JPH0328807A - Multifiber optical rotary joint - Google Patents

Multifiber optical rotary joint

Info

Publication number
JPH0328807A
JPH0328807A JP2128316A JP12831690A JPH0328807A JP H0328807 A JPH0328807 A JP H0328807A JP 2128316 A JP2128316 A JP 2128316A JP 12831690 A JP12831690 A JP 12831690A JP H0328807 A JPH0328807 A JP H0328807A
Authority
JP
Japan
Prior art keywords
trapezoidal prism
prism
rotating body
trapezoidal
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2128316A
Other languages
Japanese (ja)
Other versions
JPH0462042B2 (en
Inventor
Toshio Fukahori
敏夫 深堀
Hideyuki Takashima
高嶋 秀之
Hitoshi Morinaga
森永 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2128316A priority Critical patent/JPH0328807A/en
Publication of JPH0328807A publication Critical patent/JPH0328807A/en
Publication of JPH0462042B2 publication Critical patent/JPH0462042B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the transmission lass by providing a variable speed gear mechanism which drives and rotates a trapezoidal prism at the angular velocity of a half as fast as that of a rotary body and a reflecting body which reflects and guides the light in an area outside the diameter of the trapezoidal prism to the trapezoidal prism. CONSTITUTION:Converging lenses 9a, 9b, 9c ... i receptacles 15a, 15b, 15c ...are provided on the side of the incidence surface 3a of the trapezoidal prism 3 on an axis parallel to the prism optical axis, and rhomboid prisms 30a, 30b, 30c ... are disposed on a fixed body 1 as reflecting bodies between the trapezoidal prism 3 and converging lenses Similarly, converging lenses 10a, 10b, 10c ...and rhomboid prisms 31a, 31b, and 31c are disposed on the rotary body 2 on the side of the projection surface 3. Further, the variable speed gear mechanism 22 reduces the angular velocity of the rotation of the rotary body 2 to a half. Consequently, the distance between optical fibers 14 and 5 is shortened by the short-sized trapezoidal prism 3.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は回転体と固定体とにそれぞれ設置される複数
本の光ファイバ間を台形プリズムを用いて光学的に接続
する多芯光ロータリジョインl・に関するものである. [従来の技術] 従来、多芯光ロータリジョイントとして第6図(実開昭
61−6818号公報)に示すものが知られ.ている.
図示するように、固定#1内には、回転体2と台形プリ
ズム3を支持するプリズムホルダ4とが同軸上に回転自
在に設けられている.出射側光ファイバ5a,5bは固
定体1に取り付けられたフェルール6a,6bおよびコ
リメート用のロッド状の集束性レンズ9a,9bにより
台形プリズム3の入射面3aに結合され、また入射側光
ファイバ14a.14bは回転体2に取り付けられたフ
ェルール13a,13bおよびコリメート用の集束性レ
ンズ10a,10bにより台形プリズム3の出射面3c
に結合されている.回転体2とプリズムホルダ4および
固定体1との間には、回転体2の回転を172の角速度
に減速してプリズムホルダ4に伝達するための変速歯車
機構としての変速歯車40.41.42と変速歯車軸4
3が設けられている.出射測光ファイバ5aから出射し
た光は、集束性レンズ9aで千行光とされて台形プリズ
ム3の入射面3aに入射し、そこで屈折し底面3bで全
反射し、更に、出射面3Cで屈折して出射し、集束性レ
ンズ10bにより集束されて入射側光ファイバ14bに
入射する.また出射側光ファイバ5bと入射側光ファイ
バ14aとの間も同様に接続される.この光ロータリジ
ョイントでは、回転体2が回転しても、その1/2の角
速度で同方向に台形プリズム3が回転して、回転体2の
回転を光学的に打消すように作用するので、出射側光フ
ァイバ5aと入射側光ファイバ14bとの間、および出
射側光ファイバ5bと入射側光ファイバ14aとの間の
接続関係は保証される.また、第7図(実願昭60−1
57843号)に示す多芯光ロークリジョイントも提案
されている.第7図の多芯光ロータリジョイント1は第
6図の多芯光ロータリジョイントを改良したもので、出
射側光ファイバ5と台形プリズム3の間に接続用の中間
光ファイバ8と集束性レンズ9を配し、同様に回転体2
に入射側光ファイバ14と台形プリズム3の間に中間光
ファイバ11と集束性レンズ10を設置している.回転
体2とプリズムホルダ4および固定体1との間には第6
図と同様に回転体2の回転を172の角速度に減速して
プリズムホルダ4に伝達するための変速歯車m梢として
の変速歯車23.24,25.26と変速歯車軸7が設
けられている.また出射側の光ファイバ5と光ファイバ
8を嵌合接続するためのコネクタfil!(レセブタク
ル18とプラク15)および入射開の光ファイバ14と
光ファイバ10を嵌合接続するためのコネクタ機構(レ
セプタクル19とプラグ46)により出射開から入射開
へ光が接続されるようになっている. [発明が解決しようとする課題] 台形プリズム3が第6図に示すように、光軸に対して入
射像と出射像との間に倒立fi像の関係が生ずるのは台
形プリズム3の口径をSとすると、長さ』は(プリズム
材質BK−7の場合)J=4.23x Sである. また光コネクタ(レセプタクル15、16等)の外径は
通常6〜101Ilであり、例えば4芯の光ロータリジ
ョイントではS.=15〜20flfl, J + =
63.5〜84.61となる. しかし、第5図に示すように光ファイバ間の結合損失は
集束性レンズ間隔が50mmを過ぎると急激に大きくな
る, J , =63.5〜84.6nmの場合、結合
損失は3〜7 dBと著しく増大する.またプラグ20
a,20bをレセプタクル15a,15bに装着した時
に微小な角度折れがあると、光束は台形プリズム3の入
射面3a,底面3b,出射面3cにより拡大され、多芯
光ロータリジョイントの回転特性を悪化させる.特に台
形プリズム3の長さ1が長くなる程、この角度折れによ
る光束の拡大が著しくなり、プリズム長さ』は極力短い
方が良い. これらを改善するため、第7図に示すようなレセプタク
ル18.19と台形プリズム3の間に中間光ファイバ8
および11を介在させ、実装密度の向上を図ったが、中
間光ファイバ8.11を極端に曲げると損失が大きく、
しかも折れる恐れがあるため、ある程度の長さが必要と
なる.このため、台形プリズム3の長さj2が短くなっ
たにもかかわらず、ロータリジョイント全体の長さし+
は非常に大きくなり、回転部分への接続が難しくなる.
また中間光ファイバ8.10は端部をコネクタ用フェル
ールに成端して研磨する必要がみるので、製造コストが
増大し、かつ接続箇所が2ケ所増えるので、接続損失も
増大する. [問題点を解決するための手段] 本発明は、回転体と固定体との間に回転体と同軸に回転
自在に設けられた台形プリズムと、回転体の回転を台形
プリズムに伝達し台形プリズムを回転体の172の角速
度で回転駆動させるための変速歯車t!1構と、台形プ
リズムの入・出射面側にそれぞれ設けられ台形プリズム
の口径外の領域の光を反射して台形プリズムの軸方向に
沿う口径内の光として台形プリズムに案内する反射体と
、反射体を介して台形プリズムの入・出射面にそれぞれ
光学的に臨ませ且つ互いに光学的に対向させて回転体と
固定体とに設置された複数対の集束性レンズと、これら
人・出射面開の集束性レンズにそれぞれ結合された入・
出射側光ファイバとを備えたものである. [作 用] 出射曲光ファイバの出射光は、台形プリズムの口径外の
領域に位置する集束性レンズで平行光とされ、反射体で
反射されて台形プリズムの軸方向に沿う光とされて台形
プリズムの入射面に入射する.台形プリズムにその入射
面より入射した光は、光軸に対して入射像と出射像との
間に倒立鏡像の関係を生じさせる台形プリズムによりそ
の進路が変更され、台形プリズムの軸方向に沿う光とさ
れて出射面より出射する.台形プリズムの出射面からの
出射光は反射体により反射され台形プリズムの口径外の
領域に位置する集束性レンズへと導かれ、集束性レンズ
により入射曲光ファイバに結合される. 台形プリズムは回転体の172の角速度で回転されるの
で、回kA体側の回転像は台形プリズムにより静止像と
されて固定体側に伝送される.あるいは固定.体側の静
止像は台形プリズムにより回転体と同一角速度の回転像
とされて回転体側に伝送される.このため、回転体が回
転しても、台形プリズムを介して対向する回転体側と固
定体側の対応する入・出射側光ファイバの接続は維持さ
れる.[実施例コ 以下に本発明の実姥例を図面に基づいて説明する. 第1図において、1は固定体であり、固定体1には回転
体2の一部が挿入され回転自在に支持されている.また
、固定体1には台形プリズム3を支持するプリズムホル
ダ4が回転体2の回転軸上に設けられている.プリズム
ホルダ4の端部は固定体1と回転体2とにそれぞれ軸受
を介して支持されている.台形プリズム3の入射面3a
側にはプリズム光軸と平行粕上にレセプタクル15a.
15b,15c・・・に収納された集束性レンズ9a,
9b,9c・・・があり、台形プリズム3と集束性レン
ズ9の間には反射体として長斜方形プリズム30a,3
0b,30c・・・が固定体1に設置されている.長斜
方形プリズム30は両端面がそれぞれ90”の(社)角
を与える全反射面となるように設けられている.また同
様にして、台形プリズム3の出射面3測には、プリズム
光軸と平行軸上にレセプタクル16a,16b,16c
・・・に収納された集束性レンズ10a.10b,10
c・・・があり、プリズム3と集束性レンズ10の間に
は長斜方形プリズム31a,3lb,31cが回転木2
に設置されている.レセプタクル15.16に収納され
た集束性レンズ9,10と、プラグ20.21に収納さ
れフエルール6.13に保持された出射測光ファイバ5
,入射側光ファイバ14とはレセプタクル15.16に
プラグ20.21をネジ締結ずることにより光学的に結
合される.プリズムホルダ4の外開の固定体1内には回
転体2の回転を172の角速度《同方向回転)に減速し
てプリズムホルダ4に伝達する変速歯車機構22が設け
られている.変速歯車機構22は回転体2の外周に取り
付けられた歯車23と、固定体1内に回転自在に支持さ
れた軸27上に取り付けられ歯車23と噛合ずる歯II
24と、軸27上に設けられプリズムホルダ4の中央外
周部の歯車26に噛合する歯車25とから主に構成され
ている.中間歯車の歯車24、25は、その回転方向に
相対的に回転ずれができるように24a,24bおよび
25a,25bに2分割され、両分割歯車間には、これ
らに回転ずれを起こさせる方向に弾発するばね等の弾発
部材が設けられている。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a multi-core optical rotary join that optically connects a plurality of optical fibers installed on a rotating body and a fixed body using a trapezoidal prism. It concerns l. [Prior Art] Conventionally, a multi-core optical rotary joint shown in FIG. 6 (Japanese Utility Model Application No. 61-6818) has been known. ing.
As shown in the figure, a rotating body 2 and a prism holder 4 that supports a trapezoidal prism 3 are rotatably provided coaxially within the fixed #1. The output side optical fibers 5a, 5b are coupled to the entrance surface 3a of the trapezoidal prism 3 by ferrules 6a, 6b attached to the fixed body 1 and collimating rod-shaped converging lenses 9a, 9b, and the input side optical fiber 14a .. 14b is the exit surface 3c of the trapezoidal prism 3 by the ferrules 13a, 13b attached to the rotating body 2 and the collimating focusing lenses 10a, 10b.
is connected to. Between the rotating body 2, the prism holder 4, and the fixed body 1, there are speed change gears 40, 41, and 42 as a speed change gear mechanism for decelerating the rotation of the rotating body 2 to an angular velocity of 172 and transmitting it to the prism holder 4. and transmission gear shaft 4
3 are provided. The light emitted from the output photometric fiber 5a is converted into a thousand lines by the converging lens 9a, enters the entrance surface 3a of the trapezoidal prism 3, is refracted there, is totally reflected at the bottom surface 3b, and is further refracted at the exit surface 3C. The light is emitted, is focused by the focusing lens 10b, and enters the input side optical fiber 14b. Further, the output side optical fiber 5b and the input side optical fiber 14a are connected in the same way. In this optical rotary joint, even if the rotating body 2 rotates, the trapezoidal prism 3 rotates in the same direction at 1/2 the angular velocity, and acts to optically cancel the rotation of the rotating body 2. The connection relationships between the output side optical fiber 5a and the input side optical fiber 14b and between the output side optical fiber 5b and the input side optical fiber 14a are guaranteed. Also, Figure 7 (Jet Application 1986-1)
57843) has also been proposed. The multi-core optical rotary joint 1 shown in FIG. 7 is an improved version of the multi-core optical rotary joint shown in FIG. Similarly, rotating body 2
An intermediate optical fiber 11 and a focusing lens 10 are installed between the input side optical fiber 14 and the trapezoidal prism 3. Between the rotating body 2, the prism holder 4 and the fixed body 1,
As shown in the figure, a speed change gear 23, 24, 25, 26 and a speed change gear shaft 7 are provided as a speed change gear m for decelerating the rotation of the rotating body 2 to an angular velocity of 172 and transmitting it to the prism holder 4. .. Also, there is a connector fil! for fittingly connecting the optical fiber 5 and the optical fiber 8 on the output side. (receptacle 18 and plaque 15) and a connector mechanism (receptacle 19 and plug 46) for fitting and connecting the optical fiber 14 and optical fiber 10 of the input opening, light is connected from the output opening to the input opening. There is. [Problem to be Solved by the Invention] As shown in FIG. 6, the relationship of an inverted fi image between the incident image and the output image with respect to the optical axis is caused by changing the aperture of the trapezoidal prism 3. S, the length is J=4.23xS (in the case of prism material BK-7). Further, the outer diameter of optical connectors (receptacles 15, 16, etc.) is usually 6 to 101 Il, and for example, in a 4-core optical rotary joint, S. =15~20flfl, J + =
It becomes 63.5 to 84.61. However, as shown in Figure 5, the coupling loss between optical fibers increases rapidly when the distance between the focusing lenses exceeds 50 mm.When J, = 63.5 to 84.6 nm, the coupling loss is 3 to 7 dB. and increases significantly. Also plug 20
If there is a slight angle bend when the lenses a and 20b are attached to the receptacles 15a and 15b, the light beam will be expanded by the entrance surface 3a, bottom surface 3b, and exit surface 3c of the trapezoidal prism 3, which will deteriorate the rotational characteristics of the multi-core optical rotary joint. Let. In particular, as the length 1 of the trapezoidal prism 3 becomes longer, the expansion of the luminous flux due to this angular bending becomes more significant, so it is better to make the prism length as short as possible. In order to improve these problems, an intermediate optical fiber 8 is inserted between the receptacle 18, 19 and the trapezoidal prism 3 as shown in FIG.
and 11 to improve the packaging density, but if the intermediate optical fiber 8.11 is bent excessively, the loss will be large.
Moreover, there is a risk of it breaking, so it needs to be a certain length. Therefore, even though the length j2 of the trapezoidal prism 3 has become shorter, the overall length of the rotary joint +
becomes very large, making it difficult to connect to rotating parts.
Furthermore, the end of the intermediate optical fiber 8.10 needs to be terminated to a connector ferrule and polished, which increases manufacturing costs and increases the number of connection points by two, increasing connection loss. [Means for Solving the Problems] The present invention includes a trapezoidal prism that is rotatably provided coaxially with the rotating body between a rotating body and a fixed body, and a trapezoidal prism that transmits the rotation of the rotating body to the trapezoidal prism. A speed change gear t! for rotationally driving the rotating body at an angular velocity of 172. a reflector, which is provided on each of the entrance and exit surfaces of the trapezoidal prism and reflects light in an area outside the aperture of the trapezoidal prism and guides it to the trapezoidal prism as light within the aperture along the axial direction of the trapezoidal prism; A plurality of pairs of converging lenses are installed on a rotating body and a fixed body so as to optically face the entrance and exit surfaces of the trapezoidal prism through a reflector, and are optically opposed to each other, and these lenses and exit surfaces. The input and
It is equipped with an output side optical fiber. [Function] The output light of the output curved optical fiber is converted into parallel light by a converging lens located outside the aperture of the trapezoidal prism, and is reflected by a reflector to become light along the axial direction of the trapezoidal prism, forming a trapezoidal shape. The light is incident on the entrance surface of the prism. The light that enters the trapezoidal prism from its entrance surface is changed in its course by the trapezoidal prism, which creates an inverted mirror image relationship between the input image and the output image with respect to the optical axis, and the light travels along the axial direction of the trapezoidal prism. The light is emitted from the exit surface. The light emitted from the exit surface of the trapezoidal prism is reflected by a reflector, guided to a focusing lens located outside the aperture of the trapezoidal prism, and coupled to the incident curved optical fiber by the focusing lens. Since the trapezoidal prism is rotated at an angular velocity of 172 times that of the rotating body, the rotated image on the rotational body side is made into a static image by the trapezoidal prism and transmitted to the fixed body side. Or fixed. The static image on the body side is converted into a rotating image with the same angular velocity as the rotating body by a trapezoidal prism and is transmitted to the rotating body side. Therefore, even if the rotating body rotates, the connection between the corresponding input and output optical fibers on the rotating body side and the fixed body side, which face each other via the trapezoidal prism, is maintained. [Example] An actual example of the present invention will be explained below based on the drawings. In FIG. 1, reference numeral 1 denotes a fixed body, into which a part of a rotating body 2 is inserted and supported rotatably. Further, a prism holder 4 for supporting a trapezoidal prism 3 is provided on the fixed body 1 on the rotation axis of the rotary body 2. The ends of the prism holder 4 are supported by the fixed body 1 and the rotating body 2 via bearings, respectively. Incidence surface 3a of trapezoidal prism 3
On the side, there is a receptacle 15a on the prism parallel to the optical axis.
Convergent lenses 9a, housed in 15b, 15c...
9b, 9c, .
0b, 30c... are installed on the fixed body 1. The long rhombic prism 30 is provided so that both end faces are total reflection surfaces giving an angle of 90". Similarly, the output surface of the trapezoidal prism 3 has a prism optical axis. and receptacles 16a, 16b, 16c on parallel axes.
The focusing lenses 10a. 10b,10
c..., and between the prism 3 and the converging lens 10, long rhombic prisms 31a, 3lb, and 31c are connected to the rotary tree 2.
It is installed in Focusing lenses 9, 10 housed in receptacles 15.16 and output photometric fiber 5 housed in plugs 20.21 and held by ferrules 6.13
, and the input side optical fiber 14 are optically coupled by screwing a plug 20.21 to a receptacle 15.16. A variable speed gear mechanism 22 is provided within the fixed body 1 of the prism holder 4 that opens outward, and that reduces the rotation of the rotating body 2 to an angular velocity of 172 (rotation in the same direction) and transmits the speed to the prism holder 4. The variable speed gear mechanism 22 includes a gear 23 attached to the outer periphery of the rotating body 2 and teeth II attached to a shaft 27 rotatably supported within the fixed body 1 and meshing with the gear 23.
24, and a gear 25 that is provided on the shaft 27 and meshes with a gear 26 at the center outer circumference of the prism holder 4. The gears 24 and 25 of the intermediate gear are divided into two parts 24a, 24b and 25a, 25b so that there is a relative rotational deviation in the rotational direction, and between the two divided gears there is a groove in a direction that causes a rotational deviation in these parts. A resilient member such as a resilient spring is provided.

なお、28は光伝送すべく回転部の回転を回転体2に伝
達する回転ケレである. 出射側光ファイバ5aから出た光は集束性レンズ9aに
より平行ビームとされて、長斜方形プリズム30aにそ
の測面より入射する.長斜方形プリズム30aに入射し
た光は、その台形プリズム3の口径外方に位置する端面
で全反射されて直角に進路を変え、長斜方形プリズム3
0aの軸(台形プリズム3の径方向)に沿って進み、更
に台形プリズム3の口径内方に位置する端面で垂直に全
反射されて長斜方形プリズム30aの印面より出射し、
台形プリズム3の入射面3aに台形プリズム3の軸に平
行に入射する.入射面3aからの光は底面3bで全反射
し、出射面3Cで屈折し、光軸に沿う千行光となって、
長斜方形プリズム3lbに入射し、前記同様、同プリズ
ム内で2回全反射し、集束性レンズ10bから入射側光
ファイバ14bに伝搬される.その他の入・出射側光フ
ァイバについても同様である,回転体2が角速度ωで回
転ずると、プリズムホルダ4及び台形プリズム3は変速
歯車機構22によって1/2ωの角速度で同方向に回転
駆動されるようになっており、実公昭61−24961
号公報に詳述されているように、回転体2測の像は固定
体1測から見ると静止状態となるので、回転体2の回転
に拘わらず、複数対の出・入射側光ファイバ5,14間
の接続が可能となる. 第1図において、光ファイバが4芯の場合、プラグ20
を挿抜するスペース等を考慮するとプラグ20の取付け
ピッチは16nnとなり、5ll角の長斜方形プリズム
30を挿入すると台形プリズム3の口径S3は1211
′lとなり、長さII s  Cj =4.23xS)
は50.8Inとなる.これに長斜方形プリズム30.
31内の光路長を加えると、集束性レンズ9 10間の
間隔は68n+nとなる。従って、結合損失は第5図よ
り3.3dBとなり、第6図のように入・出射側光ファ
イバを光コネクタにより台形プリズムに直接接続する場
合(4芯の場合j=8Allで結合損失は6〜7 dB
)に対し、結合損失を約172に低減できる。
Note that 28 is a rotating part that transmits the rotation of the rotating part to the rotating body 2 for optical transmission. The light emitted from the output side optical fiber 5a is converted into a parallel beam by a converging lens 9a, and enters a long rhombic prism 30a from its surface. The light incident on the long rhombic prism 30a is totally reflected by the end face located outside the aperture of the trapezoidal prism 3, changes its course at right angles, and returns to the long rhomboid prism 3.
0a (radial direction of the trapezoidal prism 3), is totally reflected vertically at the end face located inside the diameter of the trapezoidal prism 3, and is emitted from the stamp surface of the long rhombic prism 30a.
The light is incident on the entrance surface 3a of the trapezoidal prism 3 parallel to the axis of the trapezoidal prism 3. The light from the incident surface 3a is totally reflected by the bottom surface 3b, refracted by the exit surface 3C, and becomes a thousand lines of light along the optical axis.
The light enters the long rhombic prism 3lb, is totally reflected twice within the prism as described above, and is propagated from the focusing lens 10b to the incident side optical fiber 14b. The same applies to the other input and output optical fibers. When the rotating body 2 rotates at an angular velocity of ω, the prism holder 4 and the trapezoidal prism 3 are driven to rotate in the same direction at an angular velocity of 1/2 ω by the variable speed gear mechanism 22. It is designed to be
As detailed in the publication, the image of the rotating body 2 is in a stationary state when viewed from the fixed body 1, so regardless of the rotation of the rotating body 2, the multiple pairs of output and input optical fibers 5 , 14 connections are possible. In Figure 1, if the optical fiber has 4 cores, the plug 20
Considering the space for inserting and removing the plugs, the installation pitch of the plugs 20 is 16nn, and when the 5ll square long rhombic prism 30 is inserted, the aperture S3 of the trapezoidal prism 3 is 1211mm.
'l, length II s Cj = 4.23xS)
becomes 50.8In. A long rhombic prism 30.
Adding the optical path length in 31, the spacing between the focusing lenses 910 becomes 68n+n. Therefore, the coupling loss is 3.3 dB from Fig. 5, and when the input and output side optical fibers are directly connected to the trapezoidal prism with an optical connector as shown in Fig. 6 (in the case of 4 cores, j = 8 All, the coupling loss is 6 dB). ~7 dB
), the coupling loss can be reduced to about 172.

次に光ファイバが6芯の場合、光コネクタの間隔は22
1i1となり、台形プリズムの口径S,は13nnであ
り、長斜方形プリズムの光路長を加えると、第5図の集
束性レンズ間隔しは70niとなり、結合損失は4.0
dBとなる.第7図の中間光ファイバ811で多芯化を
図った場合、ファイバ6芯では同様にして台形プリズム
ロ径Sは13lとなり、その時の結合損失は2.0dB
と小さいが、中間光ファイバ8.11の入・出射端で光
コネクタ接続が2ケ所で接続損失が2dBあり(通常、
光コネクタ接続は1 dB/ 1ケ所である)、合計す
ると挿入損失は4dBとなり、第1図の長斜方形プリズ
ムを用いたものと同様であるが、第7図のロータリジョ
イント全体の長さL1は、中間光ファイバ長(製作時の
作業性を考慮し最適オフセットをもたせると)60〜8
0nnを加えると、台形プリズム3の長j2の3倍にな
り、取扱性、価格共に中間光ファイバ方式のものは本発
明の反射方式に比較して不利である. また、変速歯車機構22の中間歯車24.25はそれぞ
れ重ね合わされた状態に2分割されると共に、ばね等に
より両分割歯車が相対的に回転ずれを生ずるようになっ
ているため、歯車23,26の歯面に対して歯車24.
25のかみ合いが常に当たり、パックラッシュが生じな
い.このため、回転体2が正逆回転しても入・出射光フ
ァイバ間の光軸ずれは防止され、光伝送性能を向上でき
る.なお、上記実施例では、変速歯車機楕22は平歯車
を組合わせたものであるが、第6図のような遊星歯車機
構を用いて更にコンパクト化を図るようにしてもよい. 次に本発明の他の実施例を簡単に説明する。
Next, if the optical fiber has 6 cores, the spacing between the optical connectors is 22
1i1, the aperture S of the trapezoidal prism is 13nn, and adding the optical path length of the long rhombic prism, the distance between the focusing lenses in Fig. 5 becomes 70ni, and the coupling loss is 4.0.
dB. When multi-core fibers are used as the intermediate optical fiber 811 in FIG. 7, the diameter S of the trapezoidal prism becomes 13 l in the same way with 6 fibers, and the coupling loss at that time is 2.0 dB.
Although it is small, there are two optical connector connections at the input and output ends of the intermediate optical fiber 8.11, and the connection loss is 2 dB (usually,
(The optical connector connection is 1 dB/1 location), and the total insertion loss is 4 dB, which is the same as that using the long rhombic prism in Figure 1, but the total length of the rotary joint L1 in Figure 7 is the intermediate optical fiber length (taking into account workability during production and providing an optimal offset) 60 to 8
If 0nn is added, the length becomes three times the length j2 of the trapezoidal prism 3, and the intermediate optical fiber type is disadvantageous in terms of handling and price compared to the reflection type of the present invention. In addition, the intermediate gears 24 and 25 of the speed change gear mechanism 22 are divided into two parts in an overlapping state, and the two divided gears are caused to have a relative rotational deviation due to a spring or the like. gear 24.
25's engagement always hits and no puck rush occurs. Therefore, even if the rotating body 2 rotates in the forward and reverse directions, optical axis misalignment between the input and output optical fibers is prevented, and optical transmission performance can be improved. In the above embodiment, the variable speed gear mechanism ellipse 22 is a combination of spur gears, but a planetary gear mechanism as shown in FIG. 6 may be used to further reduce the size. Next, another embodiment of the present invention will be briefly described.

第2図は台形プリズム3と出射側光ファイバ5の間に反
射体としてミラー32を設置したもので、台形プリズム
3の平行光軸に対し角度θ(0〜90゛の間〉で光ファ
イバ5と集束性レンズ9を配し、集束性レンズ9からの
光束を台形プリズム3の千行光軸上に反射させる.台形
プリズム3の出射面3c側にも同様にしてミラーが設け
られる.ミラー32を設けると、台形プリズム3の口径
Sが小さくても多数の光ファイバ5を設置でき、かつ集
束正レンズ9.10間の間隔を短縮でき、結合損失を小
さくできる. 第3図は、第1図で述べた長斜方形プリズムを円錐状に
一体化したプリズム33を台形プリズム3と入・出射測
光ファイバ5,l4との間に設置したもので、第1図の
長斜方形プリズム30  31では光ファイバ1芯に対
し1個設置するが、プリズム33を用いれば、光ファイ
バが幾芯であってもプリズム33を1個設置すればよく
、光軸調整が容易になり、かつ部品点数が減るので、コ
ストの低減が可能となる。
In Fig. 2, a mirror 32 is installed as a reflector between the trapezoidal prism 3 and the output side optical fiber 5, and the optical fiber 5 is placed at an angle θ (between 0 and 90°) with respect to the parallel optical axis of the trapezoidal prism 3. and a converging lens 9 are arranged to reflect the light beam from the converging lens 9 onto the thousand line optical axis of the trapezoidal prism 3.A mirror is similarly provided on the output surface 3c side of the trapezoidal prism 3.Mirror 32 By providing the trapezoidal prism 3, a large number of optical fibers 5 can be installed even if the aperture S of the trapezoidal prism 3 is small, and the distance between the positive focusing lenses 9 and 10 can be shortened, reducing coupling loss. A prism 33, which is a cone-shaped integrated prism of the long rhombic prism described in the figure, is installed between the trapezoidal prism 3 and the input/output photometric fibers 5, l4. One prism 33 is installed for each optical fiber, but if the prism 33 is used, one prism 33 only needs to be installed no matter how many optical fibers there are, making optical axis adjustment easier and reducing the number of parts. Therefore, it is possible to reduce costs.

第4図は光ファイバ5と台形プリズム3の間に円錐面状
の反射面を有ずるミラー3−4.35を段違いに配置し
たもので、光ファイバ5からの光は集束性レンズ9で平
行光となり、1段目のミラー34で内開に光束を反射さ
せ次に2段目のミラー34で内側に光束を反射させ次に
2段目のミラー35で台形プリズム3の千行光軸に対・
し光束を平行とする.この場合、集束性レンズ9を台形
プリズム開に近づけるのが可能となり、ロータリジョイ
ント全体の長さL2を短くできる. [発明の効果] 本発明によれば、次の効果がある. (1)反射体を設けて台形プリズムの入・出射部の光路
を台形プリズムの口径の外側に拡大させているため、小
さくかつ短い台形プリズムでも従来の光コネクタを用い
て多芯の光ファイバを接続できると共に、短尺な台形プ
リズムにより光ファイバ間の距離を短縮でき、光の伝送
損失を低減することができる。
In FIG. 4, mirrors 3-4.35 having conical reflective surfaces are arranged at different levels between the optical fiber 5 and the trapezoidal prism 3, and the light from the optical fiber 5 is collimated by the converging lens 9. The first stage mirror 34 reflects the luminous flux inwardly, the second stage mirror 34 reflects the luminous flux inward, and the second stage mirror 35 directs it to the thousand-line optical axis of the trapezoidal prism 3. versus·
and the light flux is made parallel. In this case, it becomes possible to bring the focusing lens 9 close to the open trapezoidal prism, and the length L2 of the entire rotary joint can be shortened. [Effects of the Invention] According to the present invention, there are the following effects. (1) Since a reflector is provided to expand the optical path of the input and output parts of the trapezoidal prism to the outside of the trapezoidal prism's aperture, even a small and short trapezoidal prism can be connected to a multi-core optical fiber using a conventional optical connector. In addition to the short trapezoidal prism, the distance between optical fibers can be shortened, and optical transmission loss can be reduced.

(2)台形プリズムが小さく、かつ短いため、光ファイ
バ芯数が増大しても、多芯光ロータリジョイントの外径
及び長さが大きくならず、軽量かつコンパクトなものと
することができ、価格の低減、取扱性の向上ならびに変
速歯車機構の歯車径の減少による高速化などが可能とな
る.
(2) Since the trapezoidal prism is small and short, even if the number of optical fibers increases, the outer diameter and length of the multi-core optical rotary joint will not increase, making it lightweight and compact, and reducing the cost. This makes it possible to reduce friction, improve handling, and increase speed by reducing the gear diameter of the transmission gear mechanism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多芯光ロータリジョイントの一実
施例を示す縦断面図、第2図〜第4図は本発明の多芯光
ロータリジョイントの反射体の他の実施例をそれぞれ示
す断面図、第5図は集束性レンズ間の間隔と結合損失と
の関係を示す図、第6図、第7図は従来の多芯光ロータ
リジョイントをそれぞれ示す!!1断面図である.図中
、1は固定体、2は回転体、3は台形プリズム、14は
プリズムホルダ、5は出射側光ファイバ、6、13はフ
ェルール、9,10は集束性レンズ、14は入射曲光フ
ァイバ、15.16はレセプタクル、20.21はプラ
グ、22は変速歯車機構、28は回転ゲレ、30.31
は長斜方形プリズム、32はミラー、33はプリズム、
34.35はミラーである. 7・・・固定体 9,70 ・・舅5Eλ生し〉ズ−
FIG. 1 is a longitudinal sectional view showing one embodiment of the multi-core optical rotary joint according to the present invention, and FIGS. 2 to 4 show other embodiments of the reflector of the multi-core optical rotary joint of the present invention. A cross-sectional view, FIG. 5 is a diagram showing the relationship between the spacing between focusing lenses and coupling loss, and FIGS. 6 and 7 show a conventional multi-core optical rotary joint! ! This is a cross-sectional view. In the figure, 1 is a fixed body, 2 is a rotating body, 3 is a trapezoidal prism, 14 is a prism holder, 5 is an output side optical fiber, 6 and 13 are ferrules, 9 and 10 are convergent lenses, and 14 is an incident curved optical fiber. , 15.16 is a receptacle, 20.21 is a plug, 22 is a speed change gear mechanism, 28 is a rotating gear, 30.31
is a long rhombic prism, 32 is a mirror, 33 is a prism,
34.35 is a mirror. 7...Fixed body 9,70...Father 5Eλ birth>zu-

Claims (1)

【特許請求の範囲】[Claims] 1、回転体と固定体との間に回転体と同軸に回転自在に
設けられた台形プリズムと、回転体の回転を台形プリズ
ムに伝達し台形プリズムを回転体の1/2の角速度で回
転駆動させるための変速歯車機構と、台形プリズムの入
・出射面側にそれぞれ設けられ台形プリズムの口径外の
領域の光を反射して台形プリズムの軸方向に沿う口径内
の光として台形プリズムに案内する反射体と、反射体を
介して台形プリズムの入・出射面にそれぞれ光学的に臨
ませ且つ互いに光学的に対向させて回転体と固定体とに
設置された複数対の集束性レンズと、これら入・出射面
側の集束性レンズにそれぞれ結合された入・出射側光フ
ァイバとを備えた多芯光ロータリジョイント。
1. A trapezoidal prism is rotatably installed coaxially with the rotating body between the rotating body and the fixed body, and the rotation of the rotating body is transmitted to the trapezoidal prism, and the trapezoidal prism is driven to rotate at 1/2 the angular speed of the rotating body. A variable speed gear mechanism is provided on the entrance and exit surfaces of the trapezoidal prism to reflect light outside the aperture of the trapezoidal prism and guide it to the trapezoidal prism as light within the aperture along the axial direction of the trapezoidal prism. a reflector, a plurality of pairs of converging lenses that are installed on a rotating body and a fixed body so as to optically face the entrance and exit surfaces of the trapezoidal prism through the reflector and optically face each other; A multi-core optical rotary joint with input and output optical fibers coupled to focusing lenses on the input and output sides, respectively.
JP2128316A 1990-05-18 1990-05-18 Multifiber optical rotary joint Granted JPH0328807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2128316A JPH0328807A (en) 1990-05-18 1990-05-18 Multifiber optical rotary joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2128316A JPH0328807A (en) 1990-05-18 1990-05-18 Multifiber optical rotary joint

Publications (2)

Publication Number Publication Date
JPH0328807A true JPH0328807A (en) 1991-02-07
JPH0462042B2 JPH0462042B2 (en) 1992-10-05

Family

ID=14981760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2128316A Granted JPH0328807A (en) 1990-05-18 1990-05-18 Multifiber optical rotary joint

Country Status (1)

Country Link
JP (1) JPH0328807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518271A (en) * 1999-12-20 2003-06-03 ザ ボード オブ トラスティーズ オブ ウエスタン ミシガン ユニバーシティ Multi-channel optical fiber rotary joint
JP2009236614A (en) * 2008-03-26 2009-10-15 Fujifilm Corp Optical rotary adaptor and optical tomographic imaging apparatus using the same
CN111474634A (en) * 2020-03-25 2020-07-31 中航光电科技股份有限公司 Multi-core small-structure optical rotary connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518271A (en) * 1999-12-20 2003-06-03 ザ ボード オブ トラスティーズ オブ ウエスタン ミシガン ユニバーシティ Multi-channel optical fiber rotary joint
JP2009236614A (en) * 2008-03-26 2009-10-15 Fujifilm Corp Optical rotary adaptor and optical tomographic imaging apparatus using the same
CN111474634A (en) * 2020-03-25 2020-07-31 中航光电科技股份有限公司 Multi-core small-structure optical rotary connector
CN111474634B (en) * 2020-03-25 2021-09-14 中航光电科技股份有限公司 Multi-core small-structure optical rotary connector

Also Published As

Publication number Publication date
JPH0462042B2 (en) 1992-10-05

Similar Documents

Publication Publication Date Title
US4872737A (en) Multi-port fiberoptic rotary joint
US4403273A (en) Illuminating system for endoscopes
EP0856764A3 (en) Grin lensed optical device
JP2006292924A (en) Optical adaptor
EP0488205B1 (en) Multi-port fiberoptic rotary joint
JPH0328807A (en) Multifiber optical rotary joint
US6411755B1 (en) Cladding-assisted single-mode fiber coupler
JPS606481B2 (en) light splitter mixer
JP3387725B2 (en) Optical connector
JPH02113213A (en) Multi-fiber optical rotary connector
JP2664745B2 (en) WDM multi-core optical rotary joint
US5011255A (en) Holographic optical fiber coupler
JPH0854541A (en) Bidirectional transmission optical module
JPH03231208A (en) Multiple-fiber optical rotary joint
JP2658400B2 (en) Hollow light rotary joint
JP2000227529A (en) Optical connector
JPS61259208A (en) Connector for multicore optical fiber
GB2172412A (en) A three-way star splitter for optical wave guides
JP2780487B2 (en) Multi-core optical rotary joint
JPH043282Y2 (en)
KR20010109797A (en) Tap coupler
FR2548793A1 (en) OPTICAL COUPLER FOR CONNECTING OPTICAL FIBERS
JP2001188148A (en) Bi-directional optical communicator and bi-directional optical communication device
JPH0418507A (en) Wavelength multiplex multicore rotary joint
JPH03156406A (en) Multifiber optical rotary joint

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 15