JPH03287360A - Automatic operation device for production line - Google Patents

Automatic operation device for production line

Info

Publication number
JPH03287360A
JPH03287360A JP2091284A JP9128490A JPH03287360A JP H03287360 A JPH03287360 A JP H03287360A JP 2091284 A JP2091284 A JP 2091284A JP 9128490 A JP9128490 A JP 9128490A JP H03287360 A JPH03287360 A JP H03287360A
Authority
JP
Japan
Prior art keywords
production line
state
equipment
production
operation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2091284A
Other languages
Japanese (ja)
Other versions
JP3169079B2 (en
Inventor
Kazuyuki Mori
一之 森
Makoto Tsukiyama
誠 築山
Toyoo Fukuda
福田 豊生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9128490A priority Critical patent/JP3169079B2/en
Publication of JPH03287360A publication Critical patent/JPH03287360A/en
Application granted granted Critical
Publication of JP3169079B2 publication Critical patent/JP3169079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

PURPOSE:To operate a production line on the whole and to perform the operation close to a production program, by operating the estimate value of a material with the comparison of the actual processing state of the material on the production line with the state of the material on a production planning, and deciding the operation method of equipment based on this estimate value. CONSTITUTION:The actual processing state of each material located on a production line is input as data by a line state monitoring device 1. The actual state of the production line is then converted into the state expression of the production line based on the data thereof. On the other hand, a prepared production program is converted into a production line model state expression by a program converting device 5. Then, the actual production line state and the production line model state of the production program are assessed with their comparison in the specific time. The optimum operation method is then decided in reference to the operation rule based on the assessed value thereof. The actual operation method to the production line is then instructed based on the decided operation method.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、工場の生産システムの生産ラインの最適運
用を行なうIt生産ラうン自動運用装置関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an IT production line automatic operation device for optimally operating a production line in a factory production system.

[従来の技術] 工場の生産システムの生産ラインにおいて、どの機械で
いつどの作業を行なうかという具体的な生産スケジュー
リングが立てられる。この−例としては、計測自動制御
学会論文集、Vol、 25.No2゜235/242
(+9891 、第104頁〜第110頁、「ジャスト
・イン・タイムを目的としたルール表現によるFMSス
ケジューリング」に5己載されている。
[Prior Art] In the production line of a factory production system, a specific production schedule is set up to determine which machine should perform which work and when. An example of this is Proceedings of the Society of Instrument and Control Engineers, Vol. 25. No2゜235/242
(+9891, pages 104 to 110, ``FMS scheduling using rule expression for the purpose of just-in-time'').

又、特願昭63−2f1107号公報「1厚計画シュミ
レーション装置」、特願平1−133314号公報「生
産計画作成::A置」などにち報告されている。
Further, it has been reported in Japanese Patent Application No. 63-2F1107, ``1 Thickness Planning Simulation Apparatus,'' and Japanese Patent Application No. 1-133314, ``Production Plan Creation: A Placement.''

ところが、実際の生産ラインではスケジュール通りに稼
動しない0例えば半導体の生産ラインのように400程
度の工程のあるものでは、ある時点におけるスケジュー
ルからのずれの状態や、その時点において生産ラインを
構成する設備の各々をどのように運用すればあらかじめ
育てた生産計画に近ずくのかを、大局的に判断するのは
困難であつた・ 又、生産ラインの自動運用を行なっている6のでも、運
用制御する時点だけの情報で生産ラインを運用しており
、計画どおりに効率よく運用するのは困難であった。
However, actual production lines do not operate according to schedule. For example, in a semiconductor production line with about 400 processes, there may be a deviation from the schedule at a certain point, or the equipment that makes up the production line at that point. It was difficult to make a comprehensive judgment on how to operate each of these to get closer to the production plan developed in advance.Also, even though the production line is automatically operated6, it is difficult to control the operation. The production line was operated using only point-in-time information, making it difficult to operate it efficiently as planned.

[発明が解決しようとする課題] 従来の生産ライン自動運用装置は以上のように構成され
ており、生産ラインの大局的な運用制御ができなかった
[Problems to be Solved by the Invention] Conventional production line automatic operation devices are configured as described above, and cannot perform global operation control of the production line.

この発明は上記のような従来のものの問題点を解消する
ためになされたもので、生産ラインの大局的に運用し、
生産計画に近い運用ができる生産ライン自動運用装置を
得ることを目的とする。
This invention was made in order to solve the problems of the conventional products as described above, and it is possible to operate the production line from a global perspective,
The purpose of this invention is to obtain an automatic production line operating device that can perform operations close to the production plan.

[課題を解決するための手段J この発明に係る生産ライン自動運用装置は、生産ライン
の主な工程について材料各々の計画を作成する計画作成
手段、所定時間における実際の生産ライン−Eの材料各
々の仕掛り状態を監視するライン状態監視¥段、生産ラ
インで用いる設備ごとに材料の仕掛り状態と生産計画で
のその材料の状態とを比較して、材料各々の評価値を演
算する評価値演算手段、評価値に基いて設備の運用方法
を決定する運用方法決定手段、運用方法に従って設備を
運用する設備運用手段、並びに所定時間間隔で評価値演
算手段、運用方法決定手段、及び設備運用手段を繰り返
し動作させる制御手段を備えたちのである。
[Means for Solving the Problems J] The automatic production line operating device according to the present invention includes a planning means for creating a plan for each material for the main processes of the production line, and a plan for each material on the actual production line-E at a predetermined time. Line status monitoring to monitor the in-process status of each piece of equipment, and evaluation value to calculate the evaluation value for each material by comparing the in-process status of each material with the status of that material in the production plan for each piece of equipment used on the production line. calculation means, operation method determination means for determining the operation method of the equipment based on the evaluation value, equipment operation means for operating the equipment according to the operation method, and evaluation value calculation means, operation method determination means, and equipment operation means at predetermined time intervals. It is equipped with a control means to operate repeatedly.

[作用] この発明における生産ライン自動運用装置の評価値演算
手段は、所定時間における実際の生産ライン上の材料の
仕掛り状態と生産計画でのその材料の状態とを比較して
、材料各々の評価値を演算し、この評価値に基いて運用
方法決定11段によって設備の運用方法を決定するので
、ある時点でのスケジュールからのずれの状態を大局的
に判断できる。各設備ごとに運用方法に従って設備を運
用するので、効率よく運用制御できる。
[Function] The evaluation value calculation means of the automatic production line operation device of the present invention compares the in-process state of the material on the actual production line at a predetermined time with the state of the material in the production plan, and calculates the value of each material. An evaluation value is calculated, and based on this evaluation value, the operation method of the equipment is determined in the 11th stage of operation method determination, so that the state of deviation from the schedule at a certain point in time can be determined from a broader perspective. Since the equipment is operated according to the operating method for each equipment, the operation can be controlled efficiently.

[実施例] 以F、この発明の一実施例による生産ライン自動運用g
A直を図について説明する。第1図はこの発明の一実施
例による生産ライン自動運用装置の構成を示すブロック
閃である0図において、(1)は所定時間における実際
の生産ライン上の材料各々の仕掛り状態を監視するライ
ン状態監視装置、(2)は実際の生産ラインの状態を生
産ラインの状態表現へ変換するラインRt14装置、(
3)は実際の生産ラインの状態を表現するライン表現装
置、(4)は生産計画を作成する計画作成装置、(5)
は計画作成装置(4)で作成した生産計画を生産ライン
モデルの状態表現へ変換する計画変換装置、(6)は生
産計画の生産ラインモデルの状態を表現する計固表現装
k、(7)はライン表現装置(3)からの実際の生産ラ
インにおける材料各々の仕掛り状態と計画表現装置(6
)からの生産計画の生産ラインモデルにおける材料各々
の状態とを比較して、材料各々の評価(+aを演算する
評価値演算装置、(8)は評価Ml演算装置(7)の評
価に基いてその時点の設問の運用を決定する運用決定装
置、(9)は実際の生産ラインの運用ルールを記憶する
ルール記憶装置、(10)は運用決定装置(7)で決定
した運用方法に基いて*際の生産ラインの設備を運用す
る設備運用R置である。
[Example] Below, automatic production line operation according to an embodiment of the present invention
A direct will be explained with reference to the diagram. FIG. 1 is a block diagram showing the configuration of an automatic production line operating device according to an embodiment of the present invention. In FIG. 0, (1) monitors the in-process status of each material on the actual production line at a predetermined time A line status monitoring device (2) is a line Rt14 device that converts the actual production line status into a production line status representation;
3) is a line expression device that expresses the actual state of the production line, (4) is a planning device that creates a production plan, and (5)
(6) is a plan conversion device that converts the production plan created by the planning device (4) into a state representation of a production line model, (6) is a rigid representation device k that expresses the state of the production line model of the production plan, and (7) represents the in-process status of each material on the actual production line from the line expression device (3) and the plan expression device (6).
) is compared with the state of each material in the production line model of the production plan, and the evaluation value calculation device calculates the evaluation (+a) of each material. (8) is based on the evaluation of the evaluation Ml calculation device (7). An operation determination device that determines the operation of the question at that time, (9) is a rule storage device that stores the operation rules of the actual production line, and (10) is based on the operation method determined by the operation determination device (7) * This is an equipment operation R station that operates the equipment on the actual production line.

ライン状態監視装置(1)によって所定時間における実
際の生産ライン上の材料各々の仕掛り状態をデータとし
て入力し、ライン変換装置(2)でそのデータをちとに
実際の生産ラインの状態を生産ラインの状態表現へ変換
する。この変換結果をライン表現装置(3)上に表現す
る。一方、計画作成装置(4)で粗い生産計画を作成し
て、生産ラインのしな工程についての材料各々の計画と
する。作成した生産計画を計画変換装置(5)によって
生産ラインモデルの状態表現へ変換し、計画表現装置(
6)七に生産計画の生産ラインモデルの材料各4の状態
を表現する。所定時間においてライン表現装置(3)か
らの実際の生産ラインの状態と計画表現装置(6)から
の生産計画の生産ラインモデルの状態とを評価(直演算
装置(7)により比較し評価する。その評価値に基いて
運用決定装置(8)によりルール記憶装置(9) に記
憶している運用ルールを参瞭して最適な運用方法を運用
決定装置(8)により決定する。決定した運用方法に基
いて、段端運用′jAFj(10)は実際の生産ライン
へ運用方法を指示1−る。
The line status monitoring device (1) inputs the in-process status of each material on the actual production line at a predetermined time as data, and the line conversion device (2) uses that data to change the actual status of the production line to the production line. Convert to state representation. This conversion result is expressed on a line expression device (3). On the other hand, a rough production plan is created by the planning device (4), and is used as a plan for each material for the linear process of the production line. The created production plan is converted into a state representation of the production line model by the plan conversion device (5), and the plan representation device (
6) 7. Express the status of each of the 4 materials in the production line model of the production plan. At a predetermined time, the actual state of the production line from the line representation device (3) and the state of the production line model of the production plan from the plan representation device (6) are evaluated (compared and evaluated by the direct calculation device (7)). Based on the evaluation value, the operation decision device (8) examines the operation rules stored in the rule storage device (9) and determines the optimal operation method.Determined operation method Based on this, the end-of-stage operation 'jAFj (10) instructs the operation method to the actual production line.

第2図は生産システムのモデルの一例として半導体の生
産ラインを示す説明図であり、タイムペトリネットで表
現したちのである0図において、(11)はプロセスの
加工時ちプレースであり、○の中の数字が加工時ちの材
料の数を表わしている。
Figure 2 is an explanatory diagram showing a semiconductor production line as an example of a production system model. The number inside represents the number of materials used during processing.

(12)はプロセスの加工トランジションであり50の
中の数字がそのプロセスで稼動している機械即ち設備の
数を表わしている。 (13)は機械プレースであり、
○の中の数字が稼動待ちにある設備の数を表わしている
。この図によれば、所定時間における各材料の仕掛り状
態や、設備の稼動状態を知ることができる0例えば、設
備(13a)は5つの工程にかかわる設備であり、第2
図の状態では、上から4番目の上程において稼動してい
る。又、番上の工程では材料(I Ia)が1つ待って
いる。実際の生産ラインが生産計画からずれてきた場合
(12) is the processing transition of the process, and the number in 50 represents the number of machines or equipment operating in the process. (13) is a mechanical place,
The number inside the circle represents the number of equipment waiting for operation. According to this figure, it is possible to know the in-process status of each material and the operating status of equipment at a given time.For example, equipment (13a) is equipment related to five processes, and
In the state shown in the figure, it is operating at the fourth position from the top. Also, one material (I Ia) is waiting in the top step. When the actual production line deviates from the production plan.

5つのニー程で稼動される設備(13a)の前の複数の
[稈で待っている材料がある時、どの工程でどのt4料
を最初に処理すれば最も効率が良いかということは大変
難しい問題である。特に400工程以上で構成される半
導体生産ラインなどにおいて、実際の各設備で全体の工
程から大局的に判断するのは従来の装置では困難である
When there are multiple materials waiting in the culm in front of the equipment (13a) that operates at five knees, it is very difficult to decide which process and which T4 material should be processed first for the most efficiency. That's a problem. Particularly in a semiconductor production line consisting of 400 or more processes, it is difficult to make a comprehensive judgment based on the entire process in each actual facility using conventional equipment.

又、第3図はこの実施例に係る装置の動作を示すフロー
チャート、第4図は実際の生産ライン(第4図(a))
と、これに対応して生産計画に基いた生産ライン(第4
図(b))の工程を示す説明図である。
Moreover, FIG. 3 is a flowchart showing the operation of the apparatus according to this embodiment, and FIG. 4 is an actual production line (FIG. 4(a)).
In response to this, the production line (4th line) based on the production plan
It is an explanatory view showing the process of figure (b)).

ステップ(20)でシステムを起動すると、計画作成装
置(4)により生産ラインの主な工程について材料各々
の計画を作成する(ステップ(211) 、この計画は
第4図に示すように、生産計画に基いた生産ラインモデ
ルの工程数をNM、実際の生産ラインの工程数をNRと
すると、これらの関係はNM≦N Rである。実際の生
産ラインの工程の中にはIE産クラインモデル−[程に
対応しているもの6ある。第4図では、N1.1とN1
.NtlとN宜、N、1とN、が各々対応する工程であ
り5生産計画では細かい工程は省略している6例えば、
工程N、として半導体における拡散工程とすると、N+
 + 、’ h +、t 、 N+、sは拡散の前処理
や後処理、次工程l\の搬送などで構成される。
When the system is started in step (20), the planning device (4) creates a plan for each material for the main processes of the production line (step (211). As shown in Figure 4, this plan is a production plan. Let NM be the number of processes in the production line model based on , and NR be the number of processes in the actual production line.The relationship between these is NM≦NR.Some of the processes in the actual production line are based on the IE Klein model. [There are 6 cases that correspond to
.. Ntl and Nyi, N, and 1 and N are the corresponding processes, respectively.5 Detailed processes are omitted in the production plan.6 For example,
If process N is a diffusion process in a semiconductor, then N+
+,'h+,t,N+,s are composed of pre-treatment and post-treatment of diffusion, transportation in the next step l\, etc.

次に現在の時刻Tを人力しくステップ(22) )、計
画変換装置(5)により計画作成装置(4)で作成した
生産計画を時刻Tでの生産ラインモデルの状態表現へ変
換する(ステップf231) 、この変換桔宅はライン
表現装置(6)に表現される。ステップ(24)では時
刻]゛の実際の生産ラインの状態データを人力する;即
ち、ライン状態監視装置(1)で実際の生産ラインの状
態を監視して入力する。ステップ(25)ではこの状態
をライン変換装置t (21で生産ラインの状態表現へ
変換し、ライン表現装置(3)にその状態を表現する。
Next, in step (22)), the current time T is manually converted, and the plan conversion device (5) converts the production plan created by the plan creation device (4) into a state representation of the production line model at time T (step f231). ), this transformation is expressed in the line expression device (6). In step (24), the actual state data of the production line at time ゛ is manually input; that is, the actual state of the production line is monitored and inputted by the line state monitoring device (1). In step (25), this state is converted into a state representation of the production line by the line conversion device t (21), and the state is expressed in the line representation device (3).

即ち、表現装置(6)、(3)には第2図に示すように
生産計画と′X際のライン)の設備、(4料の状態が各
々表現される。設備の台数を示すパラメータをl(Mm
=1)に初期設定する(ステップ(26])、ステップ
(27)〜(29)は設備ごとに行なう処理である。実
際の設置f1Mmで処理を待っている全ての材料に対し
て、実際の生産ラインでの工程Nn1と生産ラインモデ
ルの状態に対応する工程N、(工程処理中のものと[程
の待ちになっているものをさむ)を比較し、各(イ籾の
評価(+M V 、を評価値演算装置i1 (7)で算
出する(ステップ+271) 、この評価値Vpは材料
各々に対して算出するものであり、実際の状態と計画の
状態がどの程度食い違っているかを示す値である9例え
ば下式などで算出される。
That is, as shown in Fig. 2, the expression devices (6) and (3) express the production plan, the equipment of the 'X line), and the state of the four materials, respectively.A parameter indicating the number of equipment is expressed. l(Mm
= 1) (step (26)) and steps (27) to (29) are processes to be performed for each equipment. Compare the process Nn1 on the production line and the process N corresponding to the state of the production line model (in process process and [including those waiting for a while), and calculate the evaluation of each paddy (+M V , is calculated by the evaluation value calculating device i1 (7) (step +271). This evaluation value Vp is calculated for each material, and is a value indicating the degree of discrepancy between the actual state and the planned state. 9 is calculated using the following formula, for example.

V、=a−n 連用方法決定装置(8)で、この評価値■、に基いて例
えば一番大きい評価値V、の材料を処理するという運用
方r去をX8FRシ、評価値が同じ0料に関しては、ル
ール 般的な運用ルールに基いて運用方法として選択する(ス
テップt2111 )。ルール記憶装置(9)に記憶さ
れている一般的な運用ルールとは、例えば、納朋順ジョ
ブ優先.最犬納明遅れ時間最大ジョブ優先.残り4−程
数最小ジョブ優先.バッファ占有率最大ジョブ優先など
が挙げられる。設備運用装置(lO)では選択した運用
方法を実際の生産ラインへ運用方法を指示する(ステッ
プ(29))−次にmが設備の台数に等しいか否か、即
ちステップ(27)〜(29)の処理を各設備において
行なったか否かをステップ(30)で判断し、mが設備
の台数より小さい時にはmをm+1として、ステップ(
27)からステップ(29)を繰り返して設備ごとに運
用する。ステップ(30)でmが設備の台数に等しくな
ればステップ(32)で実際のラインと生産計画とが非
常に異なるかどうかを判断する。生産計画と非常に異な
ってしまった場合はステップ(34)に示すように計画
作成装置(4) により新たな生産計画を作成し、ステ
ップ(22)に戻る。ステップ(32)で生産計画とそ
れほど異ならないと判断した場合は、ステップ(33)
で処理を終了するかどうか判断し、終了しない場合はス
テップ(22)に戻る。ステップ(22)〜ステップ(
32)は所定の時間間隔で実行される。ステップ(33
)で終rすると判断した場合は終了となる(ステップ(
35+)−このように、この実施例によれば、評価値演
算装置(7)は、所定時間における実際の生産ライン上
の材料の仕掛り状態と生産計画でのその材料の状態とを
比較して、材料釜々の評価値を演算し、この評価値に基
いて運用決定装置(8)で設備の運用方法を決定するの
で、ある時点でのスケジュールからのずれの状態を大局
的に判断できろ、又、ルール記憶装置(9)に基本とな
る運用方法を記憶しておき、これを参照して運用方法を
決定するので、システム各々の特性を考慮して、所望の
運用ができる。又、各設備ごとに運用方法に従って設備
を運用するので、効率よく運用111制御でき、比較的
生産計画通りに実際の生産ラインを運用できる効果があ
る。
V, = a-n In the continuous use method determination device (8), based on this evaluation value ■, for example, the operation method of processing the material with the largest evaluation value V is determined as Regarding fees, the operating method is selected based on general operating rules (step t2111). General operation rules stored in the rule storage device (9) include, for example, "No-ho-jun job priority." Priority is given to the job with the longest delay time. Remaining 4 - Give priority to the job with the least number of degrees. Examples include giving priority to the job with the highest buffer occupancy rate. The equipment operation unit (lO) instructs the selected operation method to the actual production line (step (29)) - then checks whether m is equal to the number of equipment, that is, steps (27) to (29). ) is performed in each piece of equipment in step (30), and if m is smaller than the number of pieces of equipment, m is set to m+1 and step (
Steps 27) to 29 are repeated to operate each piece of equipment. If m becomes equal to the number of equipment in step (30), it is determined in step (32) whether the actual line and the production plan are significantly different. If the production plan is significantly different from the production plan, a new production plan is created using the planning device (4) as shown in step (34), and the process returns to step (22). If it is determined in step (32) that there is not much difference from the production plan, proceed to step (33).
In step (22), it is determined whether the process should be terminated or not. Step (22) ~ Step (
32) is executed at predetermined time intervals. Step (33
), the process ends (step (
35+) - Thus, according to this embodiment, the evaluation value calculation device (7) compares the in-process state of the material on the actual production line at a predetermined time with the state of the material in the production plan. Then, the evaluation values of the material pots are calculated, and the operation decision device (8) determines how to operate the equipment based on these evaluation values, so it is possible to judge the deviation from the schedule at a certain point in time. Moreover, since the basic operation method is stored in the rule storage device (9) and the operation method is determined by referring to this, the desired operation can be performed taking into account the characteristics of each system. In addition, since the equipment is operated according to the operating method for each equipment, it is possible to efficiently control the operation 111, and there is an effect that the actual production line can be operated relatively in accordance with the production plan.

なお、上記実施例では1つのコンピュータで各処理を行
なうものとして実現したが、設備各々にコンピュータを
割り当て、設備側のコンピュータを制御する1つのコン
ピュータを設けても実現できる。この発明の他の実施例
に係るフローチャートを第5図に示す6スデツプ(20
)〜(35)で、−り記−実施例と同一符号は同一、又
は相当の処理な示す、この実施例では制御側コンピュー
タAと設備側コンピュータB1.B2.B3.・・・と
で構成され、上記一実施例の処理を分離している。ステ
ップ(401、(42)で制御側コンピュータ八から設
備側コンピュータBへ生産計画の状態表現を転送し、逆
にステップ(41)、 (43)で設備側コンピュータ
Bから制御側コンピュータ八へ実際の状態表現を転送し
ている。このように構成すれば、上記一実施例と同様の
効果に加えて、各設備の運用の決定は各設備の情報だけ
に依存するので生産ラインを早く自律的に、かつ各設備
単位で分散して運用制御できるので処理時間が早くでき
る。
In the above embodiment, one computer performs each process, but it can also be realized by assigning a computer to each piece of equipment and providing one computer to control the computer on the equipment side. A flowchart according to another embodiment of the present invention is shown in FIG.
) to (35), the same reference numerals as in the embodiment indicate the same or corresponding processing. In this embodiment, the control side computer A and the equipment side computer B1. B2. B3. ..., and the processing of the above embodiment is separated. In steps (401, (42), the state expression of the production plan is transferred from the control computer 8 to the equipment computer B, and conversely, in steps (41) and (43), the actual state expression is transferred from the equipment computer B to the control computer 8. With this configuration, in addition to the same effect as in the above embodiment, the production line can be run quickly and autonomously since the operation decisions for each piece of equipment depend only on the information on each piece of equipment. , and since operation can be controlled in a distributed manner for each facility, processing time can be shortened.

又、上記実施例では実際のラインと生産計画が非常に異
なると判定したときは新たに生産計画を作成するように
構成しているが、これは必要に応じて備えれば良いちの
で、無くてち構成できる。
In addition, in the above embodiment, a new production plan is created when it is determined that the actual line and the production plan are very different, but this can be omitted as it can be prepared as needed. It can be configured.

しかし、この再生産計画を作成する装置を備えていれば
、設備の故障などが生じて生産ラインの正常な運用がで
きなくなった場合に、即座に対応できる効果もある。
However, if a device is equipped to create this remanufacturing plan, it will be possible to respond immediately in the event that a production line cannot operate normally due to equipment failure.

[発明の効果] 以上のように、この発明によれば、生産ラインの主な工
程について材料釜々の計画を作成する計画作成手段、所
定時間における実際の生産ライン上の材料釜々の仕掛り
状態を監視するライン状態監視手段、土産ラインで用い
る設備ごとに材料の仕掛り状態と生産計画でのその材料
の状態とを比較して、材料釜々の評価値を演算する評価
値演算手段、評価値に基いて設備の運用方法を決定する
運用方法決定手段、運用方法に従って設備を運用する設
備運用手段、l及びに所定時間間隔で評価値演算手段、
運用方法決定手段、及び設備運用手段を繰り返し動作さ
せる制御手段を備えたことにより、比較的生産計画通り
に実際の生産ラインを運用できる効果がある。
[Effects of the Invention] As described above, according to the present invention, there is provided a planning means for creating a plan for material pots for the main processes of a production line, and a schedule of material pots in progress on the actual production line at a predetermined time. line condition monitoring means for monitoring the condition; evaluation value calculation means for calculating the evaluation value of each material pot by comparing the in-process condition of the material with the condition of the material in the production plan for each equipment used in the souvenir line; an operation method determining means for determining an operation method of the equipment based on the evaluation value; an equipment operation means for operating the equipment according to the operation method; an evaluation value calculation means at predetermined time intervals;
By providing the operation method determining means and the control means for repeatedly operating the equipment operation means, there is an effect that the actual production line can be operated relatively in accordance with the production plan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による生産ライン自動運用
装置の構成を示すブロック図、第2図は生産ラインの一
例を示す説明図、第3図は一実施例の動作を示すフロー
チャート、第4図は−実施例に係り、実際の生産ライン
の工程と生産計画に基く生産ラインモデルの工程を示す
説明図、第5図はこの発明の他の実施例による生産ライ
ン自動運用装置の動作を示すフローチャートである。 (1)  ・・・ライン状態監視装置、(4)・・・計
画作成装置、(7)  ・・・評価値W4算装置、(8
)・運用方法決定′A置、(10)・・設備運用装置。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing the configuration of an automatic production line operation device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of a production line, FIG. 3 is a flowchart showing the operation of the embodiment, and FIG. FIG. 4 is an explanatory diagram showing the process of an actual production line and the process of a production line model based on a production plan, according to an embodiment, and FIG. FIG. (1)...Line condition monitoring device, (4)...Planning device, (7)...Evaluation value W4 calculation device, (8
)・Operation method determination 'A position, (10)...Equipment operation device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 生産ラインの主な工程について材料各々の計画を作成す
る計画作成手段、所定時間における実際の上記生産ライ
ン上の上記材料各々の仕掛り状態を監視するライン状態
監視手段、上記生産ラインで用いる設備ごとに上記材料
の仕掛り状態と上記生産計画でのその材料の状態とを比
較して、上記材料各々の評価値を演算する評価値演算手
段、上記評価値に基いて上記設備の運用方法を決定する
運用方法決定手段、上記運用方法に従って上記設備を運
用する設備運用手段、並びに所定時間間隔で上記評価値
演算手段、運用方法決定手段、及び設備運用手段を繰り
返し動作させる制御手段を備えた生産ライン自動運用装
置。
A planning means for creating a plan for each material for the main processes of the production line, a line status monitoring means for monitoring the in-process status of each of the materials on the actual production line at a predetermined time, and each piece of equipment used on the production line. an evaluation value calculation means for calculating an evaluation value for each of the materials by comparing the in-process state of the material with the state of the material in the production plan; and determining the operation method of the equipment based on the evaluation value. A production line comprising an operation method determining means for operating the equipment according to the operation method, an equipment operation means for operating the equipment according to the operation method, and a control means for repeatedly operating the evaluation value calculation means, the operation method determination means, and the equipment operation means at predetermined time intervals. Automatic operation equipment.
JP9128490A 1990-04-04 1990-04-04 Production line automatic operation equipment Expired - Fee Related JP3169079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128490A JP3169079B2 (en) 1990-04-04 1990-04-04 Production line automatic operation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128490A JP3169079B2 (en) 1990-04-04 1990-04-04 Production line automatic operation equipment

Publications (2)

Publication Number Publication Date
JPH03287360A true JPH03287360A (en) 1991-12-18
JP3169079B2 JP3169079B2 (en) 2001-05-21

Family

ID=14022164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128490A Expired - Fee Related JP3169079B2 (en) 1990-04-04 1990-04-04 Production line automatic operation equipment

Country Status (1)

Country Link
JP (1) JP3169079B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150952A (en) * 1984-01-13 1985-08-08 Hitachi Ltd Unfinished job supervisory type production system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150952A (en) * 1984-01-13 1985-08-08 Hitachi Ltd Unfinished job supervisory type production system

Also Published As

Publication number Publication date
JP3169079B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
Breithaupt et al. The workload control concept: theory and practical extensions of Load Oriented Order Release
Kimemia et al. Flow optimization in flexible manufacturing systems
CN110597218B (en) Scheduling optimization method based on flexible scheduling
Ioannidis et al. Fuzzy supervisory control of manufacturing systems
JP2000077289A (en) Production predicting control system
CN108053047A (en) Cloud resources of production scheduling methods, devices and systems
Chan et al. A fuzzy approach to operation selection
JPH03287360A (en) Automatic operation device for production line
Zhang et al. TOJICAP—A System of Computer Aided Process Planning System for Rotational Parts
ElMaraghy et al. On-line simulation and control in manufacturing systems
O'Grady et al. Operation of X-Cell—an intelligent cell control system
Cheraghi et al. Comparative analysis of production control systems through simulation
JPH09138820A (en) Process designing system
JPH0573574A (en) Production controller
JPH06218659A (en) Preparation replacing instruction device and manufacturing system
JPH0652178A (en) Assembly line work plan generation support system
JPH0916069A (en) Creating method for process design and device thereof
Almeida et al. Toward Dynamic Scheduling of Manufacturing
Chowdary et al. A decision support system for flexibility in manufacturing
JPH04348856A (en) Work starting order deciding system
De Swaan Arons et al. Integration of dynamic expert scheduling in production control
JP2865213B2 (en) Numerical control information creation device
JPH0785153A (en) Method and device for correcting process plan
Baudouin et al. A decision support system based on a factory wide information integrated system and discrete event simulation to help solve scheduling problems in a semiconductor manufacturing environment
JPH069005B2 (en) Production progress control system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees