JPH0328901A - Process controller - Google Patents

Process controller

Info

Publication number
JPH0328901A
JPH0328901A JP16273089A JP16273089A JPH0328901A JP H0328901 A JPH0328901 A JP H0328901A JP 16273089 A JP16273089 A JP 16273089A JP 16273089 A JP16273089 A JP 16273089A JP H0328901 A JPH0328901 A JP H0328901A
Authority
JP
Japan
Prior art keywords
current
output
control device
amplifiers
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16273089A
Other languages
Japanese (ja)
Inventor
Nobuhiko Furukawa
伸比古 古川
Atsuyuki Kakehi
筧 敦行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16273089A priority Critical patent/JPH0328901A/en
Publication of JPH0328901A publication Critical patent/JPH0328901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Safety Devices In Control Systems (AREA)

Abstract

PURPOSE:To attain a normal and continuous operation of a process by using the diagnostic circuits to detect the abnormality of plural controllers and current amplifiers and separating the output of the current amplifier connected to an abnormal controller. CONSTITUTION:The diagnostic circuits 7A - 7C are prepared to detect the abnormality of the multiplexed controllers 1A - 1C and current amplifiers 1A - 2C respectively. If the controller 1B has a trouble, this abnormality is detected by the diagnostic circuit 7B. Then a contact 8B is opened by an output S7B and the current output S2B of the B series is set at zero, which is equivalent to a case where the output s1B of the controller 1B and the gain KB of the amplifier 2B are set at zero. Therefore a load current S2 is kept at a normal level when the gains of amplifiers 2A - 2C are more increased at coincidence secured between both outputs S1A and S1C of controllers. Thus it is known that both amplifiers 2A and 2C are normally working in a linear area. As a result, the normal controllers function to keep the normal current S2 and to continue a normal plant operation even if one of those controllers has a trouble.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野] 本発明は、プロセスを制御する多重化プロセス制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a multiplexed process control device for controlling processes.

(従来の技術) 近年、原子・力発電所のように高信頼性が要求されるプ
ラントに用いられるプロセス制御装置は、特に高信頼度
が要求される部分を3重化に構戊するのが一般的である
。これは3重化の場合、多数決理論に従った方法で最も
確からしい信号を簡単かつ確実に選択でき、一系列の故
障でプラントが影響を受けることを完全に防止できるた
めである。
(Prior art) In recent years, process control equipment used in plants that require high reliability, such as nuclear power plants, has been constructed in a triplex configuration, especially in the parts that require high reliability. Common. This is because, in the case of triplexing, the most probable signal can be selected easily and reliably using a method based on majority voting theory, and it is possible to completely prevent the plant from being affected by a failure in one series.

この種の従来装置としては、例えば第2図に示す電流加
算による3重化選択装置がある。図において,制御装置
IA,IB,ICの出力SIA,SIB,SICは電流
増幅器2A,211.2Cにより電流出力S2A,S2
[3,S2Cに変換され、加算されて負荷電流S2とな
り、負荷3の一端に供給される.負荷3の他端は帰還抵
抗4に接続され、帰還抵抗4の端子電圧S4は電流増幅
器2A , 2B , 2Cに帰還される.上記装置で
電流増幅器2A , 2B , 2Cの動作は下記(1
)式で示される. ここで、上記(1)式中のKA,KB,Kcは電流増幅
器2A,2B,2Cのゲインを表わす. また、負荷3に供給される電流S2は下記(2)式で示
される. S2=S2A+S2B十S2G           
・・・(2)さらに,帰還抵抗4の端子電圧S4は、帰
還抵抗4の抵抗値をRfとした場合、下記(3)式で示
される. S4=Rf−S2                 
・・・(3)以上(1)〜(3)式より,制御装置出力
SIA,SIR,SICと、負荷電流S2の関係は下記
(4)式のようになる. ここで,電流増幅器のゲインを下記(5)式のように選
ぶと、 RfKA,RfKn,RfKc>>1    −(5)
制御装置出力SIA,SIB,SICが一致している時
、負荷電流S2は,下記(6)式のようになる.S2二
SIA/Rf            ・・・(6)し
かしながら、一般に電流増幅器の特性は第3図に示す通
り飽和特性を有しており、電流増幅器出力の線形領域を
一〇からCとした場合、前記(1)式が成立するために
は, IsI−S4 1 <C/K(%)(C=一定)・・・
(7)が成り立つことが必要である.ここでS1はSI
A,SIB,SIC, KはKA,KB,Kcを表現し
ている.従って、IsI−541が上記(7)式の範囲
を逸脱した場合は、第3図に示す通りKは非常に小さく
なり、S2A,S2B,S2Cは一定範囲に収まる.こ
こで例えば制御装置ICが故障し,制御装置出力SIC
従ってl SIC−S4 1が上記範囲を逸脱した場合
には、上記電流増幅器の特性により、電流増幅器出力S
2CはIc−C’lの範囲の値となる.従って、前記(
1)式で電流増幅器出力32Gが正側の最大値に変化し
たとしてszc=c’ とおき,負荷電流S2’ を求
めると、 は電流増@器出力S2Cが負側の最大値に変化した場合
も同様である. 一方,制御装置IBと1Cが故障し52B=52C= 
C ’となった場合の負荷電流S2’を求めると、とな
り、負荷電流S2に対するS2’の変動は、となり.R
fKAを十分大きく選べば、S2’はS2とほぼ等しく
なり、負荷電流を正常に保つことができる. ここで、帰還電圧S4’は(3) , (8)式よりと
なる.この時の負荷電流S2に対するS2’の変動は下
記(l3)式のようになる. このとき,RfK^を十分に大きく選べばS2’はS2
とほぼ等しくなり、負荷電流は正常に保たれる。
As a conventional device of this type, there is, for example, a triple selection device using current addition shown in FIG. In the figure, outputs SIA, SIB, SIC of control devices IA, IB, IC are current outputs S2A, S2 by current amplifiers 2A, 211.2C.
[3, converted to S2C and added to become load current S2, which is supplied to one end of load 3. The other end of the load 3 is connected to a feedback resistor 4, and the terminal voltage S4 of the feedback resistor 4 is fed back to the current amplifiers 2A, 2B, and 2C. The operation of current amplifiers 2A, 2B, and 2C in the above device is as follows (1
) is shown by the formula. Here, KA, KB, and Kc in the above equation (1) represent the gains of the current amplifiers 2A, 2B, and 2C. Further, the current S2 supplied to the load 3 is expressed by the following equation (2). S2=S2A+S2B+S2G
(2) Furthermore, the terminal voltage S4 of the feedback resistor 4 is expressed by the following equation (3), where the resistance value of the feedback resistor 4 is Rf. S4=Rf-S2
(3) From the above equations (1) to (3), the relationship between the control device outputs SIA, SIR, and SIC and the load current S2 is as shown in equation (4) below. Here, if the gain of the current amplifier is selected as shown in equation (5) below, RfKA, RfKn, RfKc>>1 - (5)
When the control device outputs SIA, SIB, and SIC match, the load current S2 becomes as shown in equation (6) below. S22 SIA/Rf... (6) However, the characteristics of a current amplifier generally have saturation characteristics as shown in Figure 3, and when the linear region of the current amplifier output is set from 10 to C, the above ( 1) In order for the formula to hold, IsI-S4 1 <C/K (%) (C=constant)...
It is necessary that (7) holds true. Here S1 is SI
A, SIB, SIC, and K represent KA, KB, and Kc. Therefore, if IsI-541 deviates from the range of equation (7) above, K becomes extremely small as shown in FIG. 3, and S2A, S2B, and S2C fall within a certain range. For example, if the control device IC fails, the control device output SIC
Therefore, if lSIC-S41 deviates from the above range, the current amplifier output S
2C is a value in the range of Ic-C'l. Therefore, the above (
In equation 1), assuming that the current amplifier output 32G changes to the maximum value on the positive side, set szc = c' and calculate the load current S2'. If the current amplifier output S2C changes to the maximum value on the negative side, then The same is true. On the other hand, control devices IB and 1C fail and 52B=52C=
When the load current S2' is calculated as C', the variation of S2' with respect to the load current S2 is as follows. R
If fKA is chosen to be large enough, S2' becomes approximately equal to S2, and the load current can be maintained normally. Here, the feedback voltage S4' is obtained from equations (3) and (8). At this time, the fluctuation of S2' with respect to the load current S2 is as shown in equation (l3) below. At this time, if RfK^ is chosen large enough, S2' becomes S2
is almost equal to , and the load current is maintained normally.

ここで,帰還電圧を求めると、 となる.これにより、 となる.これにより、 となり,1系列のみが故障した場合は(7)式の条件を
満足し、1系列故障による負荷電流の変動は、他の2系
列によって補償することができる.これとなり、前記(
7)式を満足しない.従って、2系列が同時に故障した
場合、残るl系列ではもはや、変動を補償することが不
可能となる。
Here, the feedback voltage is found as follows. This results in . As a result, if only one series fails, the condition of equation (7) is satisfied, and the fluctuation in load current due to one series failure can be compensated for by the other two series. This results in the above (
7) Does not satisfy Eq. Therefore, if two series fail at the same time, the remaining l series will no longer be able to compensate for the fluctuations.

第4図は、以上に述べたように第2図の3重系が全て正
常時、l系故障時、2系故障時における第2図の装置全
体を1つの系にまとめてブロック線図で表わしたもので
ある。
As mentioned above, Fig. 4 is a block diagram of the entire apparatus shown in Fig. 2 in one system when all the triple systems in Fig. 2 are normal, when the 1 system is faulty, and when the 2 system is faulty. It is expressed.

正常時,この装置は同図(a)で示されるように、個々
の電流増幅器の3倍の増幅率3Kを持った増幅器5Aと
、個々の電流増幅器の線形領域の3倍の制限値±30を
持った制限器6Aとを有する。閉ループに外乱が加わっ
た形のブロック図で表わされる.ここで、3重系のうち
1系が故障して,故障した系の電流増幅器の出力が正側
に飽和してC′となったとする.故障した系の電流増幅
器の増幅率は飽和して零となり、出力はC′で固定され
るため、装置全体としては、同図(b)に示すように増
幅率2Kの増幅器5Bと制限値2Cの制限器6Bとなる
.このとき,外乱としては新たにC′が加わるが,第3
図から判るように、電流増幅器の飽和値±C′と線形領
域±Cはほぼ等しいので 2C>C’              ・・・(16
)となり、外乱による影響は帰還回路により完全に補償
される. 次に,3重系のうち2系が故障して、故障した系の電流
増幅器の出力が共に正側に飽和してC′となったとする
.1系故障時と同様にして装置全体としては増幅率の増
加器5Cと制限値Cの制限器6Cとなる.このとき外乱
としては新たに2C’ が加わり、 C<2C’               ・・・(1
7)となり、外乱が制限器の範囲を越えてしまうので、
もはや正常な補償は不可能となる。
Under normal conditions, this device has an amplifier 5A with an amplification factor of 3K, which is three times that of the individual current amplifiers, and a limit value of ±30 times the linear region of each current amplifier, as shown in Figure (a). It has a limiter 6A having a. It is represented as a block diagram in which a disturbance is added to a closed loop. Assume here that one of the triple systems fails and the output of the current amplifier of the failed system saturates to the positive side and becomes C'. The amplification factor of the current amplifier in the failed system saturates and becomes zero, and the output is fixed at C'. Therefore, as shown in the figure (b), the overall system consists of an amplifier 5B with an amplification factor of 2K and a limit value of 2C. becomes the limiter 6B. At this time, C' is newly added as a disturbance, but the third
As can be seen from the figure, the saturation value ±C' of the current amplifier and the linear region ±C are almost equal, so 2C>C'...(16
), and the effects of disturbances are completely compensated for by the feedback circuit. Next, assume that two of the triple systems fail and the outputs of the current amplifiers in the failed systems both saturate to the positive side and become C'. As in the case of system 1 failure, the entire system consists of an increaser 5C for the amplification factor and a limiter 6C for the limit value C. At this time, 2C' is newly added as a disturbance, and C<2C'...(1
7), and the disturbance exceeds the range of the limiter, so
Normal compensation is no longer possible.

第5図は、このときの各部信号の変化を示したものであ
る.制御装置IA,IB,ICの出力SIA,SIB,
S1Cが一致しているときは、各電流増幅器2A,2B
,2Cによってそれぞれ等しい電流値S2A.S2B,
S2Cに変換され、その加算電流S2が負荷3に流れる
。制御装置ICの故障により、例えば制御装置出力SI
Cが低下すると、電流増Ill器2Cが負方向に飽和し
、その出力52Cが低下するや一方,電流増幅器2A,
2Bの出力S2A,52Bは、52Cの低下分を補償す
るように正方向に変化する.この結果、負荷電流S2に
は変化がなく、不一致直前の値に保持される,次に.制
御装置IB,ICの故障により制御装置出力SIB,S
IC,SICが低下すると、電流増幅器2B,2Cが負
方向に飽和し、その出力32B,52Cが低下する.こ
のとき,電流増幅器2Aの出力S2Aは、S2B,52
Cの低下分を補償しようと、正側に変化するが飽和して
しまい、52B,52Cの低下分を完全に補償すること
はできない。この結果.負荷電流S2は不一致発生と共
に、正常値から負方向へと逸脱する。
Figure 5 shows the changes in the signals of each part at this time. Control device IA, IB, IC output SIA, SIB,
When S1C matches, each current amplifier 2A, 2B
, 2C, respectively equal current values S2A. S2B,
The added current S2 flows to the load 3. Due to a failure of the control device IC, for example, the control device output SI
When C decreases, the current amplifier 2C saturates in the negative direction, and as soon as its output 52C decreases, the current amplifier 2A,
The outputs S2A and 52B of 2B change in the positive direction to compensate for the decrease in 52C. As a result, the load current S2 does not change and is held at the value immediately before the mismatch.Next. Control device output SIB, S due to failure of control device IB, IC.
When IC and SIC decrease, current amplifiers 2B and 2C become saturated in the negative direction, and their outputs 32B and 52C decrease. At this time, the output S2A of the current amplifier 2A is S2B, 52
In an attempt to compensate for the decrease in C, it changes to the positive side, but it becomes saturated, and the decrease in 52B and 52C cannot be completely compensated for. As a result. When the mismatch occurs, the load current S2 deviates from the normal value in the negative direction.

(発明が解決しようとする課題) 上記のように多数決理論に伴う多重化選択装置では、制
御装置の故障が少数系列の故障であれば正常な出力を維
持することが可能であるが,多数系列の制御装置が故障
した場合、特殊な場合を除き正常な出力を維持すること
が困難となる。
(Problem to be Solved by the Invention) As mentioned above, in the multiplex selection device based on the majority theory, it is possible to maintain normal output if the failure of the control device is a failure in a minority sequence, but it is possible to maintain a normal output if the failure in the control device is in a minority sequence. If the control device fails, it will be difficult to maintain normal output except in special cases.

本発明は、多重化された制御装置のうち多数系列が故障
した場合でも,残る正常な制御装置により、プラントの
運転を継続することのできるプロセス制御装置を提供す
ることを目的とする,[発明の構戊] (課題を解決するための手段) 本発明は,多重化された各制御装置と各電流増幅器の異
常をそれぞれ検出する診断回路を設け、この診断回路で
異常を検出した時に該当する異常系の出力を電流加算か
ら切り離し、零となるようにしたものである. (作用) 多重化された制御装置が故障しても1系列でも正常であ
れば、故障した制御装置は自らの異常を検出し、出力を
零とするため、残る1系列の制御装置により負荷に流れ
る電流は正常に保たれ、プラントの運転は継続される。
An object of the present invention is to provide a process control device that can continue the operation of a plant using the remaining normal control devices even if many of the multiplexed control devices fail. [Structure] (Means for Solving the Problems) The present invention provides a diagnostic circuit that detects an abnormality in each multiplexed control device and each current amplifier, and detects the corresponding abnormality when the diagnostic circuit detects the abnormality. The output of the abnormal system is separated from the current addition so that it becomes zero. (Function) Even if a multiplexed control device fails, if one system is normal, the failed control device will detect its own abnormality and reduce its output to zero, so the remaining one system control device will respond to the load. The flowing current is maintained normally and the plant continues to operate.

(実施例) 第1図は本発明の一実施例によるプロセス制御装置の構
成図を示したもので、制御装置IA,IB,ICの出力
SIA,SIB,SICと帰還電圧S4との差は、電流
増幅器2A , 2B , 2Cにて電流に変換増幅さ
れて、電流出力S2A’ ,52B’ ,32C’ と
なる.この電流出力S2A’ ,52B’ ,52C’
は診断回路7A , 78 . 7Cの出力信号S7A
,S7B,57Cによって開閉する接点8A , 8B
 , 8Gに接続され、接点の他端の信号S2A,S2
B,S2Cは合成されて負荷電流S2となり、負荷3の
一端に供給される.負荷3の他端は帰還抵抗4に接続さ
れ、帰還電圧4の端子電圧S4は電流増幅器2A,2B
,2Cに帰還される. 診断回路7A,78.7Cは制御装置IA,IB,IC
と電流増幅器2A,2B,2Cの状態を表わす情報S9
A,S9B,S9Cを入力して、制御装置IA,1B,
ICと電流増幅器2A , 2B ,2Cの診断を行う
ように構威されている.以上の構成で、接点8A , 
8B , 8Gが閉じている時は、前記(1)〜(3)
式が成り立ち,制御装置出力SIA,SIB,SICと
負荷電流S2との関係は下記(l8)式のようになる. ここで電流増幅器のゲインを下記(19)式のように選
ぶと、 RfKA,RfKs,RfKc >>  1’   ”
{19)制御装置出力SIA,SIB,SICが一致し
ている時、負荷電流S2は下記(20)式のようになる
.S2まSIA/Rf            ・・・
(20)ここで仮に制御装置IBが故障した場合には、
診断回路78により制御装置IBの異常を検出し、その
出力57Bにより、接点8Bを開き、B系列の電流出力
32Bを零とする.これは,実質上制御装置の出力SI
Bと、電流増幅器2BのゲインKaを零としたことに等
しいため、前記(l8)式より、となる。
(Embodiment) FIG. 1 shows a configuration diagram of a process control device according to an embodiment of the present invention, and the difference between the outputs SIA, SIB, SIC of the control devices IA, IB, IC and the feedback voltage S4 is The current amplifiers 2A, 2B, and 2C convert and amplify the current to current outputs S2A', 52B', and 32C'. This current output S2A', 52B', 52C'
are diagnostic circuits 7A, 78. 7C output signal S7A
, S7B, 57C contacts 8A, 8B
, 8G, and the signals S2A and S2 at the other end of the contact
B and S2C are combined to form a load current S2, which is supplied to one end of the load 3. The other end of the load 3 is connected to a feedback resistor 4, and the terminal voltage S4 of the feedback voltage 4 is connected to the current amplifiers 2A and 2B.
, returned to 2C. Diagnostic circuits 7A, 78.7C are control devices IA, IB, IC
and information S9 representing the status of the current amplifiers 2A, 2B, and 2C.
A, S9B, S9C are input, and the control device IA, 1B,
It is designed to diagnose the IC and current amplifiers 2A, 2B, and 2C. With the above configuration, contact 8A,
When 8B and 8G are closed, the above (1) to (3)
The equation holds, and the relationship between the control device outputs SIA, SIB, and SIC and the load current S2 is as shown in equation (l8) below. Here, if the gain of the current amplifier is selected as shown in equation (19) below, RfKA, RfKs, RfKc >>1' ”
{19) When the control device outputs SIA, SIB, and SIC match, the load current S2 becomes as shown in equation (20) below. S2 ma SIA/Rf...
(20) If the control device IB breaks down,
The diagnostic circuit 78 detects an abnormality in the control device IB, and its output 57B opens the contact 8B, making the B series current output 32B zero. This is effectively the output SI of the control device.
Since it is equivalent to setting the gain Ka of the current amplifier 2B to zero, from the above equation (l8), we have the following equation.

従って、制御装置出力SIA,SICが一致している時
、電流増幅器2A,2B,2Cのゲインを前記(19)
式のように選べば、負荷電流S2は、下記(23)式の
ように正常時と同一に保たれる。
Therefore, when the control device outputs SIA and SIC match, the gains of the current amplifiers 2A, 2B, and 2C are set according to the above (19).
If the equation is selected as shown in the equation, the load current S2 is kept the same as in the normal state as shown in equation (23) below.

S2’ 去SIA/ Rf           ・・
・(22)ここで帰還電圧S4を求めると, S4云SIA               ・・・(
23)となり、これにより、 l SIA−S4 1″:O          ・・
・(24)となり,電流増幅器が線形領域で動作する前
記全体式(7)を満足する. 次に、制御装1tlBとICが故障した場合には、診断
回路7B , 7Cが制御装1i1B,ICの異常を検
出し、出力信号57B,57Cにより接点8B , 8
Cを開き,電流増幅器の出力52B,S2Cを零とする
.これは、制御装置の出力SIB,51Cと電流増幅器
2B,2CのゲインKB,KCを共に零としたことと等
価であるため、前記(l8)式より、負荷電流は下記(
25)式となる.1+Rf 従って,電流増幅器のゲインを前記(19)式のように
選べば、負荷電流は下記(26)式のように正常時と同
一に保たれる. S2’去SIA/Rf           ・・・(
26)ここで帰還電圧S4を求めると、 84″:SIA               ・・・
(27)となり、これにより, l SIA−S4 lま0          ・・・
(28)となり、電流増幅器2Aは線形領域で正常に動
作していることになる. これを第4図を用いて説明すると、正常時には、同図(
a)で示されるように、プロセス制御装置全体は、増幅
率3Kを持った増幅器5Aと、制限値3Cを持った制限
器6Aと負荷3と、帰還路とを有する回路に外乱が加わ
った形のブロック線図で表わせる。
S2' left SIA/Rf...
・(22) Here, when finding the feedback voltage S4, S4 云SIA ...(
23), and as a result, l SIA-S4 1″:O...
- (24), which satisfies the above overall equation (7) in which the current amplifier operates in the linear region. Next, when the control device 1tlB and IC fail, the diagnostic circuits 7B and 7C detect an abnormality in the control device 1i1B and IC, and the output signals 57B and 57C open the contacts 8B and 8.
Open C and set the outputs 52B and S2C of the current amplifier to zero. This is equivalent to setting both the output SIB, 51C of the control device and the gains KB, KC of the current amplifiers 2B, 2C to zero, so from equation (l8) above, the load current is as follows:
25). 1+Rf Therefore, if the gain of the current amplifier is selected as shown in equation (19) above, the load current will be kept the same as in normal conditions as shown in equation (26) below. S2' left SIA/Rf...(
26) Here, find the feedback voltage S4: 84″:SIA...
(27), so that l SIA-S4 lma0...
(28), which means that the current amplifier 2A is operating normally in the linear region. To explain this using Fig. 4, under normal conditions, the figure (
As shown in a), the entire process control device consists of an amplifier 5A with an amplification factor of 3K, a limiter 6A with a limit value of 3C, a load 3, and a feedback path in which a disturbance is applied. It can be expressed as a block diagram.

ここで、3重系のうち1系が故障して故障した系の電流
増幅器が正側に飽和した場合、同図(b)で示されるよ
うに装置全体の増幅率は2K、制限値は2Cとなるが,
故障した系は切り離されるため,外乱の変化はなく、正
常な制御が継続される.次に、3重系のうち2系が故障
して故障した系の電流増幅器が2系とも正側に飽和した
場合、同図(c)で示されるように装置全体の増幅率は
K、制限値はCとなるが、故障した系は切り離されるた
め外乱の変化はなく,正常な制御が継続される。
Here, if one of the triplex systems fails and the current amplifier of the failed system saturates to the positive side, the amplification factor of the entire device is 2K and the limit value is 2C, as shown in Figure (b). However,
Since the faulty system is isolated, there is no change in disturbance and normal control continues. Next, if two of the triple systems fail and the current amplifiers of the failed system both saturate to the positive side, the amplification factor of the entire device is K, which is limited as shown in Figure (c). The value becomes C, but since the faulty system is disconnected, there is no change in the disturbance, and normal control continues.

ところで、本発明によるプロセス制御装置の構成要素の
1つである診断回路は、例えば次の方式により実現でき
る.まず、制御装置の診断は、制御装置の出力が考えら
れる一定範囲を逸脱したことを検出することによって、
異常と診断する。また,ディジタル制御装置である場合
には、ディジタル制御装置で一般に行われている、プロ
グラム処理渋滞制御異常、メモリパリティチェック,ク
ロツク停止、演算チェック等のCPU異常や、データ伝
送異常,電源異常等を利用することによって行うことが
できる.一方、電流増幅器の診断は、増幅率で与えられ
る入出力間の関係が損なわれることを検出することによ
って行うことができる.この場合、診断回路は一括別置
としてもよいことは言う迄もない. なお、上記の実施例では,故障検出後の処理を、今回故
障系の出力を切り離して零とする接点等の出力切り離し
手段を設けて行ったが、故障系の出力に飽和特性を持つ
回路を接続して電流増幅器の飽和値より小さな値に出力
を制限したり,故障系の出力を入力信号の極性に応じた
一定値に切り替えることでも同様の効果が得られる. また,上記実施例では3重化したプロセス制御装置を例
にとって説明したが、本発明はこれに限らず多重化した
全てのプロセス制御装置に適用可能であることは勿論の
ことである。
By the way, the diagnostic circuit, which is one of the components of the process control device according to the present invention, can be realized, for example, by the following method. First, diagnosis of a control device is performed by detecting that the output of the control device deviates from a certain conceivable range.
Diagnose as abnormal. In addition, in the case of a digital control device, it will also detect CPU abnormalities such as program processing congestion control abnormalities, memory parity checks, clock stops, calculation checks, data transmission abnormalities, power supply abnormalities, etc. that are commonly performed in digital control devices. This can be done by using On the other hand, current amplifier diagnosis can be performed by detecting that the relationship between input and output given by the amplification factor is impaired. In this case, it goes without saying that the diagnostic circuit may be installed separately. Note that in the above embodiment, the processing after failure detection was carried out by providing an output disconnection means such as a contact that disconnects the output of the failed system and makes it zero, but a circuit with saturation characteristics for the output of the failed system was A similar effect can be obtained by connecting to limit the output to a value smaller than the saturation value of the current amplifier, or by switching the output of the faulty system to a constant value depending on the polarity of the input signal. Furthermore, although the above embodiment has been explained using a triplexed process control apparatus as an example, the present invention is of course not limited to this and can be applied to all multiplexed process control apparatuses.

[発明の効果] 以上説明したように本発明によれば、多重化された制御
装置のうち多数系列が故障した場合でも、正常な系列が
一系列でもあれば、その一系列でプロセスの正常な運転
を継続することが可能となり、稼動率の高いプロセス制
御装置が得られる。
[Effects of the Invention] As explained above, according to the present invention, even if many systems out of multiplexed control devices fail, if there is only one system that is normal, that one system can restore the normal process. It becomes possible to continue operation, and a process control device with a high operating rate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるプロセス制御装置の構
成図、第2図は従来のプロセス制御装置の構或図、第3
図は電流増幅器の入出力特性図、第4図(a)〜(C)
はプロセス制御装置の故障状態を説明するためのブロッ
ク線図、第5図は第2図の動作を説明するためのタイム
チャートである。 IA,IB,IC・・・制御装置、2A , 2B ,
 2C・・・電流増幅器、3・・・負荷、4・・・電圧
帰還器、5^, 58 . 5C・・・接点、6A.6
B,6C・・・診断回路,7・・・比例増#4器、8・
・・制限第2図 第1図 エj)電洗 第 3 図 第 4 図
FIG. 1 is a configuration diagram of a process control device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a conventional process control device, and FIG. 3 is a configuration diagram of a conventional process control device.
The figure is an input/output characteristic diagram of a current amplifier, Figures 4 (a) to (C)
is a block diagram for explaining a failure state of the process control device, and FIG. 5 is a time chart for explaining the operation of FIG. 2. IA, IB, IC...control device, 2A, 2B,
2C...Current amplifier, 3...Load, 4...Voltage feedback device, 5^, 58. 5C...Contact, 6A. 6
B, 6C...Diagnostic circuit, 7...Proportional increase #4 device, 8.
...Restrictions Figure 2 Figure 1 d) Electric washing Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)多重化された制御装置と、これらの各制御装置か
らの出力信号をそれぞれ入力する複数の電流増幅器と、
これら複数の電流増幅器からの出力電流を合成して負荷
に流す回路と、その負荷に直列接続された帰還抵抗と、
この帰還抵抗を介して前記複数の電流増幅器にそれぞれ
負荷電流に応じた信号を帰還する帰還路とを有するプロ
セス制御装置において、前記複数の制御装置と複数の電
流増幅器の異常を検出する診断回路と、前記診断回路に
より異常と診断された制御装置に接続された電流増幅器
の出力あるいは異常と診断された電流増幅器自身の出力
を切り離す出力切り離し手段とを備えることを特徴とし
たプロセス制御装置。
(1) A multiplexed control device and a plurality of current amplifiers each receiving an output signal from each of these control devices;
A circuit that combines the output currents from these multiple current amplifiers and flows them to a load, and a feedback resistor connected in series to the load.
A process control device having a feedback path that feeds back a signal corresponding to a load current to each of the plurality of current amplifiers via the feedback resistor, a diagnostic circuit for detecting an abnormality in the plurality of control devices and the plurality of current amplifiers; A process control device comprising: an output disconnection means for disconnecting the output of a current amplifier connected to a control device diagnosed as abnormal by the diagnostic circuit or the output of the current amplifier itself diagnosed as abnormal.
(2)前記出力切り離し手段として電流制限回路を設け
たことを特徴とする請求項1記載のプロセス制御装置。
(2) The process control device according to claim 1, further comprising a current limiting circuit as the output disconnecting means.
JP16273089A 1989-06-27 1989-06-27 Process controller Pending JPH0328901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16273089A JPH0328901A (en) 1989-06-27 1989-06-27 Process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16273089A JPH0328901A (en) 1989-06-27 1989-06-27 Process controller

Publications (1)

Publication Number Publication Date
JPH0328901A true JPH0328901A (en) 1991-02-07

Family

ID=15760180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16273089A Pending JPH0328901A (en) 1989-06-27 1989-06-27 Process controller

Country Status (1)

Country Link
JP (1) JPH0328901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107807A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Process control device
JP2018040462A (en) * 2016-09-09 2018-03-15 株式会社デンソー Sift range control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916010A (en) * 1982-01-30 1984-01-27 Hino Motors Ltd Controller of car accessory electric equipment
JPS61103201A (en) * 1984-10-26 1986-05-21 Mitsubishi Heavy Ind Ltd Multiplexing circuit
JPS62174801A (en) * 1986-01-29 1987-07-31 Fuji Electric Co Ltd Multiplex control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916010A (en) * 1982-01-30 1984-01-27 Hino Motors Ltd Controller of car accessory electric equipment
JPS61103201A (en) * 1984-10-26 1986-05-21 Mitsubishi Heavy Ind Ltd Multiplexing circuit
JPS62174801A (en) * 1986-01-29 1987-07-31 Fuji Electric Co Ltd Multiplex control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011107807A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Process control device
JP2018040462A (en) * 2016-09-09 2018-03-15 株式会社デンソー Sift range control device
WO2018047911A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Shift range control device
US10948078B2 (en) 2016-09-09 2021-03-16 Denso Corporation Shift range control device

Similar Documents

Publication Publication Date Title
US4877972A (en) Fault tolerant modular power supply system
US3808452A (en) Power supply system having redundant d. c. power supplies
KR100692476B1 (en) Current balancing circuit
EP0059089B1 (en) Power supply apparatus
JP4712429B2 (en) Voltage regulator feedback protection method and apparatus
JP2005086883A (en) Overvoltage protection circuit, power supply using same, power supply system, and electronic device
US4639848A (en) Method and system for controlling an AC-DC converter system
JP3054459B2 (en) A device that generates a current corresponding to the amount supplied
JP5389614B2 (en) Process control device
JPH0328901A (en) Process controller
US4143353A (en) Apparatus for the supervision or correction of electrical signals
JP2009142028A (en) Parallel power supply system
US3519945A (en) System for replacing all or part of a faulty amplifier
WO2021056517A1 (en) Current sharing device and method for power system, and power modules
JP5324151B2 (en) Uninterruptible power supply system
JPS62295104A (en) Process controller
EP4068549A1 (en) Power supply system and power supply device
US3064139A (en) Constant electric current power supplies
JPH0546562B2 (en)
JP2008193853A (en) Overvoltage protection device of dc parallel power supply apparatus
US20180188755A1 (en) Electrical function group
JPH0223038A (en) Parallel operation unit for generator
JPS63242126A (en) Failure detector of generator
JPH08110801A (en) Turbine controller
JPS59114616A (en) Dc constant-voltage circuit