
32の中を通り、前端部131の異なる流路抵抗をもつ
圧力流体通路111a−111gを通って混合チャンバ
137に異なる圧力・流量で流入する。しかし、混合チ
ャンバ137は、各通路から入る異なる圧力流量の流体
を混合するのに十分な大きさになっているので、圧力流
体導入板122の各チャンバ123A。
To explain the operation, in the non-control mode, the pressure fluid supply pipe 121 is retreated to the position shown in FIG.
At this position, it is fixed relative to the drive rod head 124 in the axial direction. At this time, the drive rod head 124 is allowed to rotate relative to the pressure fluid supply control pipe 121, but the pressure fluid supply control pipe 121 is also fixed in the rotation direction with respect to the drive rod head 124, so that both In this uncontrolled mode, the pressure fluid may rotate integrally with the hollow cylindrical portion 1 of the pressure fluid supply control pipe 121.
32 and flows into the mixing chamber 137 at different pressures and flow rates through pressure fluid passages 111a-111g of different flow path resistances in the front end 131. However, since the mixing chamber 137 is large enough to mix fluids of different pressure flow rates entering from each passageway, each chamber 123A of the pressure fluid introduction plate 122.

123cには事実上同一の圧力流量で入り、各ドリルは
同−掘さく力で動作する。このときのドリルの動作は、
従来のクラスタードリルの動作と同じである。
123c with virtually the same pressure flow rate and each drill operating with the same drilling force. The operation of the drill at this time is
The operation is the same as that of a conventional cluster drill.

次に、制御モードのときは、圧力流体供給制御管121
を前進させ、圧力流体導入板122と圧力流体供給制御
管121の前端部131を接近させて、実質・上接触し
た状態にする。このとき、圧力流体供給制御管121は
、駆動ロッドヘッド124に対して軸方向には固定し、
回転方向については絶対位置を所望の角度位置に固定し
、駆動ロッドヘッド124が圧力流体供給制御管121
の周りに回転できるようにする。
Next, in the control mode, the pressure fluid supply control pipe 121
is moved forward, and the pressure fluid introduction plate 122 and the front end portion 131 of the pressure fluid supply control pipe 121 are brought close to each other so that they are substantially in contact with each other. At this time, the pressure fluid supply control pipe 121 is fixed in the axial direction with respect to the drive rod head 124,
Regarding the rotation direction, the absolute position is fixed at a desired angular position, and the drive rod head 124 is connected to the pressure fluid supply control pipe 121.
to be able to rotate around.

制御モードの配置では、圧力流体は、圧力流体供給制御
管121の前端部131の流路抵抗の異なる各圧力流体
通路111a〜l11gを通る流体は混合されずにそれ
ぞれ向かい合った導入板122の各チャンバ123A、
 123Cを経て各ドリルに独立に供給される。第4A
、B、C図は、制御モードで圧力流体供給制御管121
が固定され、駆動ロッドヘッド124 、 したがって
ドリル集合体が圧力流体供給制御管121に対して回転
するときの状態を示している。たとえば第4A、B、C
図に示したような位置に圧力流体流路111a〜111
gがあるとすると、最も抵抗の小さい流路111aにつ
ながっているダウンホールドリルへの圧力流体の圧力及
び流量が最大となり、流路111bと1llfにつなが
るダウンホールドリルへの圧力及び流量が、それより小
さく、流路111cと1lleにつながるものはさらに
小さく、流路111dにつながるものへの圧力流体の圧
力及び流量が最小になる0以上の圧力流体の圧力及び流
量の関係は、駆動ロッドヘッド124が回転して第4A
図から第4B図の状態へ移る途中でも変わらない。
In the control mode arrangement, the fluids passing through the pressure fluid passages 111a to 111g having different flow path resistances in the front end 131 of the pressure fluid supply control pipe 121 are not mixed, but flow into the respective chambers of the introduction plate 122 facing each other. 123A,
It is independently supplied to each drill via 123C. 4th A
, B, and C show the pressure fluid supply control pipe 121 in the control mode.
is fixed and the drive rod head 124 and therefore the drill assembly rotate relative to the pressure fluid supply control tube 121. For example, 4th A, B, C
Pressure fluid channels 111a to 111 are installed at the positions shown in the figure.
g, the pressure and flow rate of the pressure fluid to the downhole drill connected to the flow path 111a with the lowest resistance will be maximum, and the pressure and flow rate to the downhole drill connected to the flow paths 111b and 1llf will be the same. The relationship between the pressure and flow rate of the pressure fluid of 0 or more is such that the pressure and flow rate of the pressure fluid to the flow path 111c and 1lle is smaller, and the pressure and flow rate of the pressure fluid to the flow path 111d is minimized. rotates and the 4th A
There is no change even during the transition from the state shown in the figure to the state shown in FIG. 4B.

この場合、圧力流体の圧力及び流量の大きいダウンホー
ルドリルは、打撃圧が上がって打撃数が増し、さく孔速
度が増大する。一方、反対側の圧力流体の圧力及び流量
の少ないダウンホールドリルは、打撃圧が下がって、打
撃数が減り、さく孔速度が小さくなる。ドリル集合体全
体は、第4A図から第4B図、第4C図の順に回転しな
がらさく孔してゆくが、圧力流体供給制御管121は回
転しないで一定の向きに保たれているので、常に一方の
側(第4図においては上側)のさく孔速度が大きくなる
。したがって、ドリル集合体全体の進行方向は、圧力流
体供給制御管121の角度位置を適宜に選択することに
よって制御できる。
In this case, a downhole drill with a high pressure and flow rate of pressurized fluid increases the impact pressure, increases the number of impacts, and increases the drilling speed. On the other hand, in a downhole drill where the pressure and flow rate of the pressure fluid on the opposite side is low, the impact pressure is reduced, the number of impacts is reduced, and the drilling speed is reduced. The entire drill assembly drills holes while rotating in the order of FIGS. 4A to 4B and 4C, but the pressure fluid supply control pipe 121 is not rotated and is kept in a constant direction, so The drilling speed on one side (the upper side in FIG. 4) increases. Therefore, the direction of movement of the entire drill assembly can be controlled by appropriately selecting the angular position of the pressure fluid supply control tube 121.

[発明の効果] 本発明は以上に説明したように構成されているので、ダ
ウンホールドリル集合体の各ドリルが掘さく機の進行方
向に対する角度位置によって掘さく力が変わるように容
易に制御できるので、目標地点に対して精度の高いさく
孔を地盤の質に関係なく1工程で行うことができ、実用
上の効果が極めて大きい。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to easily control the digging force of each drill in the downhole drill assembly to vary depending on the angular position with respect to the traveling direction of the drilling machine. Therefore, highly accurate drilling can be performed at the target point in one step regardless of the quality of the ground, which has an extremely large practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による掘さ1方向制御機構を取付けた
ダウンホールクラスタドリルの断面図、第2図は、第1
図の線A−Aに沿って切断し、矢印の方向に見た流体導
入手段を示す断面図、第3図は、第1図の線B−Bに沿
って切断し、矢印の方向に見た流体供給手段の送出口の
配置を例示する断面図、 第4A、4B、及び4C図は流体導入手段のチャンバと
流体供給手段の送出口の関係をドリル集合体が流体供給
手段に対して回転していったときの経過を示す説明図で
ある。 1A、IC−−ダウンホールドリル、100−  ドリ
ルケース、102−  端板、 111a〜111g−
圧力流体分配通路、12〇−掘さく方向制御機構、12
1−  圧力流体供給制御管、122−  圧力流体導
入板、124−  駆動ロッドヘッド。
FIG. 1 is a sectional view of a downhole cluster drill equipped with a one-way drilling control mechanism according to the present invention, and FIG.
3 is a sectional view showing the fluid introduction means taken along line A-A in the figure and seen in the direction of the arrow; FIG. 3 is a sectional view taken along line B-B in FIG. 1 and seen in the direction of the arrow. FIGS. 4A, 4B, and 4C are cross-sectional views illustrating the arrangement of the outlet of the fluid supply means, and FIGS. FIG. 1A, IC--downhole drill, 100- drill case, 102- end plate, 111a to 111g-
Pressure fluid distribution passage, 120--Drilling direction control mechanism, 12
1- Pressure fluid supply control pipe, 122- Pressure fluid introduction plate, 124- Drive rod head.

Claims (1)

【特許請求の範囲】 1、複数のダウンホールドリル(1A、1C)を円筒形
ドリルケース(100)内に含むドリル集合体と前記ド
リル集合体の後方端に取り付けられたドリル集合体駆動
装置及び圧力流体供給装置からなる、掘さく機において
、 前記ドリル集合体の後方端にあって複数の ダウンホールドリル(1A、1C)の各々に独立に連通
する圧力流体供給通路(107、108)を有する流体
分配手段(102)と、 前記圧力流体供給装置の主要部であって、 前記流体分配手段の中心軸に沿って配設さ れ、各々が異なる圧力流量で流体を送出できる複数の流
体送出口を有し、前記流体分配手段の中心軸の周りに回
転可能で、前記中心軸に沿って移動可能な流体供給手段
(121)と、前記流体分配手段と前記流体供給手段の
間 に配設されて、前記流体供給手段の前記流体送出口のあ
る面に実質上接触した位置をとるとき前記流体分配手段
が前記流体供給手段に対して回転しているかいないかに
関係なく、前記流体供給手段の各流体送出口から送出さ
れる流体を前記流体分配手段の各圧力流体通路に個別に
導入できるようにする流体導入手段(122)とを備え
、 前記流体供給手段は、前記流体導入手段か らあらかじめ定めた距離だけ離れた第1の位置と、前記
流体導入手段に実質上接触する第2の位置とを選択的に
とらせることができることを特徴とする方向制御形クラ
スタダウンホールドリル掘さく機。 2、前記流体分配手段が前記複数のダウンホールドリル
のバックヘッドを受ける端板(102)である請求項1
に記載の掘さく機。 3、前記ドリル集合体駆動装置が前記端板に固着された
円筒形駆動ロッドヘッド(124)を有し、 前記流体導入手段が前記駆動ロッドヘッド の前端部に取付けられ、前記端板の各前記圧力流体通路
に個別に対応する圧力流体導入チャンバを有する圧力流
体導入板(122)からなる請求項2に記載の掘さく機
。 4、前記流体導入手段が前記端板に一体に取付けられ、
各前記圧力流体通路に対応する圧力流体導入チャンバを
有する圧力流体導入板からなる請求項2に記載の掘さく
機。 5、前記流体供給手段が前記駆動ロッドヘッドの中に挿
入されて、後退したときの第1の位置と前進したときの
第2の位置の間を選択的に移動可能な前端部を有し、前
記駆動ロッドヘッドに対して相対的に回転可能な細長い
圧力流体供給管(132)と、前記圧力流体供給管の前
端に一体に形成され前記圧力流体導入板のチャンバの位
置に対応した位置に設けた出口を有する複数の圧力流体
流路を有する板状の蓋(131)を備えた圧力流体供給
制御管(121)である請求項3又は4のいずれかに記
載の掘さく機。 6、前記圧力流体供給制御管の前端の複数の圧力流体流
路は、2本の直交する直径の一方に対して対象で、他方
に対して非対称な流路抵抗を有する請求項5に記載の掘
さく機。
[Scope of Claims] 1. A drill assembly including a plurality of downhole drills (1A, 1C) in a cylindrical drill case (100), a drill assembly drive device attached to the rear end of the drill assembly, and A drilling machine comprising a pressure fluid supply device, comprising pressure fluid supply passages (107, 108) located at the rear end of the drill assembly and communicating independently with each of the plurality of downhole drills (1A, 1C). a fluid distribution means (102); and a plurality of fluid delivery ports, which are a main part of the pressure fluid supply device and are arranged along the central axis of the fluid delivery device, each of which can deliver fluid at a different pressure flow rate. a fluid supply means (121) rotatable around a central axis of the fluid distribution means and movable along the central axis, and disposed between the fluid distribution means and the fluid supply means; , whether or not the fluid distribution means is rotated relative to the fluid supply means when the fluid distribution means assumes a position substantially in contact with a face of the fluid delivery port of the fluid supply means; fluid introduction means (122) for individually introducing the fluid delivered from the outlet into each pressure fluid passage of the fluid distribution means, the fluid supply means being at a predetermined distance from the fluid introduction means; 1. A directionally controlled cluster downhole drilling machine, characterized in that it can be selectively set to a first position separated by a distance of 100 mm, and a second position substantially in contact with the fluid introducing means. 2. The fluid distribution means is an end plate (102) receiving a backhead of the plurality of downhole drills.
The drilling machine described in . 3. The drill assembly drive device has a cylindrical drive rod head (124) fixed to the end plate, and the fluid introduction means is attached to the front end of the drive rod head, and the fluid introduction means is attached to each of the end plates. 3. Excavator according to claim 2, comprising a pressure fluid introduction plate (122) having pressure fluid introduction chambers individually corresponding to the pressure fluid passages. 4. The fluid introducing means is integrally attached to the end plate,
3. The excavator according to claim 2, comprising a pressure fluid introduction plate having a pressure fluid introduction chamber corresponding to each said pressure fluid passage. 5. The fluid supply means is inserted into the drive rod head and has a front end that is selectively movable between a first position when retracted and a second position when advanced; an elongated pressure fluid supply pipe (132) rotatable relative to the drive rod head; and a pressure fluid supply pipe integrally formed at the front end of the pressure fluid supply pipe and provided at a position corresponding to the position of the chamber of the pressure fluid introduction plate. 5. The excavator according to claim 3, wherein the excavator is a pressure fluid supply control pipe (121) provided with a plate-shaped lid (131) having a plurality of pressure fluid passages having a plurality of outlets. 6. The plurality of pressure fluid flow paths at the front end of the pressure fluid supply control pipe have flow path resistance that is symmetrical with respect to one of two orthogonal diameters and asymmetrical with respect to the other. drilling machine.
JP9216390A 1990-04-09 1990-04-09 Directional control type cluster downhaul drilling machine Pending JPH03290585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9216390A JPH03290585A (en) 1990-04-09 1990-04-09 Directional control type cluster downhaul drilling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9216390A JPH03290585A (en) 1990-04-09 1990-04-09 Directional control type cluster downhaul drilling machine

Publications (1)

Publication Number Publication Date
JPH03290585A true JPH03290585A (en) 1991-12-20

Family

ID=14046760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9216390A Pending JPH03290585A (en) 1990-04-09 1990-04-09 Directional control type cluster downhaul drilling machine

Country Status (1)

Country Link
JP (1) JPH03290585A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501907A (en) * 2004-06-04 2008-01-24 アトラス コプコ セコロク エイビー Removable washer device for downhole drills
WO2011149197A3 (en) * 2010-05-26 2012-01-19 (주)이엔피엔지니어링 Variable excavation hammer for expanding the leading end of a pile
CN103244049A (en) * 2012-02-10 2013-08-14 震东机械设备有限公司 Method and apparatus for controlling operation of cluster drill of DTH hammers
CN106194006A (en) * 2016-09-09 2016-12-07 北京中车重工机械有限公司 A kind of cluster type down-hole hammer
CN106223840A (en) * 2016-09-09 2016-12-14 北京中车重工机械有限公司 Cluster type down-hole hammer and down-hole hammer monomer locked mechanism thereof
CN106285459A (en) * 2016-10-28 2017-01-04 北京中车重工机械有限公司 The top connection of down-hole hammer monomer and cluster type down-hole hammer
CN106437495A (en) * 2016-10-28 2017-02-22 北京中车重工机械有限公司 Lower connector for single downhole hammer and cluster downhole hammer
JP2019124009A (en) * 2018-01-12 2019-07-25 大智株式会社 Drilling machine, rotational drilling machine, drilling method and drilling bit
JP2020090864A (en) * 2018-12-06 2020-06-11 大智株式会社 Drilling device and rotary drilling machine
RU2750375C1 (en) * 2018-03-27 2021-06-28 Бейджин Кэпитал Хит Ко., Лтд. Drilling system with several channels for flow circulation and drilling method for drilling wells with large bore diameter in solid rocks

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501907A (en) * 2004-06-04 2008-01-24 アトラス コプコ セコロク エイビー Removable washer device for downhole drills
WO2011149197A3 (en) * 2010-05-26 2012-01-19 (주)이엔피엔지니어링 Variable excavation hammer for expanding the leading end of a pile
CN103244049A (en) * 2012-02-10 2013-08-14 震东机械设备有限公司 Method and apparatus for controlling operation of cluster drill of DTH hammers
CN106194006A (en) * 2016-09-09 2016-12-07 北京中车重工机械有限公司 A kind of cluster type down-hole hammer
CN106223840A (en) * 2016-09-09 2016-12-14 北京中车重工机械有限公司 Cluster type down-hole hammer and down-hole hammer monomer locked mechanism thereof
CN106285459A (en) * 2016-10-28 2017-01-04 北京中车重工机械有限公司 The top connection of down-hole hammer monomer and cluster type down-hole hammer
CN106437495A (en) * 2016-10-28 2017-02-22 北京中车重工机械有限公司 Lower connector for single downhole hammer and cluster downhole hammer
JP2019124009A (en) * 2018-01-12 2019-07-25 大智株式会社 Drilling machine, rotational drilling machine, drilling method and drilling bit
RU2750375C1 (en) * 2018-03-27 2021-06-28 Бейджин Кэпитал Хит Ко., Лтд. Drilling system with several channels for flow circulation and drilling method for drilling wells with large bore diameter in solid rocks
JP2020090864A (en) * 2018-12-06 2020-06-11 大智株式会社 Drilling device and rotary drilling machine

Similar Documents

Publication Publication Date Title
US5613568A (en) Rock drilling machine
US6467558B2 (en) Multiple air hammer apparatus and excavating direction correcting method therefor
CA1167023A (en) Device for producing boreholes in coal or the like
JPH03290585A (en) Directional control type cluster downhaul drilling machine
US8640793B2 (en) Dynamic steering tool
JPH0384193A (en) Earth excavating method and apparatus
JPH03206286A (en) Hydraulic excavating device and method
JPS63593A (en) Fluid excavator and fluid excavation method
CA2116267A1 (en) Directional multi-blade boring head
WO2009110847A1 (en) A horizontal directional drilling system
US5979573A (en) Horizontal boring apparatus
US5469926A (en) Directional boring drill bit blade
CN109025821B (en) Mixed type high build-up rate rotary steering drilling tool
EP0911451A2 (en) Vibration generating device
RU2540132C2 (en) Device for control of operation of cluster bit of submerged-type hammers
JP3859297B2 (en) Inner bit structure for double pipe excavation method
JP7350272B1 (en) Excavation machine and piping method for excavation machine
GB2350630A (en) Cutter device propelled and steered by fluid ejected through nozzles
US6702046B2 (en) Drill device for a drilling apparatus
JP3725736B2 (en) Undercut drilling device
US20210262294A1 (en) Flushing system in drill bits
JP3701918B2 (en) Swivel joint positioning structure
JP2604320B2 (en) Swivel to supply fluid from rotary connection
JP3551272B2 (en) Injection port switching mechanism
JP2919275B2 (en) Switching valve