JPH0328818B2 - - Google Patents

Info

Publication number
JPH0328818B2
JPH0328818B2 JP56184812A JP18481281A JPH0328818B2 JP H0328818 B2 JPH0328818 B2 JP H0328818B2 JP 56184812 A JP56184812 A JP 56184812A JP 18481281 A JP18481281 A JP 18481281A JP H0328818 B2 JPH0328818 B2 JP H0328818B2
Authority
JP
Japan
Prior art keywords
melt
nozzle
gas
rising edge
horizontal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56184812A
Other languages
Japanese (ja)
Other versions
JPS5886781A (en
Inventor
Shinichi Yagihashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokusan Co Ltd
Original Assignee
Hokusan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokusan Co Ltd filed Critical Hokusan Co Ltd
Priority to JP56184812A priority Critical patent/JPS5886781A/en
Priority to US06/373,039 priority patent/US4561486A/en
Priority to AU83147/82A priority patent/AU562656B2/en
Priority to DE8282302246T priority patent/DE3277974D1/en
Priority to EP82302246A priority patent/EP0065373B1/en
Publication of JPS5886781A publication Critical patent/JPS5886781A/en
Publication of JPH0328818B2 publication Critical patent/JPH0328818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/008Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method using centrifugal force to the charge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Description

【発明の詳細な説明】 本発明は太陽電池その他の光電変換素子等に用
いられている多結晶シリコンウエハの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing polycrystalline silicon wafers used in solar cells and other photoelectric conversion elements.

従来から多結晶シリコンウエハは、各種の方法
によつて製造されており、最も一般的にはシリコ
ン母材により一たん所定形状のインゴツトを鋳造
し、これをスライスすることによつてウエハを得
るようにしているが、これではスライス作業に大
変な時間をかけなければならないだけでなく、イ
ンゴツトの約50%がスライス時のロスとなつてし
まうため、製品がコスト高につき大量生産も不可
能である。
Conventionally, polycrystalline silicon wafers have been manufactured by various methods, most commonly by casting an ingot of a predetermined shape from a silicon base material and slicing it to obtain wafers. However, not only does the slicing process take a lot of time, but about 50% of the ingot is lost during slicing, making the product expensive and impossible to mass produce. .

そこでスライスによらない方法としてリボン法
とキヤステイング法(鋳造法)が既に実施されて
いるが、リボン法は例えば回転ドラムの周面に溶
融シリコンを噴当させ、当該周面にリボン状のウ
エハを形成するものであり、同法によるときは実
際上リボン幅が数mm程度のものしか製造すること
ができず、大形の太陽電池素材等が得られない難
点がある。
Therefore, the ribbon method and casting method (casting method) have already been implemented as methods that do not involve slicing, but in the ribbon method, for example, molten silicon is sprayed onto the peripheral surface of a rotating drum, and a ribbon-shaped wafer is placed on the peripheral surface of the drum. When using this method, it is actually possible to manufacture ribbons with a width of only a few mm, which has the disadvantage that large-sized solar cell materials cannot be obtained.

また上記キヤステイング法と呼ばれているもの
は、シリコン母材を加熱して融液となし、これを
製品ウエハの寸法に応じた鋳型に流し込み、さら
に当該型の可動部分により融液を押圧成型して固
化させるものであるが、同法によるときは、一度
に所定形状のウエハが得られ、量産性の点で望ま
しい結果が期待できるものゝ、上記のように当該
融液は四方から型押しされることになる。
In addition, the above-mentioned casting method heats the silicon base material to form a melt, pours it into a mold according to the dimensions of the product wafer, and then presses and molds the melt using the movable parts of the mold. However, when using this method, wafers with a predetermined shape can be obtained at once, and desirable results can be expected from the standpoint of mass production.As mentioned above, the melt is embossed from all sides. will be done.

このため上記方法では鋳型の上下面と側面が融
液の固化に際し、シリコン結晶粒(グレイン)の
成長を抑制してしまうことゝなり、固化製品の前
記各面と接する部分近傍が、非常に細かい結晶粒
となつて大きなグレインが得られず、太陽電池用
シリコンウエハ等にあつて望ましいとされている
大結晶粒生成の要請を満足させることができない
ため、当該ウエハによつて得られた太陽電池の光
電変換効率も2〜3%と極度に悪化してしまう欠
陥をもつている。
For this reason, in the above method, the upper and lower surfaces and side surfaces of the mold suppress the growth of silicon crystal grains (grains) when the melt solidifies. Because large grains cannot be obtained as crystal grains, and the requirement for large crystal grain formation, which is considered desirable for silicon wafers for solar cells, etc., cannot be achieved, solar cells obtained using such wafers cannot be used. The photoelectric conversion efficiency of the photoelectric conversion efficiency is also extremely deteriorated to 2 to 3%.

本発明は上記従来法の諸問題に鑑み検討の結果
開発されたもので、第1発明の特徴とするところ
は、不活性気内にあつて、立上り周縁を有する横
向板上にシリコン母材の融液を配在させ、当該融
液に対し、ノズルよりガスを吹きつけることによ
り同融液を上記立上り周縁方向へ流動せしめて、
当該立上り周縁により外周端縁が規定される所要
寸法の融液薄層を形成し、これを適時冷却するこ
とにより固化するようにしたことにあり、第2の
発明にあつては上記所要寸法の融液薄膜を形成す
るに際し、ノズルを首振り円運動させることによ
り、当該ノズルから吹きつけられるガスを、シリ
コン母材の融液における外周端縁へ軸線と斜交状
に回動放射し、これを適時冷却することにより固
化するようにしたことを特徴とすることにより、
結晶粒の大きな、しかも均一層厚を有する所望サ
イズの多結晶ウエハが、簡易な設備により母材の
ロスなく、量産し得るようにすると共に、シリコ
ン母材を融液状態から固化状態とするまでに要す
る時間を短縮して、不純物の混入を抑止し、かつ
生産性をも向上させようとするものである。
The present invention was developed as a result of studies in view of the problems of the conventional methods described above. distributing the melt and blowing gas onto the melt from a nozzle to cause the melt to flow in the direction of the rising edge;
The second aspect of the present invention is to form a thin layer of melt having a required dimension in which the outer peripheral edge is defined by the rising peripheral edge, and to solidify this by cooling the thin layer in a timely manner. When forming a thin melt film, the nozzle is oscillated in a circular motion so that the gas blown from the nozzle is rotated and radiated toward the outer peripheral edge of the melt of the silicon base material in a manner oblique to the axis. By being characterized in that it solidifies by cooling in a timely manner,
To enable mass production of polycrystalline wafers of a desired size with large crystal grains and a uniform layer thickness using simple equipment without loss of base material, and to transform the silicon base material from a molten state to a solidified state. The aim is to shorten the time required for production, prevent contamination with impurities, and improve productivity.

本発明を図面によつて詳細に説示すれば、第1
図に示す設備例にあつては、真空またはアルゴン
等の不活性ガスなどによる不活性雰囲気1内に、
電気ヒータ等による溶融用熱源2が配され、当該
熱源2による加熱空間2′に、昇降自在なるよう
横向板3が配設されている。
To explain the present invention in detail with reference to the drawings, the first
In the example of equipment shown in the figure, in an inert atmosphere 1 of vacuum or inert gas such as argon,
A melting heat source 2 such as an electric heater is disposed, and a horizontal plate 3 is disposed in a space 2' heated by the heat source 2 so as to be movable up and down.

こゝで上記横向板3は平板部3′の外周より立
上り周縁4を突設すると共に、平板部3′の軸線
位置に支持パイプ5が下向きに突設されたもの
で、当該横向板3の素材としてはシリコンとの反
応が少ない石英、グラフアイト等を用いるのがよ
く、また上記熱源2としては高周波加熱装置を用
いることもでき、もちろん適時加熱を停止した
り、加熱条件を制御可能にしておくのが望まし
い。
Here, the horizontal plate 3 has a peripheral edge 4 extending upward from the outer periphery of the flat plate part 3', and a support pipe 5 is provided downwardly protruding from the axial position of the flat plate part 3'. As the material, it is best to use quartz, graphite, etc., which have little reaction with silicon, and a high-frequency heating device can also be used as the heat source 2, and of course, it is possible to stop the heating at any time or control the heating conditions. It is preferable to leave it there.

そこで第1図にあつては金属級シリコン、半導
体級高純度シリコンなどによるシリコン母材6
を、前記横向板3の平板部3′にあつて、その中
央位置に載せておき、当該母材6を溶融用熱源2
により加熱融解するようにしており、かくして得
られた融液7に対し、ノズル8からガス9を吹き
つけるのである。
Therefore, in Figure 1, silicon base material 6 made of metal grade silicon, semiconductor grade high purity silicon, etc.
is placed at the center of the flat plate part 3' of the horizontal plate 3, and the base material 6 is placed on the flat plate part 3' of the horizontal plate 3.
The melt 7 obtained in this manner is heated and melted by a nozzle 8 and a gas 9 is blown onto the melt 7 thus obtained.

こゝで平板部3′上の融液7を得る手段として
は、上記の如く固形のシリコン母材6を平板部
3′上で溶融するようにしてもよいが、予め図示
しない坩堝などにより溶融したものを平板部上に
流下させてもよく、このような場合には前記熱源
2によつて融液7の固化が生じないよう加熱する
ことが望ましい。
Here, as a means for obtaining the melt 7 on the flat plate part 3', it is possible to melt the solid silicon base material 6 on the flat plate part 3' as described above, but it is possible to melt the silicon base material 6 in advance in a crucible or the like (not shown). The melted liquid may be allowed to flow down onto the flat plate portion, and in such a case, it is desirable to heat the melted liquid 7 using the heat source 2 so as not to solidify the melted liquid 7.

また上記ノズル8は第1図のように平板部3′
中央部直上に配置しておき、当該ノズル8から円
錘状に拡径するガス9を融液7に吹きつければよ
く、このことにより当該融液7は速やかに立上り
周縁4方向に流動して、この立上り周縁4により
外周端縁Aが規定される所要寸法の融液薄層Bが
均一厚に形成されることゝなるのであり、この際
用いられるガス9としてはAf、He等の不活性ガ
スを用いるのがよい。
Further, the nozzle 8 is connected to the flat plate portion 3' as shown in FIG.
It is sufficient to place the gas 9 directly above the center and spray the gas 9, which expands in diameter into a conical shape, onto the melt 7 from the nozzle 8, so that the melt 7 quickly rises and flows in four directions around the periphery. The rising edge 4 forms a thin melt layer B with a uniform thickness and the required dimensions define the outer edge A, and the gas 9 used at this time is an inert gas such as Af or He. It is better to use gas.

このようにして融液薄層Bが得られたならば、
これを冷却固化することになるが、冷却手段とし
ては横向板3を下降させることにより、同板3を
加熱空間2′から脱するようにしてもよく、この
際当該下降操作は融液薄層Bが得られた後であつ
ても、また下降操作を先行させながら融液薄層B
を形成していくようにしてもよく、また溶融用熱
源2への電流供給を遮断して、横向板3を静置し
たまゝ冷却することもできるが、固化を短時間に
完了させるには、前記の如く横向板3を下降させ
ると共に、同板3に不活性ガスや水などによる冷
媒10を供給するのがよい。
If the thin melt layer B is obtained in this way,
This will be cooled and solidified, but the cooling means may be to lower the horizontal plate 3 to remove it from the heating space 2'. Even after B is obtained, the thin layer of melt B can be formed while the descending operation is preceded.
Alternatively, it is also possible to cut off the current supply to the melting heat source 2 and cool the horizontal plate 3 while leaving it still, but in order to complete the solidification in a short time, In addition to lowering the horizontal plate 3 as described above, it is preferable to supply the same plate 3 with a refrigerant 10 such as inert gas or water.

このように冷媒10を送入しようとするとき
は、例えば第3図の如き横向板3を使用すればよ
く、冷媒10は支持パイプ5に嵌挿されている送
入パイプ11を上昇した後、平板部3′内に設け
られた画壁により形成の往路12を経、さらに立
上り周縁4の折返し口13から帰路14を通過
し、支持パイプ5の外周環路15から放出され
る。
When trying to feed the refrigerant 10 in this way, it is sufficient to use, for example, a horizontal plate 3 as shown in FIG. It passes through an outgoing path 12 formed by a partition wall provided in the flat plate portion 3', then passes through a return path 14 through a folding opening 13 of the rising edge 4, and is discharged from an outer circumferential annular path 15 of the support pipe 5.

次に第2図に示したものは、第2の発明を実施
するために用い得る設備例であり、こゝで第1図
のものと相違するのは、前記ノズル8が単に静置
されたものでなく、当該ノズル8が軸線に対して
斜交状に設置され、しかもこの斜交状態にて矢印
Cのように回転運動させ、これによりノズル8か
ら吹きつけられるガス9を、シリコン母材6の融
液7における外周端縁へ軸線と斜交状に回動放射
させるようにした点にある。
Next, what is shown in FIG. 2 is an example of equipment that can be used to carry out the second invention, and the difference from that shown in FIG. 1 is that the nozzle 8 is simply left stationary. Rather, the nozzle 8 is installed in an oblique manner with respect to the axis, and in this oblique state, it is rotated in the direction of arrow C, whereby the gas 9 blown from the nozzle 8 is directed to the silicon base material. The point is that the melt 7 of No. 6 is rotated and radiated obliquely to the outer peripheral edge of the melt 7 with respect to the axis.

尚こゝで第1、第2図につき説示した本発明の
実施に際し、第2図の矢印Dにより示した通り横
向板3が支持パイプ5を軸心として回転するよう
にし、当該回転による遠心力によつても、シリコ
ン母材6の融液7を立上り周縁4へ向け流動させ
るようにしてもよい。
In carrying out the present invention illustrated in FIGS. 1 and 2, the horizontal plate 3 is rotated about the support pipe 5 as shown by the arrow D in FIG. 2, and the centrifugal force caused by the rotation is Alternatively, the melt 7 of the silicon base material 6 may be made to flow toward the rising edge 4.

こゝで実際上、5.6gのシリコンを1500℃の加
熱条件で融解させ、アルゴンガス雰囲気中にて1
mm径のノズルから不活性ガスたるArガスを第1
図の装置により吹きつけながら、横向板を下降さ
せると共に、Arガスによる冷媒を横向板に供給
して強制冷却させ、直径25cm、厚さ0.5の多結晶
シリコンウエハを製造したところ、当該製品の変
換効率は10%と極めて良好であつた。
In practice, 5.6g of silicon is melted under heating conditions of 1500℃ and heated for 1 hour in an argon gas atmosphere.
Argon gas, which is an inert gas, is first supplied from a mm diameter nozzle.
A polycrystalline silicon wafer with a diameter of 25 cm and a thickness of 0.5 cm was produced by lowering the horizontal plate while blowing with the device shown in the figure, and supplying a refrigerant with Ar gas to the horizontal plate for forced cooling. The efficiency was extremely good at 10%.

本発明は上記のようにして多結晶シリコンウエ
ハを製造するものであるから、融液に対するガス
の吹きつけにより、極めて迅速に融液を強制流動
させることができ、このため生産性が飛躍的に上
すると共に、不純物が混入する機会を可及的に短
縮でき、横向板の立上り周縁によつて所要寸法の
製品が労せずして得られ、当該周縁まで流動して
形成された融液薄膜は、横向板の平板部を水平に
保てば、これまた労せずに均一厚のウエハが得ら
れ、しかも固化に際し、融液薄層の上面が開放状
態であるから、従来のインゴツトスライス法やリ
ボン法の難点が解消されるのはもちろん、既応キ
ヤステイング法のように鋳型の各面による制限を
受けず、従つて融液は従軸方向に対して自由な状
態で固化でき、結晶粒の成長が大きく阻害される
要素がないため、比較的均一に大きな粒径の結晶
粒が成長し変換効率のよい製品を得ることができ
る。
Since the present invention manufactures polycrystalline silicon wafers as described above, the melt can be forced to flow extremely quickly by blowing gas onto the melt, which dramatically increases productivity. At the same time, the chances of contamination with impurities can be reduced as much as possible, and products with the required dimensions can be obtained without effort by the rising edge of the horizontal plate, and the thin film formed by flowing to the edge is If the flat plate part of the horizontal plate is kept horizontal, wafers of uniform thickness can be obtained without much effort, and since the upper surface of the thin melt layer is open during solidification, it is not possible to use the conventional ingot slicing method or Not only does it solve the problems of the ribbon method, but it is not restricted by the various sides of the mold as in the existing casting method, and the melt can solidify freely in the minor axis direction, allowing the crystal grains to Since there are no factors that significantly inhibit the growth of crystal grains, large crystal grains grow relatively uniformly, making it possible to obtain a product with high conversion efficiency.

しかも設備としても比較的簡易にして小形なも
のですみ、その稼動操作にも難度がなく、量産性
の点でも自動化要素の導入が容易なため、従来法
よりも優つている。
Furthermore, the equipment is relatively simple and compact, its operation is not difficult, and automation elements can be easily introduced in terms of mass production, making it superior to conventional methods.

そして第2の発明では、さらにノズルを首振り
円運動させるようにしたから、融液の流動をより
一層円滑に行なわせることができると共に、回動
放射されるガスによつて、全周にわたり均一な流
動となり、製品の均一厚化を助長させることがで
きる。
In the second invention, since the nozzle is made to swing in a circular motion, it is possible to make the melt flow even more smoothly, and the gas emitted by the rotation is evenly distributed over the entire circumference. This results in smooth flow, which can help make the product uniform in thickness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は、夫々第1、第2発明に係る
方法の実施に用い得る設備例を示した正面説明
図、第3図は同設備例の横向板につき詳細を示し
た縦断正面説明図である。 1……不活性雰囲気、3……横向板、4……立
上り周縁、6……シリコン母材、7……融液、8
……ノズル、9……ガス、10……冷媒、A……
外周端縁、B……融液薄層。
Figures 1 and 2 are front explanatory views showing examples of equipment that can be used to implement the methods according to the first and second inventions, respectively, and Figure 3 is a longitudinal cross-sectional front view showing details of the horizontal plate of the example equipment. It is an explanatory diagram. DESCRIPTION OF SYMBOLS 1... Inert atmosphere, 3... Horizontal plate, 4... Rising periphery, 6... Silicon base material, 7... Melt, 8
...Nozzle, 9...Gas, 10...Refrigerant, A...
Outer peripheral edge, B...Thin layer of melt.

Claims (1)

【特許請求の範囲】 1 不活性雰囲気内にあつて、立上り周縁を有す
る横向板上にシリコン母材の融液を配在させ、当
該融液に対し、ノズルよりガスを吹きつけること
により同融液を上記立上り周縁方向へ流動せしめ
て、当該立上り周縁により外周端縁が規定される
所要寸法の融液薄層を形成し、これを適時冷却す
ることにより固化するようにしたことを特徴とす
る多結晶シリコンウエハの製造方法。 2 横向板が水、不活性ガス等の冷媒により冷却
自在であることを特徴とする特許請求の範囲第1
項記載の多結晶シリコンウエハの製造方法。 3 ノズルから吹きつけられるガスが不活性ガス
であることを特徴とする特許請求の範囲第1項記
載の多結晶シリコンウエハの製造方法。 4 不活性雰囲気内にあつて、立上り周縁を有す
る横向板上にシリコン母材の融液を配在させ、当
該融液に対し、ノズルよりガスを吹きつけること
により同軸液を上記立上り周縁方向へ流動せしめ
て、当該立上り周縁により外周端縁が規定される
所要寸法の融液薄層を形成する際、上記ノズルを
首振り円運動させることにより、当該ノズルから
吹きつけられるガスを、上記シリコン母材の融液
における外周側へ斜向状に回動放射し、当該融液
薄層を適時冷却することにより固化するようにう
にしたことを特徴とする多結晶シリコンウエハの
製造方法。 5 ノズルが横向板の中心直上にて斜向状態に配
設されていることを特徴とする特許請求の範囲第
4項記載の多結晶シリコンウエハの製造方法。
[Claims] 1. In an inert atmosphere, a melt of a silicon base material is placed on a horizontal plate having a rising edge, and a gas is blown onto the melt from a nozzle. The liquid is made to flow in the direction of the rising edge to form a thin layer of molten liquid having a required dimension whose outer peripheral edge is defined by the rising edge, and this is solidified by being cooled in a timely manner. A method for manufacturing polycrystalline silicon wafers. 2. Claim 1, characterized in that the horizontal plate can be cooled freely with a refrigerant such as water or inert gas.
A method for manufacturing a polycrystalline silicon wafer as described in Section 1. 3. The method for manufacturing a polycrystalline silicon wafer according to claim 1, wherein the gas blown from the nozzle is an inert gas. 4 In an inert atmosphere, a melt of silicon base material is placed on a horizontal plate having a rising edge, and a coaxial liquid is directed toward the rising edge by blowing gas from a nozzle onto the melt. When flowing the melt to form a thin layer of the melt having the required dimensions whose outer peripheral edge is defined by the rising edge, the nozzle is moved in an oscillating circular motion to direct the gas blown from the nozzle to the silicon matrix. 1. A method for producing a polycrystalline silicon wafer, characterized in that the melt is radiated obliquely toward the outer circumference of the melt, and the thin layer of the melt is solidified by timely cooling. 5. The method of manufacturing a polycrystalline silicon wafer according to claim 4, wherein the nozzle is arranged obliquely directly above the center of the horizontal plate.
JP56184812A 1981-04-30 1981-11-18 Manufacture of polycrystalline silicon wafer Granted JPS5886781A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56184812A JPS5886781A (en) 1981-11-18 1981-11-18 Manufacture of polycrystalline silicon wafer
US06/373,039 US4561486A (en) 1981-04-30 1982-04-29 Method for fabricating polycrystalline silicon wafer
AU83147/82A AU562656B2 (en) 1981-04-30 1982-04-29 Fabricating polycrystalline silicon wafers
DE8282302246T DE3277974D1 (en) 1981-04-30 1982-04-30 Method fabricating a polycrystalline silicon wafer
EP82302246A EP0065373B1 (en) 1981-04-30 1982-04-30 Method fabricating a polycrystalline silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56184812A JPS5886781A (en) 1981-11-18 1981-11-18 Manufacture of polycrystalline silicon wafer

Publications (2)

Publication Number Publication Date
JPS5886781A JPS5886781A (en) 1983-05-24
JPH0328818B2 true JPH0328818B2 (en) 1991-04-22

Family

ID=16159714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56184812A Granted JPS5886781A (en) 1981-04-30 1981-11-18 Manufacture of polycrystalline silicon wafer

Country Status (1)

Country Link
JP (1) JPS5886781A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0908322A2 (en) 2008-05-05 2018-06-26 Dow Global Technologies Inc photovoltaic device kit, photovoltaic device assembly and method for constructing a photovoltaic device assembly on a surface of a structure

Also Published As

Publication number Publication date
JPS5886781A (en) 1983-05-24

Similar Documents

Publication Publication Date Title
US4561486A (en) Method for fabricating polycrystalline silicon wafer
US4382838A (en) Novel silicon crystals and process for their preparation
JP3885452B2 (en) Method for producing crystalline silicon
JP4357810B2 (en) Casting apparatus and casting method
JPH0468276B2 (en)
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JPH10139580A (en) Production of unidirectionally solidified material and unidirectional solidifying device
JPH04342409A (en) Process for manufacturing metallic wafer and use of silicon wafer
CN102112638A (en) Method for refining metal
JPH0971497A (en) Production of polycrystal semiconductor
JPH0328818B2 (en)
US4519764A (en) Apparatus for fabricating polycrystalline silicon wafer
JPS61232295A (en) Production of silicon crystal semiconductor
JPS58162029A (en) Preparation of polycrystalline silicon wafer
JPH0142339Y2 (en)
JPH0232784B2 (en)
JPH046088B2 (en)
JPH0228891B2 (en)
JP2558171Y2 (en) Heat shield for single crystal pulling
JP2006272400A (en) Casting device and semiconductor ingot
JPH04219398A (en) Production of single crystalline silicon
JPH049370B2 (en)
JPH0314766B2 (en)
JPH0314767B2 (en)
JPS62142313A (en) Manufacture of semiconductor substrate