JPH03287494A - Drag reducing device for missile with backward step - Google Patents

Drag reducing device for missile with backward step

Info

Publication number
JPH03287494A
JPH03287494A JP8917090A JP8917090A JPH03287494A JP H03287494 A JPH03287494 A JP H03287494A JP 8917090 A JP8917090 A JP 8917090A JP 8917090 A JP8917090 A JP 8917090A JP H03287494 A JPH03287494 A JP H03287494A
Authority
JP
Japan
Prior art keywords
missile
fuselage
section
height
backward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8917090A
Other languages
Japanese (ja)
Inventor
Hideki Nomoto
野本 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8917090A priority Critical patent/JPH03287494A/en
Publication of JPH03287494A publication Critical patent/JPH03287494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PURPOSE:To reduce the aerodynamic drag for an airframe by fitting rectifying devices, which are brought into contact with the backward step of a missile at their front end sections, are extended backward in the air current direction perpendicularly to the face of the missile, and have the height higher than that of the step at their front sections, on the face of the missile. CONSTITUTION:The rear section of a satellite fairing 1a is connected to a cylindrical lower fuselage 2 with a cross section area smaller than that of the satellite fairing 1a via a truncated conical lamp-shaped step 2 with a cross section area decreased toward the rear on the head section 1 of a rocket constituted of a conical front section 1b and the cylindrical satellite fairing 1a. Multiple plate-shaped rectifying devices 3 are protruded outward around the lower fuselage 2 at a uniform interval radially and perpendicularly to the plane of the fuselage 2 from the lower fuselage 2 in contact with the step 4 at their tips. The lateral flow of the peeling current with three-dimensional speed fluctuations by the boundary layer peeling of the air current generated behind the step 4 is suppressed, and the aerodynamic drag is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、飛しよう体、航空機等の後向きの段差をもつ
飛行体の抵抗軽減装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a drag reduction device for a flying object, an aircraft, etc., which has a step facing backward.

〔従来の技術〕[Conventional technology]

従来の技術をロケットを例に第3図によって説明する。 The conventional technology will be explained using FIG. 3 using a rocket as an example.

ロケットには、人工衛星等の打ち上げ物(ペイロード)
が頭部1に搭載される。その際、ペイロードのサイズが
大きくて、それを囲む衛星フェアリング1aの断面直径
が、下部胴体2の・直径より大きくなる場合がある。
A rocket carries a launch object (payload) such as an artificial satellite.
is mounted on head 1. In this case, the size of the payload is large, and the cross-sectional diameter of the satellite fairing 1a surrounding it may be larger than the diameter of the lower fuselage 2.

この場合、衛星フェアリング1aと下部胴体の接続部分
には、第4図(b)に示すように、衛星フェアリング1
aK直角をなして下部胴体2へ接続する後向きのステッ
プ4a、又は第4図(e)に示すように、後方へ向って
断面積が次第に減少する後向きのランプ4bが設けられ
ている(このステップ及びランプ等の断面積が気流方向
にひいて減少する部分を本明細書では総称して後向きの
段差という)、 〔発明が解決しようとする課題〕 本発明が解決しようとする課題を第4図(b)、(c’
)によって説明する。
In this case, as shown in FIG. 4(b), the satellite fairing 1
aK A rearward facing step 4a connecting to the lower fuselage 2 at right angles or a rearward facing ramp 4b whose cross-sectional area gradually decreases rearward as shown in FIG. 4(e) is provided (this step In this specification, the portion where the cross-sectional area of a lamp, etc. decreases in the airflow direction is collectively referred to as a backward step). (b), (c'
).

前記の従来のロケットの後向きの段差、即ちその断面積
が気流F方向に訟いて減少している部分ては、気流Fの
機体に沿って流れる部分である境界層10が機体から遊
離する。これを境界層の剥離11という(第4図(b)
、(e)参照)。
At the rearward step of the conventional rocket, that is, the portion where the cross-sectional area decreases in the direction of the airflow F, the boundary layer 10, which is the portion of the airflow F flowing along the airframe, separates from the airframe. This is called boundary layer separation 11 (Fig. 4(b)
, see (e)).

境界層の剥離11が起ると、第4図tb)、(C)に示
すように、段差4a、4bの後方に剥離流12が形成さ
れ、物体の抵抗は大きく増加する。そこでロケット、航
空機等では機体形状を流線形等にして剥離を抑えようと
している。
When separation 11 of the boundary layer occurs, a separation flow 12 is formed behind the steps 4a and 4b, as shown in FIGS. 4(tb) and 4(C), and the resistance of the object increases greatly. Therefore, in rockets, aircraft, etc., efforts are being made to make the fuselage shape streamlined or the like in order to suppress separation.

しかし、ロケットでは、前記のように構造上または費用
の面から下部胴体の断面積より大きな断面積をもつ衛星
フェアリングが装着される場合があり、前記の境界層f
#I離が避けられない。
However, as mentioned above, a satellite fairing having a cross-sectional area larger than that of the lower fuselage is sometimes installed on a rocket due to structural or cost reasons.
#I separation is inevitable.

筐た、航空機のキャノピ−又は大型前部胴体の後部にも
、同様に気流方向に断面積が減少する段差があり、前記
の境界層剥離が発生する。
Similarly, in the rear part of an aircraft canopy or a large front fuselage, there is a step where the cross-sectional area decreases in the airflow direction, and the boundary layer separation described above occurs.

前記の剥離流12ti、3次元的な速度変動を持つ乱流
となっている(言い換えると、3方向に変動の激しい流
れ場となっている)。この3次元的な速度変動のうち、
一方向の変動を抑えれば(!1流すれば)、乱流の強さ
が減少し、さらに剥離の大きさが減少して剥離領域が小
さくなって、空力抵抗が減少する。
The separated flow 12ti is a turbulent flow with three-dimensional velocity fluctuations (in other words, it is a flow field with severe fluctuations in three directions). Among these three-dimensional speed fluctuations,
If the fluctuations in one direction are suppressed (!1 flow), the strength of the turbulence is reduced, and the magnitude of the separation is further reduced, the separation area becomes smaller, and the aerodynamic drag is reduced.

本発明は、この気流の変動を小さくして空力抵抗を減少
させようとするものである。
The present invention aims to reduce aerodynamic drag by reducing fluctuations in airflow.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の後向き段差を有する飛行体の抵抗軽減装置は、
飛行体の後向き段差にその前端部を接し、飛行体の面に
直角をなし気流方向に後方へ向うと共に、その前部が前
記段差の高さ以上の高さを有する整流装置を飛行体の面
に取付けた。
The drag reduction device for an aircraft having a backward step according to the present invention includes:
A rectifier whose front end is in contact with the backward step of the aircraft, is perpendicular to the plane of the aircraft, faces rearward in the airflow direction, and whose front part has a height equal to or higher than the height of the step is attached to the plane of the aircraft. installed on.

〔作用〕[Effect]

前記したように、飛行体の後向き段差を有する部分の後
方では、境界層の剥離が起って三次元的速度変動をもつ
剥離流が発生する。しかし、本発明では、段差から後方
へ向って飛行体の面に直角を危し気流方向に後方向へ向
う整流装置が飛行体の面に取付けられ、しかも整流装置
の前部の高さは、段差の高さ以上であるために、剥離流
の横方向の流れが抑えられる。これによって、乱流の強
さが減少し、筺たその大きさが減少して剥離領域が小さ
くなって、空気抵抗が減少する。
As described above, separation of the boundary layer occurs behind the portion of the flying object that has a backward step, resulting in a separated flow having three-dimensional velocity fluctuations. However, in the present invention, the rectifier is attached to the plane of the aircraft, which extends rearward from the step at right angles to the plane of the aircraft and faces backward in the airflow direction, and the height of the front part of the rectifier is Since the height is greater than the height of the step, the lateral flow of the separated flow is suppressed. This reduces the strength of the turbulence, reduces the size of the enclosure, reduces the separation area, and reduces air resistance.

〔実施例〕〔Example〕

本発明の第1の実施例を、第1図によって説明する。1
は、円錐状の@部1bとこれに続く円筒状の衛星フェア
リング1aからなるロケットの頭部であり、衛星フェア
リング1aの後部は、断面積が後方に行くに従って減少
する截頭円錐状のランプ状の段差4を介して、衛星フェ
アリング1aより断伽積の小さい円筒状の下部胴体2に
接続されている。
A first embodiment of the present invention will be described with reference to FIG. 1
is the head of the rocket consisting of a conical @ part 1b and a cylindrical satellite fairing 1a following it, and the rear part of the satellite fairing 1a is a truncated conical part whose cross-sectional area decreases toward the rear. It is connected via a ramp-shaped step 4 to a cylindrical lower body 2 having a smaller cross section than the satellite fairing 1a.

この段差4に先端を接して下部胴体2から同調体2の面
に直角に放射状に、かつ、気流の方向、即ち、ロケット
の機軸方向に後方へ複数個の板状の整流装置3が、下部
胴体2の1わりに外方へ向って突出して等間隔に設けら
れている。
A plurality of plate-shaped flow straighteners 3 are attached to the bottom of the step 4, radially extending from the lower fuselage 2 at right angles to the plane of the synchronizer 2 and rearward in the direction of the airflow, that is, in the rocket axis direction. They protrude outward for one part of the body 2 and are provided at equal intervals.

この整流装置3の段差4に接する前部の高さは、第1図
(C)に示すように、段差4の高さと等しいか、又は、
第1図(d)に示すように、段差4の高さより高く設定
されている。また、整流装置3の上縁は、下部胴体2の
面には!平行となっている。同整流装置3の平面形状は
、第1図(e3に示すように舅形状、第1図(f)に示
すように細長い平行四辺形状、又は第1図(g)に示す
ようにくさび(菱形)形状のもの等で、厚さの薄いもの
が採用される。
The height of the front part of this rectifying device 3 in contact with the step 4 is equal to the height of the step 4, as shown in FIG. 1(C), or
As shown in FIG. 1(d), the height is set higher than the height of the step 4. Also, the upper edge of the rectifier 3 is not on the surface of the lower body 2! They are parallel. The planar shape of the rectifier 3 may be a leg shape as shown in Fig. 1 (e3), an elongated parallelogram as shown in Fig. 1 (f), or a wedge (diamond) shape as shown in Fig. 1 (g). ) shape, etc., and thin ones are used.

以上のように構成された本実施例では、整流装置3ば、
段差4から下部胴体2の面に直角をなして気流方向に後
方へ向って延びており、かつ段差4に接する前部は、段
差4の高さに等しいか、それより大きい高さを有してい
るために、段差4後方で発生する気流の境界層剥離によ
る三次元的速度変動をもつ剥離流の横方向の流れが抑え
られる。従って、乱流の強さを減少させまた剥離領域も
小さくすることができ、これによって空力抵抗を減少さ
せることができる。
In this embodiment configured as described above, the rectifier 3
The front part extending rearward in the airflow direction from the step 4 at right angles to the surface of the lower fuselage 2 and in contact with the step 4 has a height equal to or greater than the height of the step 4. Therefore, the lateral flow of a separated flow having three-dimensional velocity fluctuations due to boundary layer separation of the airflow generated behind the step 4 is suppressed. Therefore, the intensity of turbulence can be reduced and the separation area can also be reduced, thereby reducing aerodynamic drag.

本発明の第2の実施例を、第2図によって説明する。A second embodiment of the invention will be described with reference to FIG.

本実施例は、パイロットを囲むキャノピ−5が胴体6よ
り突出している小型航空機2戦M機等の抵抗軽減装置で
あって、キャノピ−5後部の後向きの段差4に、その前
端を段差4に接して胴体6の面に直角に、かつ、気流の
方向に後方へ向って1個の板状の整流装置3が取付けら
れている。同整流装置3の前部の高さは、前記@1の実
施例と同様に段差4の高さに等しいか、それより大きく
され、その平面形状も前記第1の実施例と同様のものが
採用される。
This embodiment is a drag reduction device for a small aircraft such as a 2nd Fighter M aircraft in which a canopy 5 surrounding a pilot protrudes from a fuselage 6, and the front end of the canopy 5 is attached to a rearward facing step 4 at the rear of the canopy 5. A plate-shaped rectifying device 3 is attached perpendicularly to the surface of the body 6 and facing rearward in the direction of airflow. The height of the front part of the rectifying device 3 is equal to or larger than the height of the step 4 as in the @1 embodiment, and its planar shape is the same as in the first embodiment. Adopted.

本実施例に訃いても、整流装置3によって、段差4後方
で発生する気流の境界層剥離による剥離流の横方向の流
れを抑え、空力抵抗を減少させることができる。
Even with this embodiment, the rectifying device 3 can suppress the lateral flow of the separated flow caused by boundary layer separation of the airflow generated behind the step 4 and reduce the aerodynamic drag.

本発明の第3の実施例を、第3図によって説明する。A third embodiment of the present invention will be described with reference to FIG.

本実施例は、大型旅客機の断面積の大きい前部胴体7と
断面積が小さい後部胴体8との間に形成される段差4に
、前記第2の実施例と同様な1個の板状の整流装置3を
設けたものである。
In this embodiment, a single plate-shaped plate similar to the second embodiment is installed in the step 4 formed between the front fuselage 7, which has a large cross-sectional area, and the rear fuselage 8, which has a small cross-sectional area, of a large passenger aircraft. A rectifier 3 is provided.

本実施例にシいても、g/lfM装置3によって、段差
4で発生する気流の境界層剥離による剥離流の横方向の
流れを抑え、空力抵抗を減少させることができる。
In this embodiment as well, the g/lfM device 3 can suppress the lateral flow of the separated flow due to boundary layer separation of the airflow generated at the step 4, thereby reducing aerodynamic drag.

なに1前記各実施例にかける整流装置の気流方向の長さ
は、剥離流の横方向の流れを抑えて整流を行なうことが
できるように適宜の長さに選定される。′また、整流装
置の高さは、剥離流の高さと同程度とするのが望璽しい
が、その前部の高さは、少くとも段差4の高さと等しく
し段差後方の剥離流の横方向の流れを抑えるようにされ
ている。また更に、整流装置の後方の部分の高さは、剥
離流の横方向の流れを抑えると共に、構造強度及び美観
等の観点から適宜の値に選定することができる。
First, the length of the rectifying device in each of the above embodiments in the airflow direction is selected to be an appropriate length so that the flow can be rectified while suppressing the lateral flow of the separated flow. 'Also, it is preferable that the height of the rectifier be the same as the height of the separated flow, but the height of the front part should be at least equal to the height of step 4, and the height of the rectifier should be at least equal to the height of the separated flow behind the step. It is designed to suppress directional flow. Furthermore, the height of the rear portion of the rectifying device can be selected to an appropriate value from the viewpoints of suppressing the lateral flow of the separated flow, structural strength, aesthetics, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明は、飛行体の後向き段差にその前端部を接して、
飛行体の面に直角をなし気流方向に後方へ向うと共に、
その前部が前記段差の高さ以上の高さを有する整流装置
を飛行体の面に取付けたことによって、段差後方に形成
される剥離流の横方向の流れを抑え、これによって流れ
の乱れ強さと大きさを抑えることができ、機体に対する
空力抵抗を軽減させることができる。
The present invention has a front end in contact with a backward step of an aircraft,
At right angles to the plane of the aircraft and facing backward in the direction of the airflow,
By attaching a rectifier whose front part has a height equal to or greater than the height of the step to the surface of the aircraft, it suppresses the lateral flow of the separated flow that forms behind the step, thereby increasing the turbulence of the flow. It is possible to reduce the size and size of the aircraft, and reduce aerodynamic drag on the aircraft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示し、第1図(a’)
はその側面図、第1図(b)はその斜視図、第1図(C
)、(d)はそれぞれその整流装置の例を示す側面図、
第1図(e)〜(g)はそれぞれその整流装置の平面形
状の例を示す断面図、第2図は本発明の第2の実施例の
斜視図、第3図は本発明の第3の実施例の斜視図、第4
図(a)は従来のロケットの側面図、第4図(b>、(
c)は同従来のロケットの後向き段差後方の流れの状態
の説明図である。 1・・・ロケットの頭部、1a・・・衛星フェアリング
、°2・・・ロケットの下部胴体、3・・・整流装置、
4・・・段差、4a・−・ステップ、4b・・・ランプ
、5・・・キャノピ−16・・・胴体、7・・・前部胴
体、8・・・後部胴体、10・・・境界層、11・・・
境界層剥離、12・・・剥離層、F・・・気流。 第1皿 Ca)
FIG. 1 shows a first embodiment of the present invention, and FIG. 1(a')
is its side view, Fig. 1(b) is its perspective view, and Fig. 1(C) is its side view.
) and (d) are side views showing examples of the rectifier, respectively;
FIGS. 1(e) to (g) are sectional views showing examples of planar shapes of the rectifier, FIG. 2 is a perspective view of the second embodiment of the present invention, and FIG. 3 is the third embodiment of the present invention. 4th perspective view of the embodiment of
Figure (a) is a side view of a conventional rocket, Figure 4 (b>, (
c) is an explanatory diagram of the flow state behind the backward step of the conventional rocket. 1... Head of rocket, 1a... Satellite fairing, °2... Lower body of rocket, 3... Rectifier,
4... Level difference, 4a... Step, 4b... Ramp, 5... Canopy 16... Fuselage, 7... Front fuselage, 8... Rear fuselage, 10... Boundary Layer, 11...
Boundary layer separation, 12... separation layer, F... airflow. 1st dish Ca)

Claims (1)

【特許請求の範囲】[Claims] 飛行体の後向き段差にその前端部を接し、飛行体の面に
垂直をなし気流方向に後方へ向うと共に、その前部が前
記段差の高さ以上の高さを有する整流装置を、飛行体の
面に取付けたことを特徴とする後向き段差を有する飛行
体の抵抗軽減装置。
A rectifying device that has its front end in contact with the backward step of the aircraft, is perpendicular to the plane of the aircraft, faces rearward in the airflow direction, and has a front portion with a height equal to or higher than the height of the step. A drag reduction device for an aircraft having a rearward step, characterized in that it is attached to a surface.
JP8917090A 1990-04-05 1990-04-05 Drag reducing device for missile with backward step Pending JPH03287494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8917090A JPH03287494A (en) 1990-04-05 1990-04-05 Drag reducing device for missile with backward step

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8917090A JPH03287494A (en) 1990-04-05 1990-04-05 Drag reducing device for missile with backward step

Publications (1)

Publication Number Publication Date
JPH03287494A true JPH03287494A (en) 1991-12-18

Family

ID=13963320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8917090A Pending JPH03287494A (en) 1990-04-05 1990-04-05 Drag reducing device for missile with backward step

Country Status (1)

Country Link
JP (1) JPH03287494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514616A (en) * 2006-12-26 2010-05-06 エアバス Aircraft fuselage
CN110274525A (en) * 2019-06-25 2019-09-24 石家庄市居高科技有限公司 A kind of drag reduction increases the high-speed aircraft of journey

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514616A (en) * 2006-12-26 2010-05-06 エアバス Aircraft fuselage
CN110274525A (en) * 2019-06-25 2019-09-24 石家庄市居高科技有限公司 A kind of drag reduction increases the high-speed aircraft of journey

Similar Documents

Publication Publication Date Title
US4598885A (en) Airplane airframe
US4637573A (en) Arrowlike aircraft wing equipped with a high-lift system and with a pylon for suspending the engine
US4619423A (en) Geometries for roughness shapes in laminar flow
US4867394A (en) Compression pylon
US7104498B2 (en) Channel-wing system for thrust deflection and force/moment generation
US5651516A (en) Shock wave stabilization apparatus and method
RU2423289C2 (en) Aircraft wing with engine attachment strut with lateral channel for flow arranged in its front area
US9120552B2 (en) Fuselage and method for reducing drag
US9079658B2 (en) Vortex generation device
US6715717B2 (en) Method and apparatus for inducing controlled vortices to reduce afterbody drag
US5037044A (en) Aerodynamic or hydrodynamic surfaces
US5901925A (en) Serrated-planform lifting-surfaces
US5443230A (en) Aircraft wing/nacelle combination
US3942746A (en) Aircraft having improved performance with beaver-tail afterbody configuration
US20100200698A1 (en) Fuselage and a method for redesigning it
US20110049305A1 (en) Improved slat configuration for fixed-wing aircraft
US3468501A (en) Compatible missile/aircraft configuration
CN110920863A (en) Wing tip device
US2898059A (en) Fuselage shaping to reduce the strength of the initial shock wave on lifting airplane wings
JPH03287494A (en) Drag reducing device for missile with backward step
US3137460A (en) Improving supersonic lift-to-drag ratio by compression shock
US4494713A (en) Shockcone and channeled disk-airframe
RU2174483C2 (en) Device for attenuation of vortex wake of high-lift wing (versions)
US11046413B2 (en) Finlets for aircraft aft-body drag reduction
EP0052360B1 (en) Air aspiration device of aircraft-mounted gas-turbine engine