JPH03287275A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03287275A
JPH03287275A JP8883490A JP8883490A JPH03287275A JP H03287275 A JPH03287275 A JP H03287275A JP 8883490 A JP8883490 A JP 8883490A JP 8883490 A JP8883490 A JP 8883490A JP H03287275 A JPH03287275 A JP H03287275A
Authority
JP
Japan
Prior art keywords
parts
layer coating
coating liquid
charge
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8883490A
Other languages
Japanese (ja)
Inventor
Minoru Umeda
実 梅田
Tatsuya Niimi
達也 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP8883490A priority Critical patent/JPH03287275A/en
Publication of JPH03287275A publication Critical patent/JPH03287275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the deterioration of the electrifying characteristics after the repeated uses by providing an intermediate layer selected from tin oxide, titan oxide, etc., formed with a vacuum film forming process between a conductive substrate and a photosensitive layer. CONSTITUTION:On the conductive substrate 11, the intermediate layer 13 is provided, then, the photosensitive layer 15 is provide thereon. The intermediate layer 13 formed with the vacuum film forming process is consisting of at least one group selected from tin oxide, titan oxide. In oxide, iron oxide, La oxide, Zn oxide, Be oxide, Ca oxide and Mg oxide. Thus the electropthotographic sensitive body of high sensitivity, with the degradation of the electrostatic changeability characteristics due to the pre-exposure fatigue, no delay of the rise of potential by electrostatically charged potential with lower dark decay can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電子写真用感光体の改良に関する。 〔従来の技術〕 近年、電子写真複写機に使用される感光体として、低価
格、生産性及び無公害等の利点を有する有機系の感光材
料を用いたものが普及しはじめている。 有機系の電子写真感光体には、ポリビニルカルバゾール
(PVK)に代表される光導電性樹脂、PVKTNF(
2,4,7−ドリニトロフルオレノン)に代表される電
荷移動錯体型、フタロシアニン−バインダーに代表され
る顔料分散型、電荷発生物質と電荷輸送物質とを組合せ
て用いる機能分離型の感光体などが知られており、特に
機能分離型の感光体が注目されている。 この様な機能分離型の高感度感光体を、カールソンプロ
セスに適用した場合、帯電性が低く、電荷保持特性が悪
い(暗減衰が大きい)上、繰返し使用による、これら特
性の劣化が大きく、画像上に、濃度ムラ、カブリ、また
反転現像の場合、地汚れを生じるという欠点を有してい
る。 また一般に、高感度感光体は、前露光疲労によって帯電
性が低下する。この前露光疲労は主に電荷生材料が吸収
する光によって起こることから、光吸収によって発生し
た電荷が移動可能な状態で感光体内に残留している時間
が長い程、またその電荷の数が多い程、前露光疲労によ
る帯電性の低−1= 2− 下が著しくなると考えられる。即ち、光吸収によって発
生した電荷が残留している状態で帯電操作をしても、残
留しているキャリアの移動で表面電荷が中和される為、
残留電荷が消費されるまで表面電位は上昇しない、従っ
て、前露光疲労分だけ表面電位の上昇が遅れることにな
り、見かけ上の帯電電位は低くなる。 上述の欠点に対して、例えば、特開昭47−6341゜
48−3544および48−12034号には硝酸セル
ロース系樹脂中間層が、特開昭48−47344.52
−25638.58−30757.58−63945.
58−95351.58−98739および60−66
258号にはナイロン系樹脂中間層が、特開昭4969
332および52−10138号にはマレイン酸系樹脂
中間層が、そして特開昭58−105155号にはポリ
ビニルアルコール樹脂中間層がそれぞれ開示されている
。また、中間層の電気抵抗を制御すべく種々の導電性添
加物を樹脂中に含有させた中間層が提案されている。例
えば、特開昭51−65942号にはカーボンまたはカ
ルコゲン系物質を硬化性樹脂に分散した中間層が、特開
昭52−82238号には四級アンモニウム塩を添加し
てイソシアネート系硬化剤を用いた熱重合体中間層が、
特開昭55−1180451号には抵抗調節剤を添加し
た樹脂中間層が、特開昭58−58556号にはアルミ
ニウムまたはスズの酸化物を分散した樹脂中間層が、特
開昭58−93062号には有機金属化合物を添加した
樹脂中間層が、特開昭58−93063゜60−973
63および60−111255号には導電性粒子を分散
した樹脂中間層が、さらに特開昭59−84257.5
993453および60−32054号にはTie□と
5n02粉体とを分散した樹脂中間層が開示されている
。 しかしながら、繰り返し使用による帯電性の低下、とり
わけ帯電々位の立上りの遅れに関しては未だに不充分で
あり、より一層の改善が望まれていた。 〔発明が解決しようとする課題〕 本発明は、高感度であるとともに前露光疲労による帯電
性の低下が著しく小さく、しかも帯電と露光の繰り返し
後においても帯電電位の立上りの遅れがなく、暗減衰の
小さな電子写真用感光体を提供することを目的とする。 〔課題を解決するための手段〕 3− 4− 本発明によれば、導電性基体上に感光層を設けてなる電
子写真感光体において、該導電性基体と感光層の間に真
空薄膜作成法により形成された酸化スズ、酸化チタン、
酸化インジウム、酸化鉄、酸化ランタン、酸化亜鉛、酸
化ベリリウム、酸化カルシウム及び酸化マグネシウムか
ら選ばれた少なくとも1種よりなる中間層を有すること
を特徴とする電子写真感光体が提供される。 高感度な感光層を有する電子写真感光体はくり返し使用
によって、帯電時の表面電位の立上りの遅れと、暗減衰
を生ずる傾向が非常に強い。 一方、一般に導電性基体と感光層の間に中間層を設けた
場合、とりわけ中間層が樹脂等の絶縁性物質であるとき
、残留電位を生じやすい。 本発明者らは、これらの点に鑑み導電性基体上に感光層
を設けてなる電子写真感光体において、導電性基体と感
光層の間に、真空薄膜作成法により形成された前記金属
化合物よりなる中間層を設けることによって上記問題点
が解消されることを見出し、本発明を完成させるに至っ
た。 以下、図面に沿って、本発明を説明する。 第1図は、本発明の電子写真感光体の構成例を示す断面
図であり、導電性基体11上に、中間JtiJ13、次
いで感光層15を設けた構成を採っている。 第2図では、本発明の別の構成例を示す断面図である。 感光層が、電荷発生層17と電荷輸送層19の順に積層
になっている。 第3図では、更に別の構成例を示す断面図である。感光
層が、電荷輸送層19と電荷発生M17の順に積層にな
っている。 第4図、第5図、第6図は、更に又、別の構成例を示す
断面図である。それぞれ、第1図、第2図、第3図の構
成の上に、保護層21を設けたものである。 次に、中間層13について説明する。 中間層は、導電性基体11上に真空薄膜作成法により形
成された前記金属化合物からなる層である。 本発明で使用される中間層の膜厚は100人〜10−1
好ましくは500人〜5
[Industrial Field of Application] The present invention relates to improvements in electrophotographic photoreceptors. [Prior Art] In recent years, organic photosensitive materials, which have advantages such as low cost, productivity, and non-pollution, have become popular as photoconductors used in electrophotographic copying machines. Organic electrophotographic photoreceptors include photoconductive resins such as polyvinylcarbazole (PVK) and PVKTNF (
There are charge-transfer complex photoreceptors such as 2,4,7-dolinitrofluorenone), pigment-dispersed photoreceptors such as phthalocyanine binders, and functionally separated photoreceptors that use a combination of a charge-generating substance and a charge-transporting substance. In particular, functionally separated type photoreceptors are attracting attention. When such a functionally separated high-sensitivity photoreceptor is applied to the Carlson process, it has low chargeability and poor charge retention characteristics (large dark decay), and these characteristics deteriorate significantly with repeated use, resulting in poor image quality. Moreover, it has disadvantages of density unevenness, fogging, and, in the case of reversal development, background smearing. Furthermore, in general, high-sensitivity photoreceptors have reduced chargeability due to pre-exposure fatigue. This pre-exposure fatigue is mainly caused by light absorbed by charge-generating materials, so the longer the charges generated by light absorption remain in the photoconductor in a mobile state, the greater the number of charges. It is thought that the lower the chargeability due to pre-exposure fatigue becomes, the more the chargeability decreases. In other words, even if a charging operation is performed while charges generated by light absorption remain, the surface charges are neutralized by the movement of the remaining carriers.
The surface potential does not rise until the residual charge is consumed. Therefore, the rise in surface potential is delayed by the amount of pre-exposure fatigue, and the apparent charged potential becomes lower. To solve the above-mentioned drawbacks, for example, JP-A-47-6341゜48-3544 and JP-A-48-12034 have cellulose nitrate resin intermediate layers;
-25638.58-30757.58-63945.
58-95351.58-98739 and 60-66
No. 258 has a nylon resin intermediate layer, which is disclosed in JP-A-4969.
Nos. 332 and 52-10138 disclose a maleic acid resin intermediate layer, and JP-A-58-105155 discloses a polyvinyl alcohol resin intermediate layer. In addition, intermediate layers have been proposed in which various conductive additives are contained in a resin in order to control the electrical resistance of the intermediate layer. For example, JP-A No. 51-65942 uses an intermediate layer in which carbon or chalcogen-based substances are dispersed in a curable resin, and JP-A No. 52-82238 uses an isocyanate-based curing agent with the addition of a quaternary ammonium salt. The thermopolymer intermediate layer
JP-A No. 55-1180451 discloses a resin intermediate layer containing a resistance adjusting agent, JP-A No. 58-58556 discloses a resin intermediate layer containing aluminum or tin oxide dispersed therein, and JP-A No. 58-93062 discloses a resin intermediate layer containing an oxide of aluminum or tin dispersed therein. A resin intermediate layer to which an organometallic compound is added is disclosed in JP-A-58-93063゜60-973.
No. 63 and No. 60-111255 have a resin intermediate layer in which conductive particles are dispersed, and Japanese Patent Application Laid-Open No. 59-84257.5
Nos. 993453 and 60-32054 disclose a resin intermediate layer in which Tie□ and 5n02 powder are dispersed. However, it is still insufficient in terms of deterioration in chargeability due to repeated use, particularly in terms of delay in the rise of charge potential, and further improvements have been desired. [Problems to be Solved by the Invention] The present invention has high sensitivity, significantly reduces charging performance due to pre-exposure fatigue, and has no delay in the rise of charging potential even after repeated charging and exposure, and dark decay. The purpose of the present invention is to provide a small photoreceptor for electrophotography. [Means for Solving the Problem] 3-4- According to the present invention, in an electrophotographic photoreceptor in which a photosensitive layer is provided on a conductive substrate, a method for forming a vacuum thin film between the conductive substrate and the photosensitive layer is provided. Tin oxide, titanium oxide, formed by
An electrophotographic photoreceptor is provided that has an intermediate layer made of at least one selected from indium oxide, iron oxide, lanthanum oxide, zinc oxide, beryllium oxide, calcium oxide, and magnesium oxide. An electrophotographic photoreceptor having a highly sensitive photosensitive layer has a strong tendency to cause a delay in the rise of the surface potential during charging and dark decay due to repeated use. On the other hand, in general, when an intermediate layer is provided between a conductive substrate and a photosensitive layer, residual potential is likely to occur, especially when the intermediate layer is made of an insulating material such as a resin. In view of these points, the present inventors have proposed that in an electrophotographic photoreceptor in which a photosensitive layer is provided on a conductive substrate, the metal compound formed between the conductive substrate and the photosensitive layer by a vacuum thin film forming method is used. The inventors have discovered that the above problems can be solved by providing an intermediate layer, and have completed the present invention. The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the structure of the electrophotographic photoreceptor of the present invention, in which an intermediate JtiJ 13 and then a photosensitive layer 15 are provided on a conductive substrate 11. FIG. 2 is a sectional view showing another configuration example of the present invention. The photosensitive layers are stacked in this order: a charge generation layer 17 and a charge transport layer 19. FIG. 3 is a cross-sectional view showing yet another configuration example. The photosensitive layers are stacked in this order: a charge transport layer 19 and a charge generation layer M17. FIG. 4, FIG. 5, and FIG. 6 are sectional views showing yet another example of the configuration. A protective layer 21 is provided on the structures shown in FIGS. 1, 2, and 3, respectively. Next, the intermediate layer 13 will be explained. The intermediate layer is a layer made of the metal compound described above and formed on the conductive substrate 11 by a vacuum thin film forming method. The thickness of the intermediate layer used in the present invention is 100 to 10-1
Preferably 500 people to 5

【である。 真空薄膜作成法としては、抵抗加熱・イオンビーム加熱
等による真空蒸着法、スパッタリング法、5− 6一 反応性スパッタリング法、イオンブレーティング法、M
BE、 CVD等従来公知の方法が用いられる。 一般に酸化スズはSnO,SnO2のほかに5n20.
。 5n304などが知られており、また真空薄膜作成法で
形成された酸化スズには化学量論的組成からずれた組成
の薄膜も作成されうる。このとき、5n02の組成の膜
は高抵抗で、それより酸素が少ない場合は低抵抗である
ことが公知であるが、いずれの酸化スズ膜も本発明の中
間層として好適に使用できる。 また、酸化スズに低抵抗化の目的でアンチモン等をドー
プしたものや、高抵抗化の目的で銅、アルミニウム等を
ドープしたものが公知であるが、いずれの場合も本発明
の範喀に属し、良好に使用できる。 酸化チタンは一般に、二価のTiO2三価のTi2O3
、四価のTie、が知られているが、真空薄膜作成法で
形成された酸化チタンにおいては化学量論的組成からず
れた組成の薄膜も作成され得る。また出発材料の選択に
よっては水素原子、炭素原子、ハロゲン原子等をとり込
んだ膜が形成される場合もあるし、Zr、Hf、 Y等
が添加された材料を蒸着材料に用いれば、それらを含ん
だ酸化チタン薄膜が形成される。これらの酸化チタン膜
はいずれも本発明の中間層として良好に使用できる。 酸化インジウムは、一般に1価のIn2Oと3価のIn
2O3が知られており、また真空薄膜作成法で形成され
た酸化インジウムには、化学量論的組成からずれた組成
の薄膜も作成され得、いずれの酸化インジウム膜も本発
明の中間層として好適に使用できる。 また、酸化インジウムに導電性向上の目的で。 スズ等をトープしたものや、高抵抗化の目的で銅、アル
ミニウム等をドープしたものが公知であるが、いずれも
本発明の範鴫に属し、良好に使用できる。 一般に、酸化鉄は、Fed、 Fe2O3、Fe3O4
等が良く知られているが、真空薄膜作成法で形成された
酸化鉄においては、化学量論的組成からずれた組成の薄
膜も作成され得、いずれも本発明の中間層として良好に
使用できる。 7− 酸化ランタンは、一般に3価のLa203が知られてい
るが、真空薄膜作成法で作成された酸化ランタンにおい
ては化学量論的組成からずれた組成の薄膜も作成され得
、いずれの酸化ランタン膜も本発明の中間層として好適
に使用できる。 一般に酸化亜鉛はZnOで表わされるが、真空薄膜作成
法で形成された酸化亜鉛においては化学量論的組成から
ずれた組成の薄膜も作成され得る。 また、出発材料の選択によっては、水素原子、ハロゲン
原子、炭素原子等をとりこんだ薄膜が形成される。これ
らの酸化亜鉛膜はいずれも本発明の中間層として良好に
使用される。 一般に酸化ベリリウムはBeOが知られているが真空薄
膜作成法で形成された酸化ベリリウムにおいては、化学
量論的組成からずれた組成の薄膜も作成され得、いずれ
も本発明の中間層とし良好に使用できる。 一般に酸化カルシウムはCaOが知られているが、真空
薄膜作成法で形成された酸化カルシウムにおいては、化
学量論的組成からずれた組成の薄膜も作成され得、いず
れも本発明の中間層として良好に使用できる。 一般に酸化マグネシウムはMgOが知られているが、真
空薄膜作成法で形成された酸化マグネシウムにおいては
、化学量論的組成からずれた組成の薄膜も作成され得、
いずれも本発明の中間層として良好に使用できる。 真空薄膜作成法としては、抵抗加熱・イオンビーム加熱
等による真空蒸着法、スパッタリング法、反応性スパッ
タリング法、イオンブレーティング法、MBE. CV
D等従来公知の方法がいずれも採用できるが、中間層形
成成分の種類によって適宜選定することが望ましい。 たとえば、中間層の形成成分として酸化スズ、酸化イン
ジウム、酸化鉄、酸化ランタン、酸化ベリリウム、酸化
カルシウム及び酸化マグネシウムを用いた場合には、抵
抗加熱、イオンビーム等による真空蒸着法、スパッタリ
ング法、反応性スパッタリング法、イオンブレーティン
グ法、CVD法などが良好に使用される。 lO− また、本発明の酸化チタンよりなる中間層の作成には、
蒸発材料にTie、 Tl2O3、Tin□を用いた抵
抗加熱又は電子ビーム加熱による真空蒸着法、蒸発材料
にTiを用い02雰囲気下での反応性蒸着法、ターゲッ
トTi01Ti20.、Tie2を用い、Arあるいは
Ar−0□あるいは0□等を用いたスパッタリング法、
ターゲットTi、 Ti01Ti203を用い、Ar−
02あるいは0□等を用いた反応性スパッタリング法、
蒸着材料にTi、 Ti01Ti20.を用い、0□雰
囲気下でのイオンブレーティング法、TiCQ4、Ti
Br、、 CO2、o2.1120等の原料ガスあるい
はこれらをAr、He、 82等が希釈したガスを用い
たCVD法やその他公知の方法が用いられる。 本発明の酸化亜鉛よりなる中間層の作成には、蒸着材料
にZnOを用いた真空蒸着法、ターゲットにZnOを用
いArあるいはAr−0□あるいは02等を用いたスパ
ッタリング法、蒸発材料にZnを用い0□雰囲気下での
イオンブレーティング法、Zn、ZnO1ZnCQ2、
ZnBr2、Zn(c2Hs)2、Zn (ocl(a
 )2、Zn (QC211,)2、Zn (OnC3
H7)2、Zn (OnC4H9)2、Zn (Cs 
14. o□)2.0□、N20等の原料あるいはこれ
らをAr、 He、 H2、N2等で希釈したガスを用
いたCVD法やその他公知の方法が用いられる。 又、真空薄膜作成法が用いられる理由としては、膜の純
度が高い事、ち密な膜が形成できる事、均一な膜が形成
できる事が挙げられる。更に、この様な中間層を用いる
事で、電子写真感光体の性能が向上し、本発明による要
求を満足するものである。 以上のようにして作成される中間層は、アモルファス状
態、固溶体、結晶体およびそれら2つ以上の混合体であ
ってもよい。 導電性支持体11としては、体積抵抗1010Ω(1)
以下の導電性を示すもの、例えば、アルミニウム、ニッ
ケル、クロム、ニクロム、銅、銀、金、白金などの金属
、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着
又はスパッタリングにより、フィルム状もしくは円筒状
のプラスチック、紙等に被覆したもの、あるいは、アル
ミニウム、アルミニウム合金、ニッケル、ステンレス等
の板および11− 12− それらをり、1..1.1.、押出し、引抜き等の工法
で素管化後、切削、超仕上げ、研摩等で表面処理した管
等を使用することができる。 本発明における感光層15は、単層型でも積層型でもよ
いが、ここでは説明の都合上、先ず積層型について述べ
る。 電荷発生層17は、電荷発生物質を主成分とする層で、
必要に応じてバインダー樹脂を用いることもある。 電荷発生物質としては、無機系材料と有機系材料を用い
ることができる。無機系材料には結晶セレン、アモルフ
ァス・セレン、セレン−テルル、セレン−テルル−ハロ
ゲン、セレンーヒ素化合物や、アモルファス・シリコン
等が挙げられる。アモルファス・シリコンにおいては、
ダングリングボンドを水素原子、ハロゲン原子でターミ
ネートしたものや、ホウ素原子、リン原子等をドープし
たものが良好に用いられる。 一方、有機系材料には、フタロシアニン系顔料、ナフタ
ロシアニン系顔料、ペリレン系顔料、ペリノン系顔料、
キナクリドン系顔料、キノン素縮合多環化合物、スクア
リック酸系染料、アズレニウム塩系染料、モノアゾ顔料
、ジスアゾ顔料、トリスアゾ顔料等が挙げられ用いられ
る。 これら電荷発生物質の中でも、とりわけ次に示す構造式
で表されるジスアゾ又はトリスアゾ顔料が、好ましく用
いられる。 (ただしCpはカップラー残基、以下同様)13− 14− (ただしRは、水素原子、 アルキル基、 ノ) ロ ゲン原子を表わす。 ) (ただしAは、 NH−1 一種、 −8−を表わす。 ) (ただしRは、水素原子、 置換又は非置換の (ただしnは、 1〜5の間の整数を表わす。 ) アルキル基を表わす。 UN−up 15− 16 フェノール類、ナフトール類などのフェノール性水酸基
を有する化合物、アミノ基を有する芳香族アミノ化合物
あるいはアミノ基とフェノール性水酸基を有するアミノ
ナフトール類、脂肪族もしくは芳香族のエノール性ケト
ン基を有する化合物(活性メチレン基を有する化合物)
などが用いられ、好ましくは下記−数式(1)〜(11
)で表わされるものである。 〔上記式(1) 、 (2) 、 (3)および(4)
中、X、Yl、Z、mおよびnはそれぞれ以下のものを
表わす。 これらのカップラー残基Cpとしては、たとえば 18− 換のアルキル基を表わし、R3は置換もしくは無置換の
アルキル基または置換もしくは無置換のアリール基を表
わす。) ■1:水素、ハロゲン、置換もしくは無置換のアルキル
基、置換もしくは無置換のアルコキシ基、カルボキシ基
、スルホン基、置換もしくは無置換のスルファモイル基
または −CON−Y24 (R4は水素、アルキル基またその置換体、フェニル基
またはその置換体を表わし、Y2は炭化水素環基または
その置換体、複素環基またまたはその置換体 nilまたは2の整数 m :1または2の整数〕 〔式(5)および(6)中、R7は置換もしくは無置換
の炭化水素基を表わし、Aは芳香族炭化水素の2価また
は窒素原子を環内に含む複素環の2価基を表わす(これ
らの環は置換されていてもよい)。 Xは前記に同じである。〕 R5は炭化水素環基またはその置換体、複素環基または
その置換体あるいはスチリル基またはその置換体、R6
は水素、アルキル基、フェニル基またはその置換体を表
わすか、あるいはR9及びR6はそれらに結合する炭素
原子と共に環を形成してもよい。)を示す。) 2:炭化水素環またはその置換体あるいは複素環Ar。 〔式中、R11はアルキル基、カルバモイル基、カルボ
キシ基またはそのエステルを表わし、Ar1は炭化水素
環基またはその置換体を表わし、Xは前記と同じである
。〕 19− 20− 〔上記式(8)および(9)中、Rgは水素または置換
もしくは無置換の炭化水素基を表わし、Ar2は炭化水
素環基またはその置換体を表わす。〕前記一般式(1)
 、 (2) 、 (3)または(4)のZの炭化水素
環としてはベンゼン環、ナフタレン環などが例示でき、
また複素環(置換を持っていてもよい)としてはインド
ール環、カルバゾール環、ベンゾラン環、ジベンゾフラ
ン環などが例示できる。2の環における置換基としては
塩素原子、臭素原子などのハロゲン原子が例示できる。 Y2またはR5における炭化水素環基としては、フェニ
ル基、ナフチル基、アントリル基、ピレニル基などが、
また、複素環基としてはピリジル基、チエニル基、フリ
ル基、インドリル基、ベンゾフラニル基、カルバゾリル
基、ジベンゾフラニル基などが例示でき、さらに、R6
およびR6が結合して形成する環としては、フルオレン
環などが例示できる。 Y2またはR5の炭化水素環基または複素環基あるいは
R5およびRGによって形成される環における置換基と
しては、メチル基、エチル基、プロピル基、ブチル基な
どのアルキル基、メトキシ基、エトキシ基、プロポキシ
基、ブ1〜キシ基などのアルコキシ基、塩素原子、臭素
原子などのハロゲン原子、ジメチルアミノ基、ジエチル
アミノ基などのジアルキルアミノ基、トリフルオロメチ
ル基などのハロメチル基、ニトロ基、シアノ基、カルボ
キシル基またはそのエステル、水酸基、−5o3Naな
どのスルホン酸塩基などが挙げられる。 R4のフェニル基の置換体としては塩素原子または臭素
原子などのハロゲン原子が例示できる。 R7またはRgにおける炭化水素基の代表例としては、
メチル基、エチル基、プロピル基、ブチル基などのアル
キル基、フェニル基などのアリール基またはこれらの置
換体が例示できる。 22− R7またはRgの炭化水素基における置換基としては、
メチル基、エチル基、プロピル基、ブチル基などのアル
キル基、メトキシ基、エトキシ基、プロポキシ基、ブト
キシ基などのアルコキシ基、塩素原子、臭素原子などの
ハロゲン原子、水酸基、ニトロ基などが例示できる。 Ar1またはAr2における炭化水素環基としては、フ
ェニル基、ナフチル基などがその代表例であり、また、
これらの基における置換基としては、メチル基、エチル
基、プロピル基、ブチル基などのアルキル基、メトキシ
基、エトキシ基、プロポキシ基、ブトキシ基などのアル
コキシ基、ニトロ基、塩素原子、臭素原子などのハロゲ
ン原子、シアノ基、ジメチルアミノ基、ジエチルアミノ
基などのジアルキルアミノ基などが例示できる。 また、Xの中では特に水酸基が適当である。 上記カップラー残基の中でも好ましいのは上記−数式(
2) 、 (5) 、 (6) 、 (7) 、 (8
)および(9)で示されるものであり、この中でも一般
式におけるXが水酸基のものが好ましい。また、この中
でも一般式(10)(yzおよび2は前記に同じ。) で表わされるカップラー残基が好ましく、さらに好まし
くは一般式 (z、y2およびR2は前記に同じ。)で表わされるカ
ップラー残基である。 さらにまた、上記好ましいカップラー残基の中でも一般
式(12)または(13) ゝ2′ R5 23− 24− (Z、R2,R5およびRGは前記に同じであり、また
R□。とじては上記のY2の置換基が例示できる。)で
表わされる。 必要に応じて用いられるバインダー樹脂としては、ポリ
アミド、ポリウレタン、ポリエステル、エポキシ樹脂、
ポリケトン、ポリカーボネート、シリコーン樹脂、アク
リル樹脂、ポリビニルブチラール、ポリビニルホルマー
ル、ポリビニルケトン、ポリスチレン、ポリ−N−ビニ
ルカルバゾール、ポリアクリルアミドなどが挙げられる
。 電荷発生層17を形成する方法には、真空薄膜作成法と
溶液分散系からの、キャスティング法とが大きく挙げら
れる。 前者の方法には、真空蒸着法、グロー放電分解法、イオ
ンブレーティング法、スパッタリング法、反応性スパッ
タリング法、CVD法等が用いられ。 電荷発生N17として、上述した無機系材料、有機系材
料層が良好に形成できる。 また、後者のキャスティング法によって電荷発生層を設
けるには、上述した無機系もしくは有機系電荷発生物質
を、必要ならばバインダー樹脂とともにテトラヒドロフ
ラン、シクロヘキサノン、ジオキサン、ジクロルエタン
、ブタノン等の溶媒を用いてボールミル、アトライター
、サンドミルなどにより分散し、分散液を適度に希釈し
て塗布することにより、形成できる。塗布は、浸漬塗工
法やスプレーコート、ビードコート法などを用いて行な
うことができる。 以上のようにして設けられる電荷発生層の膜厚は、0.
01〜5μm程度が適当であり、好ましくは0.05〜
2Hである。 電荷輸送層19は、電荷輸送物質およびバインダー樹脂
を適当な溶剤に溶解ないし分散し、これを塗布、乾燥す
ることにより形成できる。また、必要により可塑剤やレ
ベリング剤等を添加することもできる。 電荷輸送物質には、正孔輸送物質と電子輸送物質とがあ
る。 電子輸送物質としては、たとえば、クロルアニル、ブロ
ムアニル、テトラシアノエチレン、テトー茄 −加− ラシアノキノンジメタン、2,4.7− トリニトロ−
9−フルオレノン、2,4,5.7−テトラニトロ−9
−フルオレノン、2,4,5.7−チトラニトロキサン
トン、2,4゜8−トリニドロチオキサントン、2,6
.8−トリニトロ−4H−インデノ(1,2−b)チオ
フェン−4−オン、1,3.7トリニトロジベンゾチオ
フエノンー5,5−ジオキサイドなどの電子受容性物質
が挙げられる。 正孔輸送物質としては、以下の一般式で表わされる電子
供与性物質等が挙げられ、良好に用いられる。 (但し、R□は低級アルキル基、低級アルコキシ基又は
ハロゲン原子を表わし、nはO〜4の整数を表わし、R
2,R3は同一でも異なっていてもよく、水素原子、低
級アルキル基、低級アルコキシ基又はハロゲン原子を表
わす。) (式中、R工tR21R3およびR4は水素原子、置換
もしくは無置換のアリール基を表わし、Ar、は置換又
は無置換のアリール基を表わし、Ar1とR1は共用で
環を形成してもよく、またnはO又は1の整数である。 ) (式中、R1は炭素数1〜11のアルキル基、置換又は
非置換のフェニル基あるいは複素環残基を表わし、R2
,R,はそれぞれ同一でも異なっていてもよく、水素原
子、低級アルキル基、C□〜04のヒドロキシアルキル
基、01〜C4のクロルアルキル基、あるいは置換又は
非置換のアラルキル基を表わし、またR2とR3は共同
で窒素を含む複素27− 28− 環を形成してもよく、R4,R,はそれぞれ同一でも異
なっていてもよく、水素原子、低級アルキル基、低級ア
ルコキシ基又はハロゲン原子を表わす。) ノ基を表わし、R2は水素原子、低級アルキル基、低級
アルコキシ基、ハロゲン原子あるいはニトロ基を表わし
、nは0又は1を表わす。)(式中、R1は水素原子又
はハロゲン原子を表わし、R2は置換または非置換の芳
香族残基あるいは複素環残基(但し前記置換基はハロゲ
ン、シアノ、ジ低級アルキルアミノ、置換又は非置換の
ジアラルキルアミノ基、低級アルキル基、低級アルコキ
シ基及びニトロ基よりなる群から選ばれる。)を表わす
。) (式中、Rはカルバゾリル基、ピリジル基、チエニル基
、インドリル基又はフリル基、あるいはそれぞれ置換ま
たは非置換のフェニル基、スチリル基、ナフチル基又は
アントリル基(但し前記置換基はジ低級アルキルアミノ
基、低級アルキル基、低級アルコキシ基、ハロゲン原子
、アラルキルアミノ基又は、アミノ基からなる群から選
ばれる)を表わす。) 2 (式中、R1,R3は水素原子、低級アルキル基、低級
アルコキシ基、あるいはジ低級アルキルアミ−29 30− く、水素原子、低級アルキル基、低級アルコキシ基、フ
ェニル基、フェノキシ基、またはハロゲン原子を表わす
。) (式中、R1は水素原子、ハロゲン原子、シアノ基、低
級アルキル基を表わし、 Arは(ただし、R2,R,
、R,、は水素原子、置換又は無置換の低級アルキル基
あるいは置換又は無置換のベンジル基を表わし、R4,
R,は水素原子、ハロゲン原子、低級アルキル基あるい
は低級アルコキシ基又はジ低級アルキルアミノ基を表わ
す。)を表わす。) (式中、R□1R21R31R41RGは水素原子、ハ
ロゲン原子、低級アルキル基、低級アルコキシ基、置換
又は無置換のジ低級アルキルアミノ基又はジベンジルア
ミノ基を表わし、R5は低級アルキル基又はベンジル基
を表わす。) (式中、Arはナフタレン環、アントラセン環、スチリ
ル基及びそれらの置換体、あるいはピリジン環、フラン
環、チオフェン環を表わし、Rは低級アルキル基又はベ
ンジル基を表わす。)口1 (式中、R□は低級アルキル基、2−ヒドロキシエチル
基又は2−クロロエチル基を表わし、R2は低級アルキ
ル基、ベンジル基又はフェニル基を表わし、R3は水素
原子、ハロゲン原子、低級アルキル基、低級アルコキシ
基、ジ低級アルキルアミノ基又はニトロ基を表わす、) 31− 32− 1 (式中、R工は水素原子、低級アルキル基、クロルエチ
ル基又はヒドロキシエチル基を表わし、R2は水素原子
又はハロゲン原子を表わし、R3は低級アルキル基、ジ
低級アルキルアミノ基、ジアリールアミノ基、置換又は
無置換のスチリル基、置換又は無置換の芳香環残基(芳
香環又はベンゼン環、ナフタレン環、アントラセン環等
)、置換又は無置換の複素環残基(複素環はピリジン環
、キノキサリン環、カルバゾール環等)を表わす。) 換又は無置換の複素環残基(複素環はピリジン環、キノ
キサリン環、カルバゾール環等)を表わす。) (式中、R1,R2は同一でも異なっていてもよく、水
素原子、低級アルキル基、ヒドロキシ低級アルキル基、
クロル低級アルキル基、アルキルの炭素数1〜2のアシ
ル基、アルキルの炭素数5〜6のシクロアルキル基、あ
るいは置換又は非置換のアラルキル基を表わす。) (式中、R1は低級アルキル基を表わし、R2は低級ア
ルキル基、ジ低級アルキルアミノ基、ジアリールアミノ
基、置換又は無置換のスチリル基、置換又は無置換の芳
香環残基(芳香環はベンゼン環、ナフタレン環、アント
ラセン環等)、置(式中、R1,R3及びR4は水素原
子、アミノ基、アルコキシ基、チオアルコキシ基、アリ
ールオキシ基、メチレンジオキシ基、置換もしくは無置
換のアルキル基、ハロゲン原子又は置換もしくは無置換
のアリール基を、R2は水素原子、アル33− −η− コキシ基、置換もしくは無置換のアルキル基又はハロゲ
ンを表わす。但し、R1,R2,R3およびR4がすべ
て水素原子である場合は除く。またに、Q。 m及びnは1,2.3又は4の整数であり、各々が2,
3又は4の整数の時は前記R1,R2,R3およびR4
は同一でも異なっていてもよい。 A−Ct(□CH□−Ar’−CH2C112−A(式
中、Ar”は置換、もしくは無置換の芳香族炭化水素基
または複素環基を表わし、Aは置換もしくは無置換のN
−置換力ルバゾリル基または1 の芳香族炭化水素基または複素環基であり、R1及びR
2は置換もしくは無置換のアルキル基、または置換もし
くは無置換のアリール基である。)を表わす。) これらの電荷輸送物質は、単独又は2種以上混合して用
いられる。 バインダー樹脂としてはポリスチレン、スチレン−アク
リロニトリル共重合体、スチレン−ブタジェン共重合体
、スチレン−無水マレイン酸共重合体、ポリエステル、
ポリ塩化ビニル、塩化ビニル酢酸ビニル共重合体、ポリ
酢酸ビニル、ポリ塩化ビニリデン、ボリアリレート樹脂
、フェノキシ樹脂、ポリカーボネート、酢酸セルロース
樹脂、エチルセルロース樹脂、ポリビニルブチラール、
ポリビニルホルマール、ポリビニルI・ルエン、ポリ−
N−ビニルカルバゾール、アクリル樹脂、シリコーン樹
脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェ
ノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化
性樹脂が挙げられる。 溶剤としては、テl〜ラヒトロフラン、ジオキサン、ト
ルエン、モノクロルベンゼン、ジクロルエタン、塩化メ
チレンなどが用いられる。 電荷輸送層19の厚さは5〜100μm程度が適当であ
る。また、本発明において電荷輸送J11.7中に可塑
剤やレベリング剤を添加してもよい。可塑剤としては、
ジブチルフタレート、ジオクチルフタレートなど一般の
樹脂の可塑剤として使用されている−35 36 ものがそのまま使用でき、その使用量は、バインダー樹
脂に対してO〜30重量2程度が適当である。 レベリング剤としては、ジメチルシリコーンオイル、メ
チルフェニルシリコーンオイルなどのシリコーンオイル
類や、側鎖にパーフルオロアルキル基を有するポリマー
あるいはオリゴマーが使用され、その使用量はバインダ
ー樹脂に対して、0〜1重量2程度が適当である。 次に、感光層15が単層構成の場合について述尺る。 無機感光層は、上述したアモルファス・セレン、セレン
合金、アモルファス・シリコン感光層等をこれも上述し
た真空蒸着法、グロー放電分解法、イオンブレーティン
グ法、スパッタリング法、反応性スパッタリング法、C
VD法等の真空薄膜形成法で設けることができる。また
、これらの無機物質層を二層以上積層した感光体も本発
明の簡略に属するものである。 キャスティング法で、単層感光層を設ける場合、多くは
電荷発生物質と電荷輸送物質よりなる機能分離型のもの
が挙げられる。即ち、電荷発生物質ならびに電荷輸送物
質には前出の材料を用いることができる。 単層感光層は、電荷発生物質および電荷輸送物質および
バインダー樹脂を適当な溶剤に溶解ないし分散し、これ
を塗布、乾燥することによって形成できる。また、必要
により、可塑剤やレベリング剤等を添加することもでき
る。 バインダー樹脂としては、先に電荷輸送119で挙げた
バインダー樹脂をそのまま用いるほかに、電荷発生Ji
17で挙げたバインダー樹脂を混合して用いてもよい。 単層感光層は、電荷発生物質、電荷輸送物質およびバイ
ンダー樹脂をテトラ上1〜ロフラン、ジオキサン、ジク
ロルエタン、シクロヘキサノン等の溶媒を用いて、分散
機等で分散した塗工液を、浸漬塗工法やスプレーコート
、ビードコートなどで塗工して形成できる。 ピリリウム系染料、ビスフェノールA系ポリカーボネー
トから形成される共晶錯体に電荷輸送物7− 質を添加した感光体も、適当な塗工液から同様な塗工法
で形成できる。 単層感光層の膜厚は、5〜100鴻程度が適当である。 なお、本発明において感光層の上にさらに保護M21を
設けることも可能である。 保護層21は感光体の表面保護の目的で設けられ、これ
に使用される材料としてはABS樹脂、AC5樹脂、オ
レフィンルビニルモノマー共重合体、塩素化ポリエーテ
ル、アリル樹脂、フェノール樹脂、ポリアセタール、ポ
リアミド、ポリアミドイミド、ポリアクリレート、ポリ
アリルスルホン、ポリブチレン、ポリブチレンテレフタ
レート、ポリカーボネート、ポリエーテルスルホン、ポ
リエチレン、ポリエチレンテレフタレート、ポリイミド
、アクリル樹脂、ポリメチルペンテン、ポリプロピレン
、ポリフェニレンオキシド、ポリスルホン、ポリスチレ
ン、AS樹脂、ブタジェン−スチレン共重合体、ポリウ
レタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキ
シ樹脂等の樹脂が挙げられる。保護層にはその他、耐摩
耗性の向上する目的でポリテトラフルオロエチレンのよ
うな弗素樹脂、シリコーン樹脂、及びこれら樹脂に酸化
チタン、酸化錫、チタン酸カリウム等の無機材料を分散
したもの等を添加することができる。保護層の形成法と
しては通常の塗布法が採用される。なお保護層の厚さは
0.5〜10【程度が適当である。 本発明においては、感光層と保護層の間に別の中間層(
図示せず)を設けることも可能である。 また、本発明においては、耐環境性の改善のため、とり
わけ、感度低下、残留電位の上昇を防止する目的で、酸
化防止剤を添加することができる。 酸化防止剤は、有機物を含む層ならばいずれに添加して
もよいが、電荷輸送物質を含む層に添加すると良好な結
果が得られる。 本発明に用いることができる酸化防止剤として下記のも
のが挙げられる。 モノフェノール系 2.6−ジーt−ブチル−P−クレゾール、ブチル化ヒ
ドロキシアニゾール、2,6−ジーt−ブチル−4−エ
チルフ39 40− エノール、スチアリルーβ−(3,5−ジ−t−ブチル
−4−ヒドロキシフェニル)プロピオネートなど。 ビスフェノール系化合物 2.2′−メチレン−ビス−(4−メチル−6−t−ブ
チルフェノール)、2,2′−メチレン−ビス−(4−
エチル−6−t−ブチルフェノール)、4,4′−チオ
ビス−(3−メチル−6t−ブチルフェノール)、4,
4′−ブチリデンビス−(3メチル−6−t−ブチルフ
ェノール)など。 高分子型フェノール系化合物 1.1.3−トリス−(2−メチル−4−ヒドロキシ−
5−t−ブチルフェニル)ブタン、1,3.5−トリメ
チル−2,4,6トリス(3,5−ジ−t−ブチル−4
−ヒドロキシベンジル)ベンゼン、テトラキス−[メチ
レン−3−(3’ 、 5’−ジ−t−ブチル−4′−
ヒドロキシフェニル)プロピオネ−1−]メタン、ビス
[3,3’−ビス(4′−ヒドロキシ−3′−t−ブチ
ルフェニル)ブチリックアシッドコグリコールエステル
、トコフェロール類など。 パラフェニレンジアミン類 N−フェニル−N′−イソプロピル−P−フェニレンジ
アミン、N、N’−ジー5ec−ブチル−p−フェニレ
ンジアミン、N−フェニル−N−see−ブチル−p−
フェニレンジアミン、N、N’−ジイソプロピル−p−
フェニレンジアミン、N、N’−ジメチル−N、N’−
ジ−t−ブチル−p−フェニレンジアミンなど。 ハイドロキノン類 2.5−ジ−t−オクチルハイドロキノン、2,6−シ
ドデシルハイドロキノン、2−ドデシルハイドロキノン
、2−ドデシル−5−クロロハイドロキノン、2−を−
オクチル−5−メチルハイドロキノン、2−(2−オク
タデセニル)−5−メチルハイドロキノンなど。 有機硫黄化合物類 ジラウリル−3,3′−チオジプロピオネート、ジステ
アリル−3,3′−チオジプロピオネート、ジテトラデ
シルー3,3′−チオジプロピオネートなど。 有機燐化合物類 トリフェニルホスフィン、トリ(ノニルフェニル)ホス
フィン、トリ(ジノニルフェニル)ホスフィン、トリク
レジルホスフィン、トリ(2,4−ジブチルフェノキシ
)ホスフィンなど。 これらの化合物はゴム、プラスチック、油脂類41− 42− 等の酸化防止剤として知られており、市販品を容易に入
手できる。 本発明における酸化防止剤の添加量は電荷輸送物質1.
00重量部に対して0.1〜100重景部、好ましくは
、2〜30重量部である。 (以下余白) 〔実施例〕 次に、実施例を示すが、実施例は本発明の詳細な説明す
るためのものであり、実施例によって本発明が制約を受
けるものではない。実施例中の部はすべて重量部である
。 実施例〕 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上にSnO□粉末を出発材料とし、電子ビーム
蒸着法によって、厚さ0.5μmの酸化スズよりなる中
間層を設けた。この上に下記組成の電荷発生層塗工液、
電荷輸送層塗工液を順次、塗布・乾燥して各々0.2μ
M厚の電荷発生層および22μm厚の電荷輸送層を形成
し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部43− 44− シクロへキサノン           250部2−
ブタノン              100部〔電荷
輸送層塗工液〕 下記構造式の電荷輸送物質       25部発生層
および17声の電荷輸送層を形成し、本発明の電子写真
感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部テトラヒ
ドロフラン          200部実施例2 厚さ0、2mmのアルミニウム板上に、ターゲットにS
nO2を用い、アルゴンと酸素の分圧比が■の雰囲気下
で、スパッタリング法によって、厚さ0.3μmの酸化
スズよりなる中間層を形成した。この」二に、下記組成
の電荷発生層塗工液および電荷輸送層塗工液を、順次塗
布・乾燥して各々0.1μmの電荷テトラヒドロフラン 〔電荷輸送N塗工液〕 下記構造式の電荷輸送物質 300部 20部 45− 46 (GE社製レキサン−141)           
25部塩化メチレン            200部
実施例3 厚さ70−の電鋳ニッケル上に、ターゲットにSnを用
い、真空槽内を酸素分圧が1.0ミリ1〜−ルの雰囲気
となるようにして、反応性スパッタリング法で、膜厚8
00人の酸化スズよりなる中間層を形威した。この上に
、下記組成の電荷発生層塗工液および電荷輸送層塗工液
を順次、塗布・乾燥して各々0.2pの電荷発生層およ
び20IAの電荷輸送層を形威し、本発明の電子写真感
光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部シクロヘ
キサノン 2−ブタノン 〔電荷輸送層塗工液〕 200部 100部 下記構造式の電荷輸送物質 20部 テトラヒドロフラン          200部実施
例4 厚さ0.2mのニクロム板上に、ターゲットにSnOを
用い、真空槽内にアルゴンガスを導入して、スパッタリ
ング法によって膜厚0.4μmの酸化スズよりなる中間
層を作成した。次いで、この上に下記組成の電荷発生層
塗工液および電荷輸送層塗工液を順次、塗布・乾燥して
各々0.3−の電荷発生層および18−の電荷輸送層を
形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部47− 48− シクロへキサノン           150部テト
ラヒドロフラン          150部〔電荷輸
送層塗工液〕 下記構造式の電荷輸送物質       22部中間層
を形成した。この上に、下記組成の電荷輸送層塗工液、
電荷発生層塗工液および保護層塗工液を順次、塗布乾燥
して、各々19μmの電荷輸送層、0.31JH1の電
荷発生層および2μmの保護層を形成し、本発明の電子
写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部テトラ
ヒドロフラン          200部実施例5 厚さ0.5閣のアルミニウム板上に、ターゲットとして
表面被覆率が8%の銅セグメントを有するSnターゲッ
トを用い、真空槽内の酸素分圧が1.4ミリトールの雰
囲気となるようにして、反応性スパッタリング法で、膜
厚1800Aの酸化スズよりなるテトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 220部 5部 49− 50− シクロへキサノン テトラヒドロフラン 〔保護層塗工液〕 100部 250部 感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 25部 導電性酸化チタン           90部I・ル
エン               220部n−ブタ
ノール              60部実施例6 厚さ0.2+nmのニッケル板上に、ターゲラ1−とし
て、5b203を3重量パーセント含んだSnO□を用
いて、真空槽内にアルゴンガスを導入してスパッタリン
グ法により、膜厚1000人の酸化スズよりなる中間層
を形成した。この上に、下記組成の電荷輸送層塗工液、
電荷発生層塗工液、中間層塗工液および保護層塗工液を
順次、塗布・tA燥して各々20μmの電荷輸送層、0
.2μmの電荷発生層、0.2μmの中間層および5μ
mの保護層を形成し、本発明の電子写真塩化メチレン ■、2−ジクロロエタン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 150部 60部 4部 51− 52− トルイレン−2,4−ジイソシアネ−1−0,1部テ1
へラヒドロフラン          300部4−メ
チル−2−ペンタノン         50部〔中間
層塗工液〕 メタノール n−ブタノール 〔保護層塗工液〕 70部 40部 電荷発生層塗工液および保護N塗工液を順次、塗布・乾
燥して各々22μmの電荷輸送層、0.3μmの電荷発
生層および3部mの保護層を形成し、本発明の電子写真
感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部酸化錫
                80部トルエン  
              1.70部2−ブタノン
              100部実施例7 厚さ0.3nuのアルミニウム板上に、ターゲットにS
nを用い、真空槽内に酸素分圧が1.6ミリトールの雰
囲気となるようにし、反応性スパッタリング法で膜厚1
.50OAの酸化スズよりなる中間層を作成した。この
上に、下記組成の電荷輸送層塗工液、塩化メチレン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 230部 5部 1〜ルイレン−2,4−ジイソシアネートシクロヘキサ
ノン 0.2部 150部 53− 54− 2−ブタノン 〔保護層塗工液〕 200部 塩化メチレン 下記構造式で示される化合物 650部 20部 酸化チタン              50部酸化ス
ズ(■)              40部トルエン
                250部2−ブタノ
ン               70部実施例8 ハステロイを導電層として有するポリエチレンテレフタ
レートフィルム上に、SnO□粉末を出発材料とし、抵
抗加熱方式の真空蒸着法で厚さ0.2μmの酸化スズよ
りなる中間層を形成した。この上に下記組成の塗工液を
塗布・乾燥して、乾燥膜厚15μmの共晶錯体感光層を
設け、本発明の電子写真感光体を作成した。 (常人化成開裂パンライトL−1225JUち 比較例1,7 実施例1,7において、各々、中間層を設けなかった他
は、実施例1,7と同様にして、比較例1,7の感光体
を作成した。 比較例2,3.5 実施例Z、3.5において、中間層を下記組成の中間層
塗工液に代え、厚さ0.5μの中間層を設けた他は、実
施例2,3.5と同様にして比較例2,3.5の感光体
を作成した。 メタノール n−ブタノール 60部 40部 比較例4 55− 56− 実施例4において、中間層を下記組成の中間層塗工液に
代え、厚さ0.5p+nの中間層を設けた他は、実施例
4と同様にして比較例4の感光体を作成した。 SnO粉末                  10
部トルイレン−2,4−ジイソシアネート   0.1
部2−ブタノン               100
部比較例6 実施例6において、中間層を下記組成の中間層塗工液に
代え、厚さ1.07mの中間層を設けた他は。 実施例6と同様にして比較例6の感光体を作成した。 5b2o、を3%含有したSnO□粉末       
5部水                      
   8o部メタノール              
80部比較例8 実施例8において、中間層を下記組成の中間層塗工液に
代え、厚さ2.0μmの中間層を設けた他は、実施例8
と同様にして比較例8の感光体を作成した。 SnO□粉末 20部 水                        
 150部メタノール              2
00部以上の各感光体の特性を、静電複写紙試験装置(
川口電機製作新製5P−428型)を用いて次のように
評価した。 まず、−5,2KV(もしくは+5.6KV)ノ放電々
圧ニテ。 コロナ帯電を20秒間行ない、次いで10秒間暗減衰さ
せ、その後10Quxのタングステン光を照射した。 この時の帯電開始後2秒と20秒の表面電位v2(V)
、V2o(V)および暗減衰10秒後の表面電位v3n
(v)を測定し、また、V311を半分の電位に光減衰
させるのに必要な露光量Ell/□(Qux−see)
を測定した。なお、暗減衰率(D、D)は、次式で定義
される。 D 、 D=V3− / Vz a また上記露光20秒後の表面電位を残留電位VRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行57− 58− なって疲労させた後、再び前記と同様の測定を行なった
。評価結果を表−1に示す。 表−1 実施例9 アルミニウムを蒸着したポリエチレンテレフタレー1〜
・フィルム上にTiOを蒸発材料に用い、電子ビーム加
熱方式の真空蒸着法で厚さ0、6 prnの酸化チタン
よりなる中間層を設けた。この上に下記組成の電荷発生
層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各
々0.2卯厚の電荷発生層および22μm厚の電荷輸送
層を形成し、本発明の電子写真感光体を作成した。 C電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 2−ブタノン 200部 140部 59− 60− 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 25部 テトラヒドロフラン          230部実施
例10 厚さ0、2mmのアルミニウム板上に、ターゲットにT
iOを用い、アルゴンと酸素の分圧比が1になる雰囲気
下で、スパッタリング法により厚さ0.3μmの酸化チ
タンよりなる中間層を設けた。この上に、下記組成の電
荷発生層塗工液および電荷輸送層塗工液を、順次塗布・
乾燥して各々0.1沖の電荷発生層および17戸の電荷
輸送層を形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部テトラヒ
ドロフラン          300部〔電荷輸送層
塗工液〕 下記構造式の電荷輸送物質       30部ポリカ
ーボネート (GE社製レキサン−141)           
32部塩化メチレン             300
部実施例工1 厚さ70μmの電鋳ニッケル上に、ターゲットにT」を
用い、真空槽内が酸素/アルゴン=15/85の分圧比
となる雰囲気下で反応性スパッタリング法しこよ61 62− り膜厚0.2μの酸化チタンよりなる中間層を設けた。 この上に、下記組成の電荷発生層塗工液および電荷輸送
層塗工液を順次、塗布・乾燥して各々0.2叩の電荷発
生層および20戸の電荷輸送層を形成し、本発明の電子
写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部シクロヘ
キサノン           150部2−ブタノン
              100部〔電荷輸送層塗
工液〕 下記構造式の電荷輸送物質       25部テトラ
ヒドロフラン          300部実施例12 厚さ0.2mのニクロム板上に、Tiを蒸発材料に用い
て、真空槽内に酸素ガスを導入し、反応性イオンブレー
ティング法によって膜厚0.25−の酸化チタンよりな
る中間層を設けた。この上に下記組成の電荷発生層塗工
液および電荷輸送層塗工液を順次、塗布・乾燥して各々
0.3−の電荷発生層および18−の電荷輸送層を形威
し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部(UC,
C,m  XYHL) 63− − シクロヘキサノン           150部テト
ラヒドロフラン          130部〔電荷輸
送層塗工液〕 下記構造式の電荷輸送物質       25部〔電荷
輸送層塗工液〕 下記構造式の電荷輸送物質 25部 テトラヒドロフラン          220部実施
例13 厚さ0.511N11のアルミニウム板上に、ターゲッ
トTi2O3を用い、真空槽内にアルゴンガスを導入し
、スパッタリング法によって膜厚0.3戸の酸化チタン
よりなる中間層を形威した。この上に、下記組成の電荷
輸送層塗工液、電荷発生層塗工液および保護層塗工液を
順次、塗布乾燥して、各々19pの電荷輸送層、0.3
μの電荷発生層および2−の保護層を形威し、本発明の
電子写真感光体を作成した。 テトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 250部 5部 シクロヘキサノン テトラヒドロフラン 200部 80部 65− 66− 〔保護層塗工液〕 導電性酸化チタン           90部1−ル
エン               220部n−ブタ
ノール              60部実施例14 厚さ0.2部wnのアルミニウム板」二に、Tiを蒸発
材料に用い、真空槽内に酸素ガスを導入し、反応性蒸着
法により膜厚0.5戸の酸素チタンからなる中間層を設
けた。この」二に、下記組成の電荷輸送層塗工液、電荷
発生層塗工液、中間層塗工液および保護層塗工液を順次
、塗布・乾燥して各々20pmの電荷輸送層、0.2μ
mの電荷発生層、0.2部mの中間層および5部mの保
護層を形成し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部塩化メ
チレン 1.2−ジクロロエタン 〔電荷発生逆層塗工液〕 下記構造式の電荷発生物質 トルイレン−2,4−ジイソシアネートテトラヒドロフ
ラン 4−メチル−2−ペンタノン 〔中間層塗工液〕 アルコール可溶性ポリアミド 180部 80部 0.2部 100部 1.50部 −6 (東し■製アミランCM−8000) メタノール              70部n−ブ
タノール              40部〔保護層
塗工液〕 下記構造式の電荷輸送物質 25部 酸化錫                 80部トル
エン                1.70部2−
ブタノン              100部実施例
15 厚さ0.3mrのニッケル板上にターゲットにTiOを
用い、アルゴンと酸素の分圧比が1となる雰囲気下でス
パッタリング法によって膜厚0.77anの酸化チタン
よりなる中間層を形成した。この上に、下記組成の電荷
輸送層塗工液、電荷発生層塗工液および保護層塗工液を
順次、塗布・乾燥して各々22μmの電荷輸送層、0.
3μmの電荷発生層および3μmの保護層を形成し、本
発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 塩化メチレン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 1〜ルイレン−2,4〜ジイソシアネートシグロヘキサ
ノン 2−ブタノン 〔保護層塗工液〕 250部 0、1部 180部 85部 69− 70− 酸化スズ(II)              40部
トルエン                250部2
−ブタノン              70部比較例
9,15 実施例9,15において、各々、中間層を設けなかった
他は、実施例9,15と同様にして、比較例9,15の
感光体を作成した。 メタノール              60部n−ブ
タノール              40部比較例1
0 実施例10において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5μmの中間層を設けた他は、実施例
10と同様にして比較例10の感光体を作成した。 TiO□粉末               10部ト
ルイレン−2,4−ジイソシアネート   0.1部2
−ブタノン               100部比
較例工1 実施例1工において、酸化チタンよりなる中間層の代り
に下記組成の中間層塗工液を用い、厚さ1.0/Imの
中間層を設けた他は、実施例11と同様にして比較例1
1の感光体を作成した。 Ti2O3粉末               5部水
                         
80部メタノール              80部
比較例12.13 実施例12.13において、各々、中間層を設けなかっ
た他は、実施例12.13と同様にして、比較例12.
13の感光体を作成した。 比較例14 実施例14において、酸化チタンよりなる中間層の代り
に下記組成の中間層塗工液を用い、厚さ2.0μmの中
間層を設けた他は、実施例14と同様にして比較例14
の感光体を作成した。 71− 72− トルエン                20部以上
の各感光体の特性を、静電複写紙試験装置(川口電機製
作新製5P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV) (7)
放電々圧ニテ、コロナ帯電を20秒間行ない、次いで1
0秒間暗減衰させ、その後1(lQuxのタングステン
光を照射した。 この時の帯電開始後1秒と20秒の表面電位Vi (v
)、V2.(V)および暗減衰10秒後の表面電位V3
0(V)を測定し、また、v3oを半分の電位に光減衰
させるのに必要な露光量E1/2 CQux−see)
を測定した。なお、暗減衰率(D、D)は、次式で定義
される。 D、D=V3. /V、。 また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−2に示す。 表−2 73− 74− 実施例17 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上にターゲットにIn2O3を用い、真空槽内
にアルゴンガスを導入してスパッタリング法によって、
厚さ0.3IJmの酸化インジウムよりなる中間層を設
けた。この上に下記組成の電荷発生層塗工液、電荷輸送
層塗工液を順次、塗布・乾燥して各々0.2μm厚の電
荷発生層および22μm厚の電荷輸送層を形成し、本発
明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 2−ブタノン 300部 100部 〔電荷輸送M冷工液〕 下記構造式の電荷輸送物質 25部 テトラヒドロフラン          200部実施
例18 厚さ0.2III111のアルミニウム板1−に、ター
ゲラ1〜にSnO2を5重量パーセン1〜含んだIn2
O,を用いて、真空槽内にアルゴンガスを導入し、スパ
ッタリング法により、膜厚0.2paの酸化インジウム
よりなる中間層を形成した。この上に、下記組成の電荷
発生層塗工液および電荷輸送層塗工液を順次、塗布・乾
燥して各々O,]μ和の電荷発生層および17μmの電
荷輸送層を形成し、本発明の電子写真感光体を作成した
。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部5 6− ポリエステル 2部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部で膜厚
0.15μmの酸化インジウムよりなる中間層を設けた
。この上に、下記組成の電荷発生層塗工液および電荷輸
送層塗工液を順次、塗布・乾燥して各々0.2部7mの
電荷発生層および20μmの電荷輸送層を形成し、本発
明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部塩化メチ
レン             200部実施例19 厚さ70声の電鋳ニッケル上に、ターゲット上にInを
用い、真空槽内に酸素分圧が1.5ミリトールの雰囲気
となるようにし、反応スパッタリング法シクロヘキサノ
ン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 100部 100部 30部 一77= 78− 実施例20 厚さ0.2+nmのニクロム板上に、In2o3とIn
の混合物を出発材料とし、真空槽内の酸素分圧が0.1
ミリトールとなるようにし、電子ビーム蒸着法(反応性
蒸着法)により厚さ0.8μmの酸化インジウムよりな
る中間層を設けた。この上に、下記組成の電荷発生層塗
工液および電荷輸送層塗工液を順次、塗布・乾燥して各
々0.3μmの電荷発生層および18部mの電荷輸送層
を形威し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部シクロヘ
キサノン テトラヒドロフラン 150部 200部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 27部 テトラヒドロフラン          350部実施
例21 ニッケルを導電層として有するポリエチレンテレフタレ
ートフィルム上に、ターゲットにIn2O3を用い、ア
ルゴンと酸素の分圧比が1となる雰囲気下で、スパッタ
リング法によって、膜厚0.1μの酸化インジウムより
なる中間層を形成した。この上に、下記組成の塗工液を
塗布・乾燥して、乾燥膜厚15−の共晶錯体感光層を設
け、本発明の電子写真感光体を作成した。 塩化メチレン            650部下記構
造式で示される化合物      20部下記構造式の
電荷輸送物質 30部 しh3 実施例22 厚さ0.2+nmのアルミニウム板上に、ターゲットに
Inを用い、真空槽内に酸素分圧が1.0ミリ−トール
の雰囲気下となるようにして反応性スパッタリング法で
膜厚0.1μmの酸化インジウムよりなる中間層を設け
た。この上に、下記組成の電荷輸送層塗工液、電荷発生
層塗工液、及び保護層塗工液を順次、塗布・乾燥して各
々19−の電荷輸送層、0.3戸の電荷発生層、および
2部mの保護層を形威し、本発明の電子写真感光体を作
成した。 〔電荷輸送層塗工液〕 テトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 300部 3部 シクロへキサノン テトラヒドロフラン 〔保護層塗工液〕 200部 80部 81− 82− 導電性酸化チタン           90部1ヘル
エン               220部n−ブタ
ノール              60部実施例23 厚さ0.2wnのニッケル板上に、In2O3粉末を出
発材料として、抵抗加熱方法の真空蒸着法で厚さ0.5
μmの酸化インジウムよりなる中間層を形成した。この
上に、下記組成の電荷輸送層塗工液、電荷発生層塗工液
および保護層塗工液を順次、塗布・乾燥して、各々20
μmの電荷輸送層、0.2μmの電荷発生層、0.2μ
mの中間層および5μmの保護層を形威し、本発明の電
子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部塩化メ
チレン 1.2−ジクロロエタン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 トルイレン−2,4−ジイソシアキー1〜テトラヒドロ
フラン 4−メチル−2−ペンタノン 〔中間層塗工液〕 ioo部 100部 0.1部 100部 200部 (三菱凡斯化字■製ポリカーボイ、−hZ)メタノール n−ブタノール 70部 40部 3− 訓− 〔保護層塗工液〕 酸化錫                80部トルエ
ン               170部2−ブタノ
ール             100部実施例24 厚さ0.3mmのアルミニウム板」―にターゲラ1−と
して表面被覆率が8%のアルミニウムセグメントを有す
るInターゲットを用い、真空槽内の酸素分圧が1.0
ミリトールの雰囲気となるようにして反応性スパッタリ
ング法で膜厚0.15μmの酸化インジウムよりなる中
間層を設けた。この上に、下記組成の電荷輸送層塗工液
、電荷発生層塗工液および保護N塗工液を順次、塗布・
乾燥して各々22μMの電荷輸送層、0.3μmの電荷
発生層および3μ和の保護層を形成し、本発明の電子写
真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式で示される化合物      30部塩化メ
チレン 〔電荷発生層塗工液〕 下記構造式で示される化合物 1−ルイレンー2,4−ジイソシアネートシクロヘキサ
ノン 2−ブタノン 〔保護M塗工液〕 300部 0.2部 200部 150部 5− 86− 酸化スズ(n)              40部ト
ルエン                250部2−
ブタノン              70部比較例1
7.22 実施例17.22において、各々、中間層を設けなかっ
た他は、実施例17.22と同様にして、比較例17.
22の感光体を作成した。 比較例18 実施例18において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5nの中間層を設けた他は、実施例1
8と同様にして比較例18の感光体を作成した。 SnO2を5wt%含むIn2O3粉末       
 10部トルイレン−2,4−ジイソシアネート   
0.1部2−ブタノン               
100部比較例19,23.24 実施例19,23.24において、中間層を下記組成の
中間層塗工液に代え、厚さ0.3−の中間層を設けた他
は、実施例19,23.24と同様にして比較例19゜
23.24の感光体を作成した。 メタノール              60部n−ブ
タノール              40部比較例2
0 実施例20において、酸化インジウムよりなる中間層の
代りに下記組成の中間層塗工液を用い、厚さ1.0μm
の中間層を設けた他は、実施例20と同様にして比較例
20の感光体を作成した。 In2O3粉末               5部水
                         
8o部メタノール              80部
比較例2工 実施例21において、酸化インジウムよりなる中間層の
代りに下記組成の中間層塗工液を用い、厚さ2.0戸の
中間層を設けた他は、実施例21と同様にして比較例2
1の感光体を作成した。 87− 88 In2O3粉末 20部 トルエン                20部以上
の各感光体の特性を、静電複写紙試験装置(川口電機製
作新製5P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV)ノ放電々
圧ニテ、コロナ帯電を20秒間行ない、次いで10秒間
暗減衰させ、その後10fluxのタングステン光を照
射した。 この時の帯電開始後1秒と20秒の表面電位VX (V
)、V2o(V)および暗減衰10秒後の表面電位V3
.(V)を測定し、また、Vanを半分の電位に光減衰
させるのに必要な露光量E□/2 (Qux−sec)
を測定した。なお、暗減衰率(D、D)は、次式で定義
される。 D、D=V3°ハ、。 また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−3に示す。 表−3 9 90− 実施例25 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上に、蒸着材料にFe2O3を用い抵抗加熱式
の真空蒸着法により、厚さ1.0pの酸化鉄よりなる中
間層を設けた。この上に、下記組成の電荷発生層塗工液
、電荷輸送層塗工液を順次、塗布・乾燥して各々0.2
部1m厚の電荷発生層および22部m厚の電荷輸送層を
形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 2−ブタノン 300部 50部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 30部 テトラヒドロフラン          260部実施
例26 厚さ0、2mmのアルミニウム板上に、蒸発材料にFe
を用い、真空槽内に0□ガスを導入し、反応性蒸着法に
より厚さ0.7−の酸化鉄よりなる中間層を設けた。こ
の上に、下記組成の電荷発生層塗工液および電荷輸送層
塗工液を順次、塗布・乾燥して各々0.1μmの電荷発
生Nおよび17μ和の電荷輸送層を形成し、本発明の電
子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部91− 2 ポリエステル (東洋紡績■製バイロン300) テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 1部 300部 25部 塩化メチレン             300部実施
例27 厚さ70−の電鋳ニッケル上に、ターゲットしこFe2
O3を用い、アルゴンと酸素ガスの分圧比カス1となる
雰囲気下でスパッタリング法しこより厚さ0.4声の酸
化鉄よりなる中間層を設けた。この上しこ、下記組成の
電荷発生層塗工液および電荷輸送M塗工液を順次、塗布
・乾燥して各々0.2μmの電荷発生層および20部m
の電荷輸送層を形成し、本発明の電子写真感光体を作成
した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部シクロヘ
キサノン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 100部 160部 25部 テトラヒドロフラン          280部実施
例28 厚さ0.2nnのニクロム板上に、蒸発材料にFeを−
鯛一 用い、真空槽内に酸素ガスを導入し反応性イオンブレー
ティング法により膜厚0.31mの酸化鉄よりなる中間
層を形成した。この上に、下記組成の電荷発生層塗工液
および電荷輸送層塗工液を順次、塗布・乾燥して各々0
.3戸の電荷発生層および18/Imの電荷輸送層を形
成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 三方晶セレン             10部ポリビ
ニルカルバゾール        10部2−ブタノン
               60部トルエン   
             60部〔電荷輸送層塗工液
〕 下記構造式の電荷輸送物質       30部テトラ
ヒドロフラン          280部実施例29 厚さ0.5mnのアルミニウム板上に、蒸発材料にFe
2O3を用い、電子ビームの加熱方式の真空蒸着法によ
り膜厚0.9μmの酸化鉄よりなる中間層を形成した。 この上に、下記組成の電荷輸送W!J塗工液、電荷発生
層塗工液および保護層塗工液を順次、塗布・乾燥して、
各々19胛の電荷輸送層、0.3μの電荷発生層および
2戸の保護層を形成し、本発明の電子写真感光体を作成
した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部(ユニ
チカ■製U−100) テトラヒドロフラン          280部〔電
荷発生層塗工液〕 下記構造式の電荷発生物質       3部95− 96− シクロヘキサラン テトラヒドロフラン 〔保護層塗工液〕 150部 100部 布・乾燥して各々20pの電荷輸送層、0.2−の電荷
発生層、0.2μmの中間層および5戸の保護層を形成
し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部導電性
酸化チタン           90部トルエン  
              220部n−ブタノール
              60部実施例30 厚さ0.2mmのニッケル板上に、蒸発材料としてFe
3O4を用い、抵抗加熱式の真空蒸着法により膜厚1.
2μmの酸化鉄よりなる中間層を形成した。この上に、
下記組成の電荷輸送層、電荷発生層塗工液、中間層塗工
液および保護層塗工液を順次、塗塩化メチレン 1.2−ジクロロエタン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 200部 60部 5部 98 テトラヒドロフラン 4−メチル−2−ペンタノン 〔中間層塗工液〕 200部 50部 メタノール n−ブタノール 〔保護層塗工液〕 70部 40部 022μmの電荷輸送層、 μmの保護層を形威し、 作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 0.3μmの電荷発生層および3 本発明の電子写真感光体を 25部 酸化錫                80部トルエ
ン                170部2−ブタ
ノン               100部実施例3
1 厚さ0.3mmのアルミニウム板」二にターゲラ1−に
Fe3O4を用い、アルゴンと酸素ガスの分圧比が■と
なる雰囲気下でスパッタリング法により膜厚0.3μm
の酸化鉄よりなる中間層を作成した。この」二に、下記
組成の電荷輸送N塗工液、電荷発生層塗工液および保護
層塗工液を順次、塗布・乾燥して、各塩化メチレン 〔電荷発生層塗工液] 下記構造式の電荷発生物質 250部 5部 9 100 1−ルイレンー2,4−ジイソシアネ−1−0,2部シ
クロヘキサノン           ]7770部2
−ブタノン            100部〔保護層
塗工液〕 塩化メチレン             650部下記
構造式で示される化合物      20部酸化チタン
              50部酸化スズ(U) 
             40部トルエン     
           250部2−ブタノン    
           70部実施例32 ハステロイを導電層として有するポリエチレンテレフタ
レートフィルム」二に、ターゲットにFe2O3を用い
、真空槽内にアルゴンガスを導入し、スパッタリング法
によって、厚さ0.3μmの酸化鉄よりなる中間層を設
けた。この上に下記組成の塗工液を塗布・乾燥して、乾
燥膜厚15μmの共晶錯体感光層を設け、本発明の電子
写真感光体を作成した。 比較例25.31 実施例25.31において、各々、中間層を設けなかっ
た他は、実施例25.31と同様にして、比較例25.
31の感光体を作成した。 比較例26,27.29 実施例2G、27.29において、中間層を下記組成の
中間層塗工液に代え、厚さ0.3IJmの中間層を設け
た他は、実施例26,27.29と同様にして比較例2
6゜27.29の感光体を作成した。 水 メタノール 150部 200部 −101− 102− 比較例28 実施例28において中間層を下記組成の中間層塗工液に
代え、厚さ0.5μmの中間層を設けた他は、実施例2
8と同様にして比較例28の感光体を作成した。 Fe2O3粉末              10部実
施例32において、酸化鉄よりなる中間層を下記組成の
中間層塗工液に代え、厚さ2.0p+nの中間層を設け
た他は、実施例32と同様にして比較例32の感光体を
作成した。 Fe2O3粉末              20部ト
ルイレン−2,4−ジイソシアネート   0.1部2
−ブタノン              100部比較
例30 実施例30において、酸化鉄よりなる中間層を下記組成
の中間層塗工液に代え、厚さ1.0pmの中間層を設け
た他は、実施例30と同様にして比較例30の感光体を
作成した。 Fe2O3粉末               5部水 メタノール 80部 80部 比較例32 トルエン                20部以上
の各感光体の特性を、静電複写紙試験装置(川口電機製
作新製5P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV) (7)
放電々圧ニテ、コロナ帯電を20秒間行ない、次いで1
0秒間暗減衰させ、その後10fluxのタングステン
光を照射した。 この時の帯電開始後2秒と15秒の表面電位V2(V)
、v、 5(V)および暗減衰10秒後の表面電位v2
5(v)を測定し、また、v2.、を半分の電位に光減
衰させるの103− 104− に必要な露光量E□/2 (Qux−see)を測定し
た。なお、暗減衰率(D、D)は、次式で定義される。 D、D=v25/v□5 また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−4に示す。 表−4 −105− −106− 実施例33 アルミニウムを蒸着したポリエチレンテレフタL/−ト
・フィルム上に1、a2o3粉末を出発材料として電子
ビーム蒸着法により厚さ0.7μmの酸化ランタンより
なる中間層を形成した。この上に下記組成の電荷発生層
塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々
0.2μm厚の電荷層および22部m厚の電荷輸送層を
形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷輸送物質       5部QCQ シクロヘキサノン 2−ブタノン 200部 100部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 25部 テI・ラヒトロフラン          300部実
施例34 厚さ0、2mmのアルミニウム板上にターゲラ1−にL
a、、0.を用い、真空槽内に5〜20ミリ1〜−ルの
アルゴンガスを導入し、スパッタリング法によって膜厚
0、5 pmの酸化ランタンよりなる中間層を形成した
。この上に、下記組成の電荷発生層塗工液および電荷輸
送層塗工液を順次、塗布・乾燥して各々0.1μmの電
荷発生層および17卵の電荷輸送層を形成し、本発明の
電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部−107
〜 08 テトラヒドロフラン          280部〔電
荷輸送層塗工液〕 下記構造式の電荷輸送物質       28部送層塗
工液を順次、塗布・乾燥して各々0.2μmの電荷発生
層および20部mの電荷輸送層を形成し、本発明の電子
写真感光体を作成した。 〔電荷発生M塗工液〕 下記構造式の電荷発生物質       3部塩化メチ
レン             260部実施例35 厚さ70胛の電鋳ニッケル上に、ターゲラI−にLa2
0.、を用い、アルゴンと酸素の分圧比が1となる雰囲
気下で、スパッタリング法によって膜厚0.4μmの酸
化ランタンからなる中間層を設けた。この上に、下記組
成の電荷発生層塗工液および電荷層シクロヘキサノン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 200部 70部 30部 −110− テトラヒドロフラン          300部実施
例36 厚さ0.2mnのニクロム板上に、ターゲットにLaを
用い、真空槽内を酸素分圧が10〜20ミリト−ルの雰
囲気となるようにして反応性スパッタリング法により、
膜厚0.25IJmの酸化ランタンよりなる中間層を設
けた。この上に、下記組成の電荷発生層塗工液および電
荷輸送N塗工液を順次、塗布・乾燥して各々0.3沖の
電荷発生層および18−の電荷輸送層を形成し、本発明
の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 200部 テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 90部 25部 テトラヒドロフラン          300部実施
例37 厚さ0.5+m+のアルミニウム板上に、ターゲットに
Laを用い、真空槽内を酸素分圧が20〜40ミリトー
ルの雰囲気となるようにして反応性スパッタリング法に
より、膜厚0.4μmの酸化ランタンよりなる中間層を
設けた。この上に、下記組成の電荷輸送層塗工液、電荷
発生層塗工液および保護層塗工液を順次・塗布・乾燥し
て、各々19/1mの電荷輸送層、0.31Aの電荷発
生層および2μmの保護層を形威し、本発明の電子写真
感光体を作成した。 〔電荷輸送層塗工液〕 −111− −112− 下記構造式の電荷輸送物質 30部 テトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 280部 4部 シクロヘキサノン テトラヒドロフラン 〔保護層塗工液〕 170部 110部 レート共重合体 導電性酸化チタン           90部トルエ
ン               220部n−ブタノ
ール              60部実施例38 厚さ0.2mnのニッケル板上に、実施例34と同じ方
法で厚さ0.2.の酸化ランタンよりなる中間層を設け
た。この上に、下記組成の電荷輸送層塗工液、電荷発生
層塗工液、中間層塗工液および保護層塗工液を順次、塗
布・乾燥して各々20μmの電荷輸送層、0.2−の電
荷発生層、o、2.mの中間層および5【の保護層を形
成し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       26部塩化メ
チレン 1.2−ジクロロエタン 200部 70部 −113− −114− 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 5部 トルイレン−2,4−シイソシアキートテトラヒトロフ
ラン 4−メチル−2−ペンタノン 〔中間Ra塗工液〕 0.2部 200部 80部 1〜ルエン               170部2
−ブタノン              100部実施
例39 厚さ0.3mmのアルミニウム板上に、実施例35と同
じ方法で厚さ0、6 pmの酸化ランタンからなる中間
層を設けた。この上に、下記組成の電荷輸送層塗工液、
電荷発生層塗工液および保護層塗工液を順次、塗布・乾
燥して各々227ymの電荷輸送層、0.3pIQの電
荷発生層および3μmの保護層を形威し1本発明の電子
写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部メタノ
ール n−ブタノール 〔保護層塗工液〕 70部 40部 酸化錫 80部 塩化メチレン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 280部 5部 15 16 チタニルフタロシアニン 1ヘルイレン−2,4−シイ シクロへキサノン 2−ブタノン 〔保護層塗工液〕 ソシアネ−1−0,1部 150部 110部 塩化メチレン            650部下記構
造式で示される化合物      20部酸化チタン 
             50部酸化スズ(II) 
             40部1−ルエン    
          250部2−ブタノン     
          70部実施例40 ハステロイを導電層として有するポリエチレンテレフタ
レー1〜フィルム上に、実施例33と同し方法で膜厚1
μmの酸化ランタンよりなる中間層を形成した。この」
二に下記組成の塗工液を塗布・乾燥して、乾燥膜厚15
IMの共品鉗体感光層を設け、本発明の電子写真感光体
を作成した。 比較例33.39 実施例33.39において、各々、中間層を設けなかっ
た他は、実施例33.39と同様にして、比較例33.
39の感光体を作成した。 比較例34,35.37 実施例34,35.37において、中間層を下記組成の
中間M塗工液に代え、厚さ0、37部mの中間層を設け
た他は、実施例34,35.37と同様にして比較例3
4゜35.37の感光体を作成した。 水溶性ポリビニルブチラールの     50部117
− 118 水                        
  150部メタノール              
200部比較例36 実施例36において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5μmの中間層を設けた他は、実施例
36と同様にして比較例36の感光体を作成した。 La2O3粉末              10部(
電気化学工業■製デンカポバールH−20)水    
                     80部メ
タノール              80部比較例4
0 実施例40において、中間層を下記組成の中間層塗工液
に代え、厚さ2.0pmの中間層を設けた他は、実施例
40と同様にして比較例40の感光体を作成した。 La2O3粉末               20部
トルイレン−2,4−ジイソシアネート0.1部2−ブ
タノン               100部比較例
38 実施例38において、中間層を下記組成の中間層塗工液
に代え、厚さ1.0μmの中間層を設けた他は、実施例
38と同様にして比較例38の感光体を作成した。 La2O3粉末               5部ポ
リビニルアルコール          2部トルエン
                20部以上の各感光
体の特性を、静電複写紙試験装置(川口電機製作新製5
P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV)ノ放電々
圧ニテ、コロナ帯電を20秒間行ない、次いで10秒間
暗減衰させ、その後10fluxのタングステン光を照
射した。 この時の帯電開始後2秒と15秒の表面電位V2(V)
、v15(v)および暗減衰10秒後の表面電位V2S
(V)を測定し、また、V25を半分の電位に光減衰さ
せるのに必要な露光量E1/□(Qux−sec)を測
定した。なお、暗減衰率(D、D)は、次式で定義され
る。 D 、D”V25/ Vls また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−5に示す。 表−5 −121− −122− 実施例41 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上にターゲットにZnOを用い、アルゴンと酸
素の分圧比が1となる雰囲気下でスパッタリング法によ
り膜厚0,5μmの酸化亜鉛よりなる中間層を設けた。 この上に下記組成の電荷発生層塗工液、電荷輸送層塗工
液を順次、塗布・乾燥して各々0.2μm厚の電荷発生
層および220部厚0電荷輸送層を形威し、本発明の電
子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 2−ブタノン 200部 1.00部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 26部 テトラヒドロフラン          250部実施
例42 厚さ0.2mmのアルミニウム板上にZnを蒸発材料に
用いて、真空槽内に酸素ガスを導入し、反応性イオンブ
レーティング法によって膜厚0.3μmの酸化亜鉛より
なる中間層を設けた。この上に、下記組成の電荷発生層
塗工液および電荷輸送層塗工液を順次、塗布・乾燥して
各々0.1部mの電荷発生層および17p111の電荷
輸送層を形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部−123
− 124 テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 120部 25部 0.4μmの酸化亜鉛からなる中間層を設けた。この上
に、下記組成の電荷発生層塗工液および電荷輸送M塗工
液を順次、塗布・乾燥して各々0.2μmの電荷発生層
および20【の電荷輸送層を形成し、本発明の電子写真
感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部塩化メチ
レン             200部実施例43 厚さ70戸の電鋳ニッケル上にターゲットにZnOを用
い、アルゴンと酸素の分圧比がAr102=8/2とな
る雰囲気下でスパッタリング法によって膜厚シクロヘキ
サノン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 100部 200部 30部 −126− テトラヒドロフラン          250部実施
例44 厚さ0.2+aのニクロム板上に、Zn (C21(s
 )2と0□の原料ガスをArで希釈しながら導入し、
CVD法によって膜厚0.7μmの酸化亜鉛よりなる中
間層を形威した。この上に、下記組成の電荷発生層塗工
液および電荷輸送層塗工液を順次、塗布・乾燥して各々
0.3μの電荷発生層および18μmの電荷輸送層を形
威し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン テトラヒドロフラン 230部 80部 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 25部 テトラヒドロフラン          220部実施
例45 厚さ0.5mのアルミニウム板上に、ターゲットにZn
Oを用い、真空槽内にアルゴンガスを導入して、スパッ
タリング法によって膜厚0.3pの酸化亜鉛よりなる中
間層を作成した。この上に、下記組成の電荷輸送層塗工
液、電荷発生層塗工液および保護層塗工液を順次・塗布
・乾燥して、各々19 。 の電荷輸送層、0.3pmの電荷発生層および2戸の保
護層を形成し1本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部−12
7− テトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 250部 5部 シクロヘキサノン テトラヒドロフラン 〔保護層塗工液〕 200部 100部 導電性酸化チタン           90部トルエ
ン               220部n−ブタノ
ール              60部実施例46 厚さ0.2nynのニッケル板上に、実施例42と同じ
方法で膜厚0.2/#11の酸化亜鉛よりなる中間層を
設けた。この上に、下記組成の電荷輸送層塗工液、電荷
発生層塗工液、中間層塗工液および保護層塗工液を順次
、塗布・乾燥して各々20戸の電荷輸送層、0.2戸の
電荷発生層、0.2μmの中間層および5μmの保護層
を形威し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部−13
0− 塩化メチレン 1,2−ジクロロエタン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 トルイレン−2,4−ジイソシアホー1−テトラヒドロ
フラン 4−メチル−2−ペンタノン 〔中間層塗工液〕 メタノール n−ブタノール 〔保護層塗工液〕 スチレン−メチルメタクリレ−h 150部 100部 5部 0.2部 150部 150部 酸化錫                80部トルエ
ン                1.70部2−ブ
タノン              400部実施例4
7 厚さ0.3(1)のアルミニウム板上にZn(C5H□
0.)2と1(20を原料ガス系として用い、真空槽中
へ導入しながらCVD法によって膜厚0.4μmの酸化
亜鉛よりなる中間層を設けた。この上に、下記組成の電
荷輸送層塗工液、電荷発生層塗工液および保護層塗工液
を順次・塗布・乾燥して、各々22pmの電荷輸送層、
0.3μの電荷発生層および3戸mの保護層を形成し、
本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部70部 40部 80部 (狩人1じ酸開裂パンライトC−1400)】31 32− 塩化メチレン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 トルイレン−2,4−ジイソシアホー1〜シクロヘキサ
ノン 2−ブタノン 〔保護層塗工液〕 酸化チタン 酸化スズ(II) トルエン 2−ブタノン 比較例41.47 実施例41..47において、 各々、 280部 4部 0.2部 180部 120部 50部 40部 250部 70部 かった他は、実施例41.47と同様にして、比較例4
1.47の感光体を作成した。 比較例42 実施例42において、酸化亜鉛よりなる中間層を下記組
成の中間層塗工液に代え、厚さ2.0戸の中間層を設け
た他は、実施例42と同様にして比較例42の感光体を
作成した。 ZnO粉末                 20部
トルエン                20部比較
例43.46 実施例43.46において、中間層を下記組成の中間層
塗工液に代え、厚さ0.3戸mの中間層を設けた他は、
実施例43.46と同様にして比較例43.46の感光
体を作成した。 中間層を設けな −133− 134− メタノール              60部n−ブ
タノール              40部比較例4
4 実施例44において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5郊の中間層を設けた他は、実施例4
4と同様にして比較例44の感光体を作成した。 ZnO粉末                 10部
トルイレン−2,4−ジイソシアネ−1〜   0.1
部2−ブタノン              100部
比較例45 実施例45において、酸化亜鉛よりなる中間層を下記組
成の中間層塗工液に代え、厚さ1.0戸の中間層を設け
た他は、実施例45と同様にして比較例45の感光体を
作成した。 ZnO粉末                 5部メ
タノール              80部以上の各
感光体の特性を、静電複写紙試験装置(川口電機製作新
製5P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV)の放電々
圧にて、コロナ帯電を20秒間行ない、次いでIO秒間
暗減衰させ、その後1(lQuxのタングステン光を照
射した。 この時の帯電開始後2秒と20秒の表面電位V2(V)
、V2o(V)および暗減衰10秒後の表面電位V3o
(V)を測定し、また、V2Oを半分の電位に光減衰さ
せるのに必要な露光量E□/2(Qux−8ec)を測
定した。なお、暗減衰率(D、D)は、次式で定義され
る。 D、D=v3./■2゜ また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−6に示す。 水 80部 −135− 136− 表−6 実施例48 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上に蒸発材料にBeOを用い、抵抗加熱方式の
真空蒸着法によって厚さ0.7pmの酸化ベリリウムよ
りなる中間層を設けた。この上に下記組成の電荷発生層
塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々
0.2〃厚の電荷発生層および22μm厚の電荷輸送層
を形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部シクロヘ
キサノン 2−ブタノン 300部 100部 一137−− 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 25部 ポリエステル 2部 テトラヒドロフラン          270部実施
例49 厚さ0.2mmのアルミニウム板上に、ターゲラI〜に
BeOを用い、真空槽内にアルゴンガスを導入し、スパ
ッタリング法によって厚さ0.4μmの酸化ベリリウム
よりなる中間層を設けた。この」二に、下記組成の電荷
発生層塗工液および電荷輸送層塗工液を順次、塗布・乾
燥して各々O,]μmの電荷発生層および17μmの電
荷輸送層を形威し、本発明の電子写真感光体を作成した
。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部〔電荷輸
送IFl塗工液〕 下記構造式の電荷輸送物質 25部 塩化メチレン             240部実施
例50 厚さ70μmの電鋳ニッケル上に、ターゲラ1〜にBe
Oを用い、アルゴンと酸素ガスの分圧比が1となる雰囲
気下でスパッタリング法によって厚さ0.339− −140− μmの酸化ベリリウムよりなる中間層を設けた。この」
―に、下記組成の電荷発生層塗工液および電荷輸送層塗
工液を順次、塗布・乾燥して各々0.2μmの電荷発生
層および20μmの電荷輸送層を形成し、本発明の電子
写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       3部シクロヘ
キサノン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 200部 70部 25部 テトラヒドロフラン          270部実施
例5] 厚さ0.2mmのニクロム板上に、蒸発材料にBeOを
用い電子ビーム加熱方式の真空蒸着法で膜厚1.0μm
の酸化ベリリウムよりなる中間層を形成した。 この上に、下記組成の電荷発生層塗工液および電荷輸送
層塗工液を順次、塗布・乾燥して各々0、3 ftmの
電荷発生層および18μmの電荷輸送層を形成し、本発
明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 200部 60部 30部 41 42 テトラヒドロフラン          250部実施
例52 厚さ0、2mmのアルミニウム板上に、実施例50と同
じ方法で膜厚0.4西の酸化ベリリウムよりなる中間層
を形成した。この上に、下記組成の電荷輸送層塗工液、
電荷発生層塗工液および保護層塗工液を順次、塗布・乾
燥して各々19戸の電荷輸送層、0、Ju+nの電荷発
生層および2μの保護層を形成し、本発明の電子写真感
光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       25部テトラ
ヒドロフラン [電荷発生層塗工液〕 下記構造式の電荷発生物質 270部 5部 シクロへキサノン テトラヒドロフラン 〔保護層塗工液〕 200部 100部 導電性酸化チタン トルエン n−ブタノール 90部 220部 60部 −143− 44 実施例53 厚さ0.2mのニッケル板上に、実施例48と同じ方法
で膜厚1.2序の酸化ベリリウムよりなる中間層を形成
した。この上に、下記組成の電荷輸送層塗工液、電荷発
生層塗工液、中間層塗工液及び保護層塗工液を順次、塗
布・乾燥して各々20Pの電荷輸送層、0.2ハの電荷
発生層、0.2μmの中間層および5μmの保護層を形
成し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部塩化メ
チレン 1.2−ジクロロエタン 〔電荷発生層塗工液〕 三方晶セレン 150部 120部 10部 ポリビニルカルバゾール 2−ブタノン トルエン 〔中間層塗工液〕 10部 60部 60部 メタノール n−ブタノール 〔保護層塗工液〕 70部 40部 酸化錫 トルエン 2−ブタノン 80部 170部 100部 実施例54 厚さ0.3mwnのニッケル板上に、実施例51と同じ
方法で膜厚0.6μの酸化ベリリウムよりなる中間層を
形成した。この上に、下記組成の電荷輸送層塗工液、電
荷発生M塗工液および保護層塗工液を順次、塗布・乾燥
して、各々22μmの電荷輸送層、−145− −146− 0.3μmの電荷発生層および3μmの保護層を形成し
、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       25部塩化メ
チレン 〔電荷発生層塗工液〕 下記構造式で示される化合物 260部 4部 〔保護層塗工液〕 酸化チタン              50部酸化ス
ズ(H)              40部1〜ルエ
ン               250部2−ブタノ
ン               70部実施例55 ハステロイを導電層として有するポリエチレンテレフタ
レー1〜フィルム上に、実施例49と同し方法により厚
さ0.6μmの酸化ベリリウムよりなる中間層を設けた
。この上に下記組成の塗]二液を塗布・乾燥して、乾燥
膜厚15μmの共品鉗体感光層を設け、本発明の電子写
真感光体を作成した。 トルイレン−2,4−ジイソシアホー1〜シクロヘキサ
ノン 2−ブタノン 0.2部 200部 80部 塩化メチレン            650部下記構
造式で示される化合物      20部−147− しH。 比較例4−8.54 実施例48.54において、各々、中間層を設けなかっ
た他は、実施例48.54と同様にして、比較例48、
54の感光体を作成した。 比較例4.9,50.53 実施例19,50.53において、中間層を下記組成の
中間層塗工液に代え、厚さ0.3μmの中間層を設けた
他は、実施例49,50.53と同様にして比較例49
。 50、53の感光体を作成した。 メタノール               60部n−
ブタノール              40部比較例
51 実施例51において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5μmの中間層を設けた他は、実施例
51と同様にして比較例51の感光体を作成した。 BeO粉末                 10部
1−ルイレンー2,4−シイソシアネ−1−0,1音[
S2−ブタノン              100部
比較例52 実施例52において、酸化ベリリウムよりなる中間層の
代りに下記組成の中間層塗工液を用い、厚さ1.Opm
の中間層を設けた他は、実施例52と同様にして比較例
52の感光体を作成した。 BeO粉末                 5部メ
タノール              60部n−ブタ
ノール              40部比較例55 実施例55において、酸化ベリリウムよりなる中間層の
代りに下記組成の中間層塗工液を用い、厚さ2 、07
部mの中間層を設けた他は、実施例55と同様150 にして比較例55の感光体を作成した。 BeO粉末 20部 トルエン                20部以上
の各感光体の特性を、静電複写紙試験装置(川口電機製
作新製5P−428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV)171放
電’/ 圧b=−c、コロナ帯電を20秒間行ない、次
いで10秒間暗減衰させ、その後1(lQuxのタング
ステン光を照射した。 この時の帯電開始後2秒と15秒の表面電位V2(V)
、V、5(V)および暗減衰10秒後の表面電位V2S
(V)を測定し、また、Vzsを半分の電位に光減衰さ
せるのに必要な露光量E工/2(Qux−see)を測
定した。なお、暗減衰率(D、D)は、次式で定義され
る。 D、D=V2. /V、。 また上記露光20秒後の表面電位を残留電位vRとして
定義した。 更に、」二記条件の帯電と露光を同時に30分間行なっ
て疲労させた後、再び前記と同様の測定を行なった。評
価結果を表−7に示す。 表−7 51− 一152一 実施例56 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上にターゲットにCaOを用い、真空槽内にア
ルゴンガスを導入し、スパッタリング法にで厚さ0.3
戸の酸化カルシウムよりなる中間層を設けた。この上に
下記組成の電荷発生物質」二液、電荷輸送層塗工液を順
次、塗布・乾燥して各々0.2−厚の電荷層および22
μs厚の電荷輸送層を形成し、本発明の電子写真感光体
を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部シクロヘ
キサノン 2−ブタノン 〔電荷輸送層塗工液〕 250部 100部 下記構造式の電荷輸送物質 9部 テトラヒドロフラン          81部実施例
57 厚さ0.2mmのアルミニウム板上にターゲットにCa
Oを用い、アルゴンと酸素ガスの分圧比が1となる雰囲
気下でスパッタリング法によって厚さ0.4μmの酸化
カルシウムよりなる中間層を設けた。この上に、下記組
成の電荷発生層塗工液および電荷輸送層塗工液を順次、
塗布・乾燥して各々0.1μmの電荷発生層および17
μmの電荷輸送層を形成し、本発明の電子写真感光体を
作成した。 〔電荷発生層塗工液〕 三方晶セレン             10部ポリビ
ニルカルバゾール        10部。 2−ブタノン               60部−
153− 54− I・ルエン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 60部 10部 塩化メチレン             80部実施例
58 厚さ70ハ】の電鋳ニッケル上にターゲラ1へbこCa
Oを用い、アルゴンと酸素の分圧比がAr10□=47
1となる雰囲気下でスパッタリング法によって厚さ0 
、 :’l pmの酸化カルシウムからなる中間層を設
けた。 この上に、下記組成の電荷発生層塗工液および電荷輸送
層塗工液を順次、塗布・乾燥して各々0.2μmの電荷
発生層および20μmの電荷輸送層を形成し、本発明の
電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       8部シクロへ
キサノン 2−ブタノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 300部 】20部 10部 ポリカーボネート −10部 (帝人化成曲製パンフイI−に−1300)テトラヒド
ロフラン          75部実施例59 厚さ0,2nrnのニクロム板上しこ、実施例56と同
じ方法で膜厚0.5μmの酸化カルシウムよりなるrJ
y間層を形成した。この上に、千言己組戊の電荷発生層
塗工液および電荷輸送層塗工液を11項次、塗布・乾燥
して各々0、3 pmの電荷発生層および18μmの電
荷輸送層を形成し本発明の電子写真感光体を作成し55 156− た。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 シクロヘキサノン テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 5部 厚さ0.5冊のアルミニウム板上に、実施例58と同じ
方法で膜厚0.67+mの酸化カルシウムよりなる中間
層を作成した。この」二に、下記組成の電荷輸送層塗工
液、電荷発生層塗工液および保護層塗工液を順次・塗布
・乾燥して、各々19μmの電荷輸送層、0.3μmの
電荷発生層および2μmの保護層を形成し、本発明の電
子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       7部200部 200部 25部 テトラヒドロフラン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 80部 3部 テトラヒドロフラン 実施例60 220部 一157− 下記構造式の電荷輸送物質 10部 シクロヘキサノン テトラヒドロフラン 〔保護層塗工液〕 100部 40部 導電性酸化チタン           90部トルエ
ン                220部n−ブタ
ノール              60部実施例61 厚さ0.2mmのニッケル板上に、実施例56と同じ方
法で膜厚0.2μmの酸化カルシウムよりなる中間層を
形成した。この上に、下記組成の電荷輸送層塗工液、電
荷発生層塗工液、中間層塗工液および保護層塗工液を順
次、塗布・乾燥して各々20μmの電荷輸送層、0.2
−の電荷発生層、0.2戸の中間層および5Hの保護層
を形成し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 塩化メチレン 1.2−ジクロロエタン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 50部 30部 7部 1〜ルイレン−2,4−ジイソシアネートテトラヒドロ
フラン 4−メチル−2−ペンタノン 〔中間層塗工液〕 0.2部 400部 100部 アルコール可溶性ポリアミド (東し■製アミランCM−8000) 2部 59 −160− メタノール n−ブタノール 〔保護層塗工液〕 70部 40部 下記構造式で示される化合物 20部 酸化錫                80部トルエ
ン                170部2−ブタ
ノン              100部実施例62 ハステロイを導電層として有するポリエチレンテレフタ
レートフィルム上に、実施例57と同じ方法で厚さ0.
6−の酸化カルシウムよりなる中間層を設けた。この上
に下記組成の塗工液を塗布・乾燥して、乾燥膜厚15μ
mの共晶錯体感光層を設け、本発明の電子写真感光体を
作成した。 比較例56.60 実施例56.60において、各々、中間層を設けなかっ
た他は、実施例56.60と同様にして、比較例56.
60の感光体を作成した。 比較例59.62 実施例59.62において、中間層を下記組成の中間層
塗工液に代え、厚さ0.3戸の中間層を設けた他は、実
施例59.62と同様にして比較例59.62の感光体
を作成した。 メタノール              60部n−ブ
タノール              40部比較例5
7 実施例57において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5μmの中間層を設けた他は、−16
1− −162− 実施例57と同様にして比較例57の感光体を作成した
。 CaO粉末 ]0部 比較例61の感光体を作成した。 CaO粉末 20部 トルイレン−2,/I−ジイソシアネ−1−0,1部2
−ブタノン              1.00部比
較例58 実施例58において、酸化カルシウムよりなる中間層の
代りに下記組成の中間層塗工液を用い、厚さ1.0μm
の中間層を設けた他は、実施例58と同様にして比較例
58の感光体を作成した。 CaO粉末                 5部メ
タノール              60部n−ブタ
ノール              40部比較例61 実施例61において、酸化カルシウムよりなる中間層を
下記組成の中間層塗工液に代え、厚さ2.0μmの中間
層を設けた他は、実施例61と同様にしてトルエン  
             20部0」二の各感光体の
特性を、静電複写紙試験装置(川口電機製作所説5P−
428型)を用いて次のように評価した。 まず、−5,2KV(もしくは+5.6KV)ノ放電々
圧ニテ、コロナマ;シ電を20秒間行ない、次いで10
秒間暗暗減衰せ、その後10Quxのタングステン光を
照射した。 この時の帯電開始後2秒と20秒の表面電位V2(V)
、V2o(V)および暗減衰10秒後の表面電位v3o
(v)を測定し、また、V2Oを半分の電位に光減衰さ
せるのに必要な露光量Ex /2 (QNX ’ 5e
e)を測定した。なお、暗減衰率(D、D)は、次式で
定義される。 D、D”V30/V20 63− 164− また上記露光20秒後の表面電位を残留電位VRとして
定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−8に示す。 表−8 実施例63 アルミニウムを蒸着したポリエチレンテレフタレート・
フィルム上に蒸発材料にMgOを用い、電子ビーム加熱
方式の真空蒸着法で厚さ1.1μmの酸化マグネシウム
よりなる中間層を設けた。この」二に下記組成の電荷発
生層塗工液、電荷発生層塗工液を順次、塗布・乾燥して
各々0.2μm厚の電荷発生層および22部m厚の電荷
輸送層を形成し、本発明の電子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       4部シクロへ
キサノン 2−ブタノン C電荷輸送層塗工液〕 1.50部 110部 −165− −166− 下記構造式の電荷輸送物質 25部 テトラヒドロフラン          280部実施
例64 厚さ0.2mmのアルミニウム板」二に、ターゲットに
MgOを用い、アルゴンと酸素の分圧比が1の雰囲気下
でスパッタリング法によって、厚さ0.3μmの酸化マ
グネシウムよりなる中間層を形成した。この上に、下記
組成の電荷発生層塗工液および電荷輸送層塗工液を、順
次塗布・乾燥して各々0.1pmの電荷発生層および1
7戸の電荷輸送層を形成し、本発明の電子写真感光体を
作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質        3部テトラ
ヒドロフラン 〔電荷輸送N塗工液〕 下記構造式の電荷輸送物質 250部 25部 塩化メチレン             240部実施
例65 厚さ70μmの電鋳ニッケル上に、蒸発材料にMgOを
用い、真空槽内に酸素ガスを導入しながら電子ビーム加
熱式の真空蒸着法で、厚さ0.7μmの酸化マグネシウ
ムよりなる中間層を形成した。この上に、下記組成の電
荷発生層塗工液および電荷輸送層塗工液を順次、塗布・
乾燥して各々0.2沖の電荷発生層および20/Imの
電荷輸送層を形成し、本発明の電子写真感光体を作成し
た。 一167−− 〔電荷発生層塗工液〕 三方晶セレン ポリビニルカルバゾール 2−ブタノン トルエン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 10部 10部 60部 60部 25部 層および18□□□の電荷輸送層を形成し、本発明の電
子写真感光体を作成した。 〔電荷発生層塗工液〕 下記構造式の電荷発生物質       5部テトラヒ
ドロフラン          250部実施例66 厚さOJnwnのニクロム板上に、ターゲラ1−にMg
Oを用い真空槽内にアルゴンガスを導入して、スパッタ
リング法により膜厚0.2/111の酸化マグネシウム
よりなる中間層を作成した。次いで、この上に下記組成
の電荷発生層塗工液および電荷輸送層塗工液を順次、塗
布・乾燥して各々0.3/111の電荷発生シクロヘキ
サノン テトラヒドロフラン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質 150部 150部 30部 −169− −170− テトラヒドロフラン          300部実施
例67 ハステロイを導電層として有するポリエチレンテレフタ
レートフィルム」二に実施例64と同じ方法で厚さ0.
5μmの酸化マグネシウムよりなる中間層を設けた。こ
の上に下記組成の塗工液を塗布・1沌燥して、乾燥膜厚
15μmの共晶錯体感光層を設け、本発明の電子写真感
光体を作成した。 る中間層を形成した。この」―に、下記組成の電荷輸送
層塗工液、電荷発生層塗工液および保護層塗工液を順次
、塗布乾燥して、各々19μmの電荷輸送層、0.3μ
mの電荷発生層および2μmの保護層を形成し、本発明
の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部塩化メ
チレン             650部下記構造式
で示される化合物      20部テトラヒドロフラ
ン 〔電荷発生M塗工液〕 下記構造式の電荷発生物質 300部 4部 実施例68 厚さ0.5wnのアルミニラ11板上に、実施例66と
同し方法で膜厚0.4μ和の酸化マグネシウムよりな−
171− 172 シクロヘキサノン テトラヒドロフラン 〔保護層塗工液〕 170部 1.00部 下記構造式の電荷輸送物質 28部 導電性酸化チタン           90部トルエ
ン                220部n−ブタ
ノール              60部実施例69 厚さ0.2mmのニッケル板上に、実施例63と同し方
法で膜厚0.8μmの酸化マグネシウムよりなる中間層
を形成した。この上に、下記組成の電荷輸送層塗工液、
電荷発生層塗工液、中間層塗工液および保護層塗工液を
順次、塗布・乾燥して各々20pmの電荷輸送層、0.
2戸の電荷発生層、0.2μmの中間層および5沖の保
護層を形成し、本発明の電子写真感光体を作成した。 〔電荷輸送層塗工液〕 塩化メチレン 1.2−ジクロロエタン 〔電荷発生逆層塗工液〕 下記構造式の電荷発生物質 200部 60部 5部 トルイレン−2,4−ジイソシアホー1〜テトラヒドロ
フラン 4−メチル−2−ペンタノン 〔中間M塗工液〕 0.3部 150部 100部 73 −174− メタノール n−ブタノール 70部 40部 〔保護層塗工液〕 酸化錫                80部トルエ
ン                170部2−ブタ
ノン              100部実施例70 厚さ0.3+nmのアルミニウム板上に、実施例65と
同じ方法により膜厚0.9部mの酸化マグネシウムより
なる中間層を作成した。この上に、下記組成の電荷輸送
層塗工液、電荷発生層塗工液および保護層塗工液を順次
、塗布・乾燥して各々22nの電荷輸送層、0.3部m
の電荷発生層および3ハの保護層を形威し、本発明の電
子写真感光体を作成した。 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質       30部塩化メ
チレン 〔電荷発生層塗工液〕 下記構造式の電荷発生物質 250部 4部 トルイレン−2,4−ジイソシアホー1−シクロヘキサ
ノン 2−ブタノン 〔保護層塗工液〕 0.1部 100部 120部 175− 76− 酸化チタン               50部酸化
スズ(II)              40部トル
エン               250部2−ブタ
ノン               70部比較例63
.70 実施例63.70において、各々、中間層を設けなかっ
た他は、実施例63、70と同様にして、比較例63.
70の感光体を作成した。 比較例64,66.69 実施例64,66.69において、中間層を下記組成の
中間層塗工液に代え、厚さ0.5μmの中間層を設けた
他は、実施例64,66.69と同様にして比較例64
゜66.69の感光体を作成した。 実施例65において、中間層を下記組成の中間層塗工液
に代え、厚さ0.5μmの中間層を設けた他は、実施例
65と同様にして比較例65の感光体を作成した。 MgO粉末                10部ト
ルイレン−2,4−ジイソシアホ−1〜   0.1部
2−ブタノン               100部
比較例67 実施例67において、酸化マグネシウムよりなる中間層
の代りに下記組成の中間層塗工液を用い、厚さ1.0−
の中間層を設けた他は、実施例67と同様にして比較例
67の感光体を作成した。 MgO粉末                 5部水 メタノール 150部 200部 比較例65 メタノール              60部n−ブ
タノール              40部比較例6
8 実施例68において、酸化カルシウムよりなる中−17
7−7 間層を下記組成の中間層塗工液に代え、厚さ2.0μm
の中間層を設けた他は、実施例68と同様にして比較例
68の感光体を作成した。 CaO粉末                 20部
暗減衰率(D、l))は、次式で定義される。 D、D=Vzs/L、s また−1−配置光20秒後の表面電位を残留電位v11
として定義した。 更に、上記条件の帯電と露光を同時に30分間行なって
疲労させた後、再び前記と同様の測定を行なった。評価
結果を表−9に示す。 I−ルエン               20部以−
)1の各感光体の特性を、静電複写紙試験装置(川1」
電機製作新製5P−7128型)を用いて次のように評
価した。 まず、−5,2KV(もしくは+5.6KV) (7)
放電’/ 圧ニテ、コロナ帯電を20秒間行ない、次い
て10秒間暗減衰させ、その後]0Quxのタングステ
ン光を照射した。 この時の帯電開始後1秒と15秒の表面電位V、(V)
、V、5(V)および暗減衰10秒後の表面電位V2.
.(V)を測定し、また、v2.を半分の電位に光減衰
させるのに必要な露光量E1/□((lux−sec)
を測定した。なお、79 1.80 〔発明の効果〕 本発明によれば、感光体のくり返し使用後の;lit:
型持性の劣化を防ぐことが可能となる。 すなわち、複写機、プリンター等の画像濃度低下、画像
濃度ムラ、カブリあるいは、反転現像時においては、地
肌汚れのない良好な画像を得ることができる。
[is. Vacuum thin film creation methods include resistance heating and ion beam heating.
vacuum evaporation method, sputtering method, 5-6-reactive sputtering method, ion blating method, M
Conventionally known methods such as BE and CVD are used. In addition to SnO and SnO2, tin oxide is generally used in 5n20.
. 5n304 etc. are known, and also by vacuum thin film production method.
The formed tin oxide has a composition that deviates from the stoichiometric composition.
Thin films of can also be made. At this time, a film with a composition of 5n02
has a high resistance, and when there is less oxygen, it has a lower resistance.
However, any tin oxide film is not included in the present invention.
It can be suitably used as an interlayer. In addition, antimony etc. are doped into tin oxide for the purpose of lowering the resistance.
copper, aluminum, etc. for the purpose of high resistance.
Doped products are known, but in any case, the present invention
It belongs to the category of , and can be used well. Titanium oxide is generally divalent TiO2 trivalent Ti2O3
, tetravalent Tie, is known, but it is
The formed titanium oxide has a non-stoichiometric composition.
Thin films can also be made with compositions such as: Also in the selection of starting materials
Therefore, it is possible to incorporate hydrogen atoms, carbon atoms, halogen atoms, etc.
In some cases, a solder film is formed, and Zr, Hf, Y, etc.
If a material to which
A titanium oxide thin film is formed. These titanium oxide films
Any of these can be satisfactorily used as the intermediate layer of the present invention. Indium oxide generally consists of monovalent In2O and trivalent In
2O3 is known, and it can also be formed by vacuum thin film production method.
Indium oxide has a composition that deviates from the stoichiometric composition.
thin films can also be created, and any indium oxide film is
It can be suitably used as a bright intermediate layer. Also, indium oxide for the purpose of improving conductivity. Toped with tin, etc., or copper or aluminum for the purpose of high resistance.
There are known ones doped with minium etc., but none of them.
It falls within the scope of the present invention and can be used satisfactorily. Generally, iron oxides are Fed, Fe2O3, Fe3O4
etc. are well known, but they are formed using the vacuum thin film creation method.
In iron oxide, the composition deviates from the stoichiometric composition.
Membranes may also be made, both of which work well as intermediate layers in the present invention.
Can be used. 7- Lanthanum oxide is generally known as trivalent La203.
However, the lanthanum oxide produced using the vacuum thin film production method
Therefore, thin films with compositions that deviate from the stoichiometric composition can be created.
, any lanthanum oxide film is suitable as the intermediate layer of the present invention.
Can be used for Zinc oxide is generally expressed as ZnO, but it is difficult to create a vacuum thin film.
In zinc oxide formed by the method, the stoichiometric composition
Thin films with staggered compositions can also be created. Also, depending on the selection of starting materials, hydrogen atoms, halogen
A thin film incorporating atoms, carbon atoms, etc. is formed. this
Both of the zinc oxide films of
used. Beryllium oxide is generally known as BeO, but it is thin in vacuum.
For beryllium oxide formed by film formation method, chemical
Thin films with compositions that deviate from stoichiometric compositions can also be created;
It can also be used satisfactorily as an intermediate layer in the present invention. Calcium oxide is generally known as CaO, but in vacuum
Calcium oxide formed by the thin film method has no chemical reaction.
Thin films with compositions that deviate from the stoichiometric composition can also be created;
Both can be used satisfactorily as the intermediate layer of the present invention. Magnesium oxide is generally known as MgO, but the true
In magnesium oxide formed by the empty thin film method,
, thin films with compositions that deviate from the stoichiometric composition can also be created;
Any of them can be satisfactorily used as the intermediate layer of the present invention. Vacuum thin film creation methods include resistance heating and ion beam heating.
vacuum evaporation method, sputtering method, reactive sputtering method etc.
Taling method, ion blating method, MBE. CV
Any conventionally known method such as D can be adopted, but the intermediate layer type
It is desirable to select the appropriate amount depending on the type of component. For example, tin oxide and indium oxide are used as components for forming the intermediate layer.
Dium, iron oxide, lanthanum oxide, beryllium oxide, oxide
When using calcium and magnesium oxide,
Vacuum deposition method using anti-heating, ion beam, etc., sputtering
Sputtering method, reactive sputtering method, ion blasting method
The chemical vapor deposition method, CVD method, etc. are preferably used. lO− In addition, to create the intermediate layer made of titanium oxide of the present invention,
Resistance using Tie, Tl2O3, and Tin□ as evaporation materials
Vacuum deposition method by anti-heating or electron beam heating, evaporation material
Reactive vapor deposition method using Ti in 02 atmosphere, target
Ti01Ti20. , using Tie2, Ar or
Sputtering method using Ar-0□ or 0□, etc.
Ar-
Reactive sputtering method using 02 or 0□, etc.
Ti, Ti01Ti20. using 0□atm.
Ion blating method under ambient atmosphere, TiCQ4, Ti
Raw material gas such as Br, CO2, o2.1120, etc.
uses a gas diluted with Ar, He, 82, etc.
The CVD method and other known methods can be used. To create the intermediate layer made of zinc oxide of the present invention, a vapor deposition material is used.
Vacuum evaporation method using ZnO, ZnO as target
Spa using Ar or Ar-0□ or 02, etc.
uttering method, using Zn as the evaporation material in a 0□ atmosphere.
Ion blating method, Zn, ZnO1ZnCQ2,
ZnBr2, Zn(c2Hs)2, Zn (ocl(a
)2, Zn (QC211,)2, Zn (OnC3
H7)2, Zn (OnC4H9)2, Zn (Cs
14. o□) 2.0□, raw materials such as N20 or this
using a gas diluted with Ar, He, H2, N2, etc.
The CVD method and other known methods can be used. Also, the reason why the vacuum thin film production method is used is because of the purity of the film.
High strength, ability to form a dense film, and formation of a uniform film
Here are some things you can do. Furthermore, using such an intermediate layer
As a result, the performance of the electrophotographic photoreceptor is improved, and the essential points according to the present invention are improved.
It satisfies the requirements. The intermediate layer created in the above manner is amorphous.
solid solution, crystalline solid, and a mixture of two or more of these.
You can. The conductive support 11 has a volume resistance of 1010Ω (1)
Materials that exhibit the following conductivity, such as aluminum and nickel.
Metals such as kel, chromium, nichrome, copper, silver, gold, platinum, etc.
, metal oxides such as tin oxide, indium oxide, etc.
Or by sputtering to form a film or cylinder.
coated with plastic, paper, etc., or aluminum
minium, aluminum alloy, nickel, stainless steel, etc.
board and 11- 12- glue them, 1. .. 1.1. , extrusion, drawing, etc.
Tubes that have been surface-treated by cutting, superfinishing, polishing, etc. after being made into raw tubes.
etc. can be used. The photosensitive layer 15 in the present invention may be of a single layer type or a laminated type.
However, for the sake of explanation, we will first discuss the laminated type.
Ru. The charge generation layer 17 is a layer mainly composed of a charge generation substance,
A binder resin may be used if necessary. Inorganic and organic materials are used as charge-generating substances.
can be done. Inorganic materials include crystalline selenium and amorphous
As selenium, selenium-tellurium, selenium-tellurium-halo
Gen, selenium-arsenic compounds, amorphous silicon
etc. In amorphous silicon,
Terminating dangling bonds with hydrogen atoms and halogen atoms
doped with boron atoms, phosphorus atoms, etc.
It is well suited to use. On the other hand, organic materials include phthalocyanine pigments and naphthalene pigments.
Russianine pigments, perylene pigments, perinone pigments,
Quinacridone pigments, quinone fused polycyclic compounds, SQUA
Liric acid dyes, azulenium salt dyes, monoazo pigments
, disazo pigments, trisazo pigments, etc. are used.
Ru. Among these charge-generating substances, especially the following structural formula:
Disazo or trisazo pigments represented by are preferably used.
I can stay. (However, Cp is a coupler residue, and the same applies hereinafter.) 13- 14- (However, R represents a hydrogen atom, an alkyl group, or a) rogen atom. ) (However, A represents a type of NH-1, -8-.) (However, R is a hydrogen atom, a substituted or unsubstituted (however, n represents an integer between 1 and 5) an alkyl group UN-up 15-16 Phenolic hydroxyl groups such as phenols and naphthols
Aromatic amino compounds having an amino group
Or an amino group having an amino group and a phenolic hydroxyl group.
Naphthols, aliphatic or aromatic enolic ketones
Compounds having an active methylene group (compounds having an active methylene group)
etc. are used, preferably the following formulas (1) to (11
). [Formula (1), (2), (3) and (4) above
Inside, X, Yl, Z, m and n are each of the following:
represent These coupler residues Cp represent, for example, an 18-substituted alkyl group, and R3 is a substituted or unsubstituted alkyl group.
Represents an alkyl group or a substituted or unsubstituted aryl group.
Was. ) ■1: Hydrogen, halogen, substituted or unsubstituted alkyl
group, substituted or unsubstituted alkoxy group, carboxy group
, sulfone group, substituted or unsubstituted sulfamoyl group
or -CON-Y24 (R4 is hydrogen, alkyl group or its substituted product, phenyl group
or a substituent thereof, and Y2 is a hydrocarbon ring group or
its substituent, heterocyclic group or its substituent nil or an integer of 2 m: an integer of 1 or 2] [In formulas (5) and (6), R7 is substituted or unsubstituted
represents a hydrocarbon group, and A represents a divalent aromatic hydrocarbon group or
represents a divalent heterocyclic group containing a nitrogen atom in the ring (this
(the rings may be substituted). X is the same as above. ] R5 is a hydrocarbon ring group or its substituted product, a heterocyclic group or
Substituted product thereof or styryl group or substituted product thereof, R6
represents hydrogen, an alkyl group, a phenyl group, or a substituent thereof.
Wasuka or R9 and R6 are the carbons bonded to them
A ring may be formed together with the atoms. ) is shown. ) 2: Hydrocarbon ring or its substituted product or heterocycle Ar. [In the formula, R11 is an alkyl group, a carbamoyl group, a carbo
represents an xy group or its ester, and Ar1 is a hydrocarbon
Represents a ring group or a substituent thereof, and X is the same as above
. ] 19-20- [In the above formulas (8) and (9), Rg is hydrogen or substituted
or represents an unsubstituted hydrocarbon group, and Ar2 is a hydrocarbon group.
Represents a bare ring group or its substituted product. ] Said general formula (1)
, (2), (3) or (4) Z hydrocarbon
Examples of the ring include a benzene ring and a naphthalene ring.
Also, as a heterocycle (which may have substitutions), Indian
ring, carbazole ring, benzolane ring, dibenzofuran
Examples include ring rings. As a substituent in ring 2,
Examples include halogen atoms such as chlorine atoms and bromine atoms. The hydrocarbon ring group in Y2 or R5 is phenyl
Ru group, naphthyl group, anthryl group, pyrenyl group, etc.
In addition, examples of heterocyclic groups include pyridyl group, thienyl group, and free ring group.
group, indolyl group, benzofuranyl group, carbazolyl group
group, dibenzofuranyl group, etc., and furthermore, R6
and the ring formed by bonding R6 with fluorene
An example is a ring. Y2 or R5 hydrocarbon ring group or heterocyclic group or
a substituent in the ring formed by R5 and RG;
methyl group, ethyl group, propyl group, butyl group, etc.
Which alkyl group, methoxy group, ethoxy group, propoxy group
group, alkoxy group such as butyl-oxy group, chlorine atom, bromine
Halogen atoms such as atoms, dimethylamino groups, diethyl
Dialkylamino groups such as amino groups, trifluoromethyl
halomethyl groups such as nitro groups, cyano groups, carboxyl groups, etc.
xyl group or its ester, hydroxyl group, -5o3Na etc.
which sulfonic acid groups, etc. As a substituent for the phenyl group of R4, chlorine atom or bromine
Examples include halogen atoms such as atoms. Representative examples of the hydrocarbon group in R7 or Rg are:
Aluminum groups such as methyl, ethyl, propyl, butyl
Aryl groups such as kill groups and phenyl groups, or their substitution
An example is conversion. 22- As a substituent in the hydrocarbon group of R7 or Rg,
Aluminum groups such as methyl, ethyl, propyl, butyl
Kill group, methoxy group, ethoxy group, propoxy group, but
Alkoxy groups such as xy groups, chlorine atoms, bromine atoms, etc.
Examples include a halogen atom, a hydroxyl group, and a nitro group. The hydrocarbon ring group in Ar1 or Ar2 is
Typical examples are phenyl group, naphthyl group, etc.
Substituents in these groups include methyl group, ethyl group,
group, alkyl group such as propyl group, butyl group, methoxy
groups, ethoxy groups, propoxy groups, butoxy groups, etc.
Halogens such as koxy group, nitro group, chlorine atom, bromine atom, etc.
atom, cyano group, dimethylamino group, diethylamino
Examples include dialkylamino groups such as groups. Furthermore, among X, a hydroxyl group is particularly suitable. Among the above coupler residues, the above-mentioned - formula (
2) , (5) , (6) , (7) , (8
) and (9), among which the general
It is preferable that X in the formula is a hydroxyl group. Also, in this
However, a coupler residue represented by the general formula (10) (yz and 2 are the same as above) is preferable, and more preferable.
or a compound represented by the general formula (z, y2 and R2 are the same as above).
It is a Pupler residue. Furthermore, among the above preferred coupler residues, common
Formula (12) or (13) ゝ2' R5 23- 24- (Z, R2, R5 and RG are the same as above, and
R□. Examples of the substituent include the above-mentioned substituent Y2. )in
expressed. The binder resin used as necessary is polyethylene.
Amide, polyurethane, polyester, epoxy resin,
polyketone, polycarbonate, silicone resin, acrylic
Ryl resin, polyvinyl butyral, polyvinylformer
polyvinyl ketone, polystyrene, poly-N-vinyl
Examples include lucarbazole, polyacrylamide, etc.
. Methods for forming the charge generation layer 17 include vacuum thin film formation method and
A major example is the casting method from a solution dispersion system.
It will be done. The former method includes vacuum evaporation, glow discharge decomposition, and ionization.
emblating method, sputtering method, reactive sputtering method
Taling method, CVD method, etc. are used. As the charge generation N17, the above-mentioned inorganic materials and organic materials can be used.
A material layer can be formed well. In addition, a charge generation layer can be formed using the latter casting method.
In order to
, along with a binder resin if necessary.
Ran, cyclohexanone, dioxane, dichloroethane
, ball mill, attritor using a solvent such as butanone
, disperse with a sand mill, etc., and dilute the dispersion liquid appropriately.
It can be formed by coating with Application is dip coating
This can be done using methods such as spray coating, bead coating, etc.
I can. The thickness of the charge generation layer provided as described above is 0.
Approximately 0.01 to 5 μm, preferably 0.05 to 5 μm.
It is 2H. The charge transport layer 19 includes a charge transport material and a binder resin.
Dissolve or disperse it in a suitable solvent, apply it, and dry it.
It can be formed by Also, if necessary, add plasticizer or resin.
Belling agents and the like may also be added. Charge transport materials include hole transport materials and electron transport materials.
Ru. Examples of electron-transporting substances include chloranyl and bromine.
Muanil, tetracyanoethylene, tetracyanoquinone dimethane, 2,4.7-trinitro-
9-fluorenone, 2,4,5.7-tetranitro-9
-Fluorenone, 2,4,5.7-titranitroxane
ton, 2,4°8-trinidrothioxanthone, 2,6
.. 8-trinitro-4H-indeno(1,2-b)thio
Phen-4-one, 1,3.7 trinitrodibenzothio
Electron-accepting substances such as phenone-5,5-dioxide
can be mentioned. As a hole transport material, electrons expressed by the following general formula are used.
Donating substances and the like can be mentioned and are well used. (However, R□ is a lower alkyl group, a lower alkoxy group, or
represents a halogen atom, n represents an integer of O to 4, R
2, R3 may be the same or different, hydrogen atom, low
represents a class alkyl group, lower alkoxy group or halogen atom.
Was. ) (In the formula, R21R3 and R4 are hydrogen atoms, substituted
or represents an unsubstituted aryl group, Ar is a substituted or unsubstituted aryl group;
represents an unsubstituted aryl group, and Ar1 and R1 are common
A ring may be formed, and n is an integer of O or 1. ) (wherein, R1 is an alkyl group having 1 to 11 carbon atoms, substituted or
Represents an unsubstituted phenyl group or heterocyclic residue, R2
, R, may be the same or different, and hydrogen atoms
child, lower alkyl group, C□~04 hydroxyalkyl
group, 01-C4 chloralkyl group, or substituted or
represents an unsubstituted aralkyl group, and R2 and R3 are jointly
may form a nitrogen-containing hetero 27-28- ring, and R4, R, may be the same or different.
hydrogen atom, lower alkyl group, or lower alkyl group.
Represents a alkoxy group or a halogen atom. ) represents a group, R2 is a hydrogen atom, a lower alkyl group, a lower
Represents an alkoxy group, halogen atom or nitro group
, n represents 0 or 1. ) (wherein R1 is a hydrogen atom or
represents a halogen atom, and R2 is a substituted or unsubstituted aromatic atom.
Aromatic residues or heterocyclic residues (however, the above substituents are halogen
cyano, di-lower alkylamino, substituted or unsubstituted
dialkylamino group, lower alkyl group, lower alkoxy group
selected from the group consisting of cy group and nitro group. ) represents
. ) (wherein, R is a carbazolyl group, a pyridyl group, a thienyl group
, indolyl group or furyl group, or each substituted or
or unsubstituted phenyl group, styryl group, naphthyl group or
anthryl group (however, the above substituent is di-lower alkylamino
group, lower alkyl group, lower alkoxy group, halogen atom
, an aralkylamino group, or an amino group.
(to be revealed). ) 2 (wherein R1 and R3 are hydrogen atoms, lower alkyl groups, lower
Alkoxy group, di-lower alkylamine-29 30-, hydrogen atom, lower alkyl group, lower alkoxy group,
Represents a phenyl group, phenoxy group, or halogen atom
. ) (wherein, R1 is a hydrogen atom, a halogen atom, a cyano group, a
represents a class alkyl group, and Ar is (where R2, R,
, R, is a hydrogen atom, a substituted or unsubstituted lower alkyl group
Or represents a substituted or unsubstituted benzyl group, R4,
R is a hydrogen atom, a halogen atom, a lower alkyl group, or
represents a lower alkoxy group or a di-lower alkylamino group.
vinegar. ). ) (In the formula, R□1R21R31R41RG is a hydrogen atom,
rogen atom, lower alkyl group, lower alkoxy group, substitution
or unsubstituted di-lower alkylamino group or dibenzyla
Represents a mino group, R5 is a lower alkyl group or a benzyl group
represents. ) (In the formula, Ar is a naphthalene ring, anthracene ring, styryl ring,
group and their substituents, or pyridine ring, furan
ring, thiophene ring, R is a lower alkyl group or
represents a ndyl group. ) Mouth 1 (In the formula, R□ is a lower alkyl group, 2-hydroxyethyl
group or 2-chloroethyl group, R2 is lower alkyl
represents a hydrogen group, a benzyl group or a phenyl group, and R3 is hydrogen.
Atom, halogen atom, lower alkyl group, lower alkoxy
31-32-1 (wherein R represents a hydrogen atom, a lower alkyl group, a chloroethyl group, or a di-lower alkylamino group or a nitro group)
represents a hydrogen atom or a hydroxyethyl group, and R2 is a hydrogen atom.
or represents a halogen atom, R3 is a lower alkyl group, di
Lower alkylamino group, diarylamino group, substituted or
Unsubstituted styryl group, substituted or unsubstituted aromatic ring residue (aromatic
Aroma ring or benzene ring, naphthalene ring, anthracene ring, etc.
), substituted or unsubstituted heterocyclic residues (heterocycle is a pyridine ring
, quinoxaline ring, carbazole ring, etc.). ) Substituted or unsubstituted heterocyclic residues (heterocycles include pyridine rings, quino rings,
xaline ring, carbazole ring, etc.). ) (In the formula, R1 and R2 may be the same or different, and water
Elementary atoms, lower alkyl groups, hydroxy lower alkyl groups,
Chlor lower alkyl group, alkyl having 1 to 2 carbon atoms
alkyl group, a cycloalkyl group having 5 to 6 carbon atoms,
or represents a substituted or unsubstituted aralkyl group. ) (In the formula, R1 represents a lower alkyl group, R2 represents a lower alkyl group, and R2 represents a lower alkyl group.
Alkyl group, di-lower alkylamino group, diarylamino group
group, substituted or unsubstituted styryl group, substituted or unsubstituted aromatic
Aromatic ring residues (aromatic rings include benzene ring, naphthalene ring, ant
helical ring, etc.), (wherein, R1, R3 and R4 are hydrogen atoms)
child, amino group, alkoxy group, thioalkoxy group, ali
ruoxy group, methylenedioxy group, substituted or unplaced
substituted alkyl group, halogen atom, or substituted or unsubstituted
aryl group, R2 is a hydrogen atom, an alkoxy group, a substituted or unsubstituted alkyl group, or a halogen
represents the However, if R1, R2, R3 and R4 are all
Excludes cases where the hydrogen atom is a hydrogen atom. Also, Q. m and n are integers of 1, 2.3 or 4, each of which is 2,
When the integer is 3 or 4, the above R1, R2, R3 and R4
may be the same or different. A-Ct(□CH□-Ar'-CH2C112-A(formula
Ar" is a substituted or unsubstituted aromatic hydrocarbon group
or a heterocyclic group, A is substituted or unsubstituted N
- substituent: a rubazolyl group or an aromatic hydrocarbon group or a heterocyclic group, R1 and R
2 is a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkyl group
is an unsubstituted aryl group. ). ) These charge transport substances can be used alone or in combination of two or more.
I can stay. As binder resin, polystyrene, styrene-acrylic
Rylonitrile copolymer, styrene-butadiene copolymer
, styrene-maleic anhydride copolymer, polyester,
Polyvinyl chloride, vinyl chloride vinyl acetate copolymer, polyvinyl chloride
Vinyl acetate, polyvinylidene chloride, polyarylate resin
, phenoxy resin, polycarbonate, cellulose acetate
resin, ethyl cellulose resin, polyvinyl butyral,
Polyvinyl formal, polyvinyl I/luene, poly-
N-vinylcarbazole, acrylic resin, silicone tree
resin, epoxy resin, melamine resin, urethane resin,
Thermoplastic or thermosetting resins such as nord resins and alkyd resins
Examples include polyester resins. Solvents include tel-lahydrofuran, dioxane, and trichlorhydrofuran.
toluene, monochlorobenzene, dichloroethane, methane chloride
Tyrene etc. are used. The appropriate thickness of the charge transport layer 19 is about 5 to 100 μm.
Ru. In addition, in the present invention, plasticization during charge transport J11.7
or a leveling agent may be added. As a plasticizer,
General products such as dibutyl phthalate and dioctyl phthalate
-35 36, which is used as a plasticizer for resins, can be used as is, and the amount used depends on the binder resin.
A suitable amount is about 0 to 30% by weight based on the fat. As a leveling agent, dimethyl silicone oil,
Silicone oil such as tylphenyl silicone oil
polymers with perfluoroalkyl groups in their side chains
Alternatively, oligomers are used, the amount of which is
- Appropriately 0 to 1 weight 2 to resin. Next, the case where the photosensitive layer 15 has a single layer structure will be described. The inorganic photosensitive layer is made of the above-mentioned amorphous selenium or selenium.
Alloys, amorphous silicon photosensitive layers, etc. are also mentioned above.
vacuum evaporation method, glow discharge decomposition method, ion blating method
sputtering method, reactive sputtering method, C
It can be provided by a vacuum thin film forming method such as a VD method. Also
, photoreceptors with two or more layers of these inorganic materials are also developed.
It belongs to the simplification of light. When forming a single photosensitive layer using the casting method, in most cases
Functionally separated type consisting of a charge-generating substance and a charge-transporting substance
can be mentioned. That is, charge generating substances and charge transport substances
The materials mentioned above can be used for the quality. The monolayer photosensitive layer consists of a charge generating material, a charge transporting material and
The binder resin is dissolved or dispersed in a suitable solvent, and this
It can be formed by coating and drying. Also, necessary
It is also possible to add plasticizers, leveling agents, etc.
Ru. As the binder resin, the above mentioned charge transport 119
In addition to using the binder resin as it is, charge generation Ji
The binder resins listed in 17 may be used in combination. A single photosensitive layer consists of a charge generating material, a charge transporting material and a binder.
Add the under resin to Tetra 1 to Rofuran, Dioxane, Dioxane.
Dispersion using solvents such as lolethane and cyclohexanone
The coating liquid dispersed by a machine, etc. is applied by dipping coating method or spray coating.
It can be formed by coating with , bead coating, etc. Pyrylium dye, bisphenol A polycarbonate
A photoreceptor in which a charge transport substance is added to the eutectic complex formed from
It can be formed by The thickness of the single photosensitive layer is suitably about 5 to 100 mm. In addition, in the present invention, a protective layer M21 is further applied on the photosensitive layer.
It is also possible to provide one. The protective layer 21 is provided for the purpose of protecting the surface of the photoreceptor.
Materials used include ABS resin, AC5 resin, and
Refin rubinyl monomer copolymer, chlorinated polyether
resin, allyl resin, phenolic resin, polyacetal, polyester resin,
lyamide, polyamideimide, polyacrylate, poly
Allyl sulfone, polybutylene, polybutylene terephtha
rate, polycarbonate, polyether sulfone, polycarbonate
Polyethylene, polyethylene terephthalate, polyimide
, acrylic resin, polymethylpentene, polypropylene
, polyphenylene oxide, polysulfone, polystyrene
AS resin, butadiene-styrene copolymer, polyurethane
Rethane, polyvinyl chloride, polyvinylidene chloride, epoxy
Examples include resins such as resin. The protective layer also has a wear-resistant
Polytetrafluoroethylene and other materials are used to improve wear resistance.
Unafluororesin, silicone resin, and oxidation to these resins
Dispersion of inorganic materials such as titanium, tin oxide, potassium titanate, etc.
It is possible to add the following. Formation method of protective layer
Then, a conventional coating method is used. The thickness of the protective layer is
A value of about 0.5 to 10 is appropriate. In the present invention, another intermediate layer (
(not shown) may also be provided. In addition, in the present invention, in order to improve environmental resistance,
However, in order to prevent a decrease in sensitivity and an increase in residual potential, acid
Antioxidants can be added. Antioxidants can be added to any layer containing organic matter.
However, good results are obtained when added to a layer containing a charge transport material.
You can get results. The following antioxidants can be used in the present invention:
The following can be mentioned. Monophenolic 2,6-di-t-butyl-P-cresol, butylated hydrogen
Droxyanizole, 2,6-di-t-butyl-4-ethyl
Thirph 39 40-enol, stialyl β-(3,5-di-t-butyl
-4-hydroxyphenyl)propionate and the like. Bisphenol compound 2.2'-methylene-bis-(4-methyl-6-t-butylene)
methylphenol), 2,2'-methylene-bis-(4-
ethyl-6-t-butylphenol), 4,4'-thio
Bis-(3-methyl-6t-butylphenol), 4,
4'-Butylidenebis-(3methyl-6-t-butylph
phenol) etc. Polymeric phenolic compound 1.1.3-tris-(2-methyl-4-hydroxy-
5-t-butylphenyl)butane, 1,3.5-trimethane
Chil-2,4,6-tris(3,5-di-t-butyl-4
-hydroxybenzyl)benzene, tetrakis-[methyl
Ren-3-(3', 5'-di-t-butyl-4'-
Hydroxyphenyl)propione-1-]methane, bis
[3,3'-bis(4'-hydroxy-3'-t-butylene)
(luphenyl) butyric acid coglycol ester
, tocopherols, etc. Para-phenylene diamines N-phenyl-N'-isopropyl-P-phenylene diamines
Amine, N,N'-di-5ec-butyl-p-phenyle
diamine, N-phenyl-N-see-butyl-p-
phenylenediamine, N,N'-diisopropyl-p-
phenylenediamine, N,N'-dimethyl-N,N'-
di-t-butyl-p-phenylenediamine and the like. Hydroquinones 2,5-di-t-octylhydroquinone, 2,6-di-t-octylhydroquinone
Dodecylhydroquinone, 2-dodecylhydroquinone
, 2-dodecyl-5-chlorohydroquinone, 2-
Octyl-5-methylhydroquinone, 2-(2-octyl
tadecenyl)-5-methylhydroquinone, etc. Organic sulfur compounds dilauryl-3,3'-thiodipropionate, diste
Allyl-3,3'-thiodipropionate, ditetrade
Silu 3,3'-thiodipropionate and the like. Organophosphorus compounds triphenylphosphine, tri(nonylphenyl)phos
Phin, tri(dinonylphenyl)phosphine, tric
Resylphosphine, tri(2,4-dibutylphenoxy)
) phosphine etc. These compounds are known as antioxidants for rubber, plastics, oils and fats41-42-, and are easily available commercially.
I can do it. In the present invention, the amount of the antioxidant added is 1.
0.1 to 100 parts by weight, preferably
, 2 to 30 parts by weight. (The following is a blank space) [Example] Next, an example will be shown.
The present invention is not limited by the examples.
It's not something you can do. All parts in the examples are parts by weight.
. Example] Polyethylene terephthalate with aluminum vapor deposited
Using SnO□ powder as a starting material on a film, electron beam
A medium made of tin oxide with a thickness of 0.5 μm was created using the vapor deposition method.
An interlayer was provided. On top of this, a charge generation layer coating liquid having the following composition,
The charge transport layer coating solution was applied and dried one after another to a thickness of 0.2 μm each.
Formation of M-thick charge generation layer and 22 μm-thick charge transport layer
Then, an electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 5 parts 43- 44- Cyclohexanone 250 parts 2-
Butanone 100 parts [charge
Transport layer coating liquid] 25 parts of a charge transport substance having the following structural formula Generation layer
and a 17-tone charge transport layer, and the electrophotographic method of the present invention
A photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 4 parts tetrahydrogen
Dorofuran 200 parts Example 2 S on the target on an aluminum plate with a thickness of 0.2 mm.
Using nO2, in an atmosphere where the partial pressure ratio of argon and oxygen is ■
Then, by sputtering method, 0.3 μm thick oxidized
An intermediate layer of tin was formed. Second, the following composition
The charge generation layer coating solution and the charge transport layer coating solution are sequentially applied.
Cloth/Charge of 0.1 μm each after drying Tetrahydrofuran [Charge transport N coating liquid] 300 parts of charge transport material with the following structural formula 20 parts 45-46 (Lexan-141 manufactured by GE)
25 parts Methylene chloride 200 parts
Example 3 Sn was used as a target on electroformed nickel with a thickness of 70 mm.
The atmosphere inside the vacuum chamber has an oxygen partial pressure of 1.0 mm.
By reactive sputtering method, a film thickness of 8
A middle layer made of 00 tin oxide was formed. on this
, a charge generation layer coating solution and a charge transport layer coating solution having the following compositions:
were sequentially coated and dried to form a charge generation layer and a charge generating layer of 0.2p each.
The electrophotographic sensitivity of the present invention is
Created a light body. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 4 parts cyclohe
Xanone 2-butanone [Charge transport layer coating liquid] 200 parts 100 parts Charge transport substance having the following structural formula 20 parts Tetrahydrofuran 200 parts
Example 4 SnO is placed as a target on a nichrome plate with a thickness of 0.2 m.
Spatter is removed by introducing argon gas into the vacuum chamber.
An intermediate film made of tin oxide with a film thickness of 0.4 μm was formed by
Created a layer. Next, a charge generation layer having the following composition is formed on top of this.
Apply and dry the coating solution and charge transport layer coating solution in sequence.
each with a 0.3- and an 18-charge charge-generating layer and a charge-transporting layer.
An electrophotographic photoreceptor of the present invention was prepared. [Charge generating layer coating liquid] Charge generating substance having the following structural formula 4 parts 47- 48- cyclohexanone 150 parts Tet
Rahhydrofuran 150 parts [charge transport
Transfer layer coating liquid] Charge transport material with the following structural formula 22 parts Intermediate layer
was formed. On top of this, a charge transport layer coating solution having the following composition,
Apply charge generation layer coating solution and protective layer coating solution sequentially and dry.
each with a charge transport layer of 19 μm and a charge of 0.31 JH1.
A charge generation layer and a 2 μm protective layer are formed, and the electron
A photographic photoreceptor was created. [Charge transport layer coating liquid] Charge transport substance having the following structural formula 30 parts tetra
Hydrofuran 200 parts Example 5 As a target on an aluminum plate with a thickness of 0.5 mm.
Sn target with copper segment with surface coverage of 8%
Using a vacuum chamber, create an atmosphere with an oxygen partial pressure of 1.4 mTorr.
The film is deposited using reactive sputtering in an atmosphere.
Tetrahydrofuran made of tin oxide having a thickness of 1800A [Charge generation layer coating liquid] 220 parts of charge generation substance having the following structural formula 5 parts 49-50- Cyclohexanone Tetrahydrofuran [Protective layer coating liquid] 100 parts 250 parts Photoreceptor Created. [Charge transport layer coating liquid] 25 parts of charge transport material having the following structural formula: 90 parts of conductive titanium oxide
En 220 parts n-pig
Nol 60 parts Example 6 Targera 1- was placed on a 0.2+nm thick nickel plate.
Then, SnO□ containing 3% by weight of 5b203 was used.
sputtering by introducing argon gas into the vacuum chamber.
An intermediate layer made of tin oxide with a thickness of 1000 μm was created using the
was formed. On top of this, a charge transport layer coating solution having the following composition,
charge generation layer coating liquid, intermediate layer coating liquid and protective layer coating liquid.
Sequentially coated and dried at tA to form a charge transport layer of 20 μm each, 0
.. 2μm charge generation layer, 0.2μm intermediate layer and 5μm
Electrophotographic methylene chloride (2) of the present invention, 2-dichloroethane (charge generation layer coating liquid) 150 parts of a charge generation substance having the following structural formula 60 parts 4 parts 51-52-Toluylene-2,4 -Diisocyanate-1-0, 1 part Te1
Herahydrofuran 300 parts 4-Me
Chill-2-pentanone 50 parts [middle
Layer coating liquid] Methanol n-butanol [Protective layer coating liquid] 70 parts 40 parts Charge generation layer coating liquid and protective N coating liquid were applied and dried in sequence.
After drying, a charge transport layer of 22 μm and a charge generating layer of 0.3 μm were formed.
Forming a green layer and a protective layer of 3 parts m, electrophotography of the present invention
A photoreceptor was created. [Charge transport layer coating liquid] Charge transport substance having the following structural formula: 25 parts tin oxide
80 parts toluene
1.70 parts 2-butanone
100 copies Example 7 On an aluminum plate with a thickness of 0.3 nu, a target of S
Using n, an atmosphere with an oxygen partial pressure of 1.6 mTorr was created in the vacuum chamber.
The film was made to have a film thickness of 1 by reactive sputtering.
.. An intermediate layer made of 50OA tin oxide was prepared. this
On top, a charge transport layer coating solution having the following composition, methylene chloride [charge generation layer coating solution] 230 parts of a charge generation substance having the following structural formula 5 parts 1 to lylene-2,4-diisocyanate cyclohexane
Non 0.2 parts 150 parts 53-54-2-butanone [Protective layer coating liquid] 200 parts Methylene chloride 650 parts of a compound represented by the following structural formula 20 parts Titanium oxide 50 parts
(■) 40 parts toluene
250 parts 2-butano
70 parts Example 8 Polyethylene terephthalate having Hastelloy as a conductive layer
On the rate film, using SnO□ powder as a starting material,
Tin oxide with a thickness of 0.2 μm is made using anti-heating vacuum evaporation method.
An intermediate layer was formed. On top of this, apply a coating liquid with the following composition.
After coating and drying, a eutectic complex photosensitive layer with a dry film thickness of 15 μm was formed.
An electrophotographic photoreceptor of the present invention was prepared. (Comparative Examples 1 and 7 of Ordinary Chemical Cleavage Panlite L-1225JU) In Examples 1 and 7, no intermediate layer was provided, and
The photoreceptors of Comparative Examples 1 and 7 were prepared in the same manner as in Examples 1 and 7.
It was created. Comparative Example 2, 3.5 In Example Z, 3.5, the intermediate layer was an intermediate layer having the following composition.
The only difference was that an intermediate layer with a thickness of 0.5μ was provided instead of the coating liquid.
Photoreceptor of Comparative Example 2, 3.5 in the same manner as Example 2, 3.5
It was created. Methanol n-butanol 60 parts 40 parts Comparative Example 4 55- 56- In Example 4, the intermediate layer was coated with an intermediate layer coating solution having the following composition.
Example except that an intermediate layer with a thickness of 0.5p+n was provided instead.
A photoconductor of Comparative Example 4 was prepared in the same manner as in Comparative Example 4. SnO powder 10
Part toluylene-2,4-diisocyanate 0.1
Part 2-Butanone 100
Part Comparative Example 6 In Example 6, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Instead, an intermediate layer with a thickness of 1.07 m was provided. A photoreceptor of Comparative Example 6 was prepared in the same manner as in Example 6. SnO□ powder containing 3% of 5b2o
5 parts water
8o parts methanol
80 parts Comparative Example 8 In Example 8, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example 8 except that an intermediate layer with a thickness of 2.0 μm was provided instead.
A photoreceptor of Comparative Example 8 was prepared in the same manner as described above. SnO□ powder 20 parts water
150 parts methanol 2
The characteristics of each photoreceptor of 00 copies or more were measured using an electrostatic copying paper tester (
Using Kawaguchi Electric's new model 5P-428), do the following:
evaluated. First, -5.2KV (or +5.6KV) discharge
Pressure nite. Corona charging for 20 seconds followed by dark decay for 10 seconds.
Then, tungsten light of 10 Qux was irradiated. Surface potential v2 (V) at 2 seconds and 20 seconds after the start of charging at this time
, V2o (V) and surface potential v3n after 10 seconds of dark decay
(v) and also optically attenuate V311 to half the potential.
Exposure amount required to achieve Ell/□ (Qux-see)
was measured. In addition, the dark decay rate (D, D) is defined by the following formula
be done. D, D=V3-/Vza In addition, the surface potential after 20 seconds of the above exposure is taken as the residual potential VR.
defined. Furthermore, after electrification and exposure under the above conditions were carried out simultaneously for 30 minutes to fatigue, the same measurements as above were carried out again.
. The evaluation results are shown in Table-1. Table-1 Example 9 Polyethylene terephthalate 1~ with aluminum vapor deposited
・Electron beam processing using TiO as an evaporation material on the film
Titanium oxide with a thickness of 0.6 prn by thermal vacuum evaporation method
An intermediate layer consisting of On top of this, a charge of the following composition is generated.
The layer coating solution and the charge transport layer coating solution are applied and dried one after another.
0.2 μm thick charge generation layer and 22 μm thick charge transport layer
A layer was formed to produce an electrophotographic photoreceptor of the present invention. C charge generation layer coating liquid] Charge generation substance with the following structural formula 5 parts cyclohe
Xanone 2-butanone 200 parts 140 parts 59- 60- [Charge transport layer coating liquid] Charge transport substance having the following structural formula: 25 parts Tetrahydrofuran: 230 parts
Example 10 On an aluminum plate with a thickness of 0.2 mm, the target is T.
An atmosphere where the partial pressure ratio of argon and oxygen is 1 using iO
Below, a 0.3 μm thick layer of titanium oxide was deposited by sputtering.
An intermediate layer made of tan was provided. On top of this, add an electric current of the following composition.
Apply the charge generation layer coating liquid and the charge transport layer coating liquid in sequence.
Dry charge generation layer of 0.1 mm each and 17 charges
A transport layer was formed to produce an electrophotographic photoreceptor of the present invention. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts tetrahydrogen
Dorofuran 300 parts [charge transport layer
Coating liquid] Charge transport material with the following structural formula 30 parts Polycarbonate
carbonate (GE Lexan-141)
32 parts methylene chloride 300
Part Example Work 1 T” is applied to the target on electroformed nickel with a thickness of 70 μm.
The partial pressure ratio in the vacuum chamber is oxygen/argon = 15/85.
An intermediate layer made of titanium oxide with a thickness of 0.2 μm was formed by reactive sputtering under an atmosphere of 61 62 -. On top of this, a charge generation layer coating solution with the following composition and a charge transport layer are added.
A charge of 0.2 strokes is generated by sequentially applying and drying the layer coating solution.
Forming a biolayer and a charge transport layer of 20 layers, the electron
A photographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts cyclohe
Xanone 150 parts 2-butanone
100 parts (charge transport layer coating)
Technical fluid] Charge transport substance with the following structural formula 25 parts tetra
Hydrofuran 300 parts Example 12 Ti was used as the evaporation material on a nichrome plate with a thickness of 0.2 m.
Then, oxygen gas is introduced into the vacuum chamber and reactive ion blasting is performed.
Titanium oxide film with a film thickness of 0.25-
A middle layer was created. On top of this, a charge generation layer with the following composition is applied.
The liquid and the charge transport layer coating liquid are applied and dried one after another.
Formed with a 0.3-layer charge generation layer and an 18-layer charge transport layer.
Then, an electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] 5 parts of a charge generation substance having the following structural formula (UC,
C, m XYHL) 63- - cyclohexanone 150 parts tet
Rahhydrofuran 130 parts [charge transport
Transfer layer coating liquid] 25 parts of a charge transport substance having the following structural formula [charge
Transport layer coating liquid] 25 parts of a charge transport substance having the following structural formula, 220 parts of tetrahydrofuran.
Example 13 A target is placed on an aluminum plate with a thickness of 0.511N11.
Using Ti2O3, argon gas was introduced into the vacuum chamber.
, titanium oxide with a thickness of 0.3 mm by sputtering method.
It created a stronger middle class. On top of this, charge of the following composition
transport layer coating liquid, charge generation layer coating liquid and protective layer coating liquid.
Sequentially coated and dried to form a charge transport layer of 19p and a charge transport layer of 0.3p each.
Forming a charge generation layer of μ and a protective layer of 2, the present invention
An electrophotographic photoreceptor was created. Tetrahydrofuran [Charge generating layer coating liquid] Charge generating substance having the following structural formula 250 parts 5 parts Cyclohexanone Tetrahydrofuran 200 parts 80 parts 65-66- [Protective layer coating liquid] Conductive titanium oxide 90 parts 1-l
En 220 parts n-pig
Nol 60 parts Example 14 0.2 parts thick aluminum plate" Second, evaporate Ti.
Reactive vapor deposition using oxygen gas in a vacuum chamber
An intermediate layer made of oxygen titanium with a film thickness of 0.5 mm was created using the method.
I got it. Second, a charge transport layer coating solution with the following composition, charge
Apply generation layer coating liquid, intermediate layer coating liquid, and protective layer coating liquid in sequence.
, a charge transport layer of 20pm each after coating and drying, 0.2μ
m charge generation layer, 0.2 parts m intermediate layer and 5 parts m storage layer.
A protective layer was formed to produce an electrophotographic photoreceptor of the present invention. [Charge transport layer coating solution] 30 parts of a charge transport substance having the following structural formula
Tolylene 1,2-dichloroethane [Charge generating reverse layer coating liquid] Charge generating substance toluylene 2,4-diisocyanate tetrahydrof with the following structural formula
Ran 4-methyl-2-pentanone [Intermediate layer coating liquid] Alcohol-soluble polyamide 180 parts 80 parts 0.2 parts 100 parts 1.50 parts-6 (Amiran CM-8000 manufactured by Toshi ■) Methanol 70 parts n-butyl
Tanol 40 parts [protective layer
Coating liquid] 25 parts of charge transporting substance with the following structural formula: 80 parts of tin oxide
en 1.70 parts 2-
Butanone 100 parts example
15 TiO is placed as a target on a nickel plate with a thickness of 0.3 mr.
In an atmosphere where the partial pressure ratio of argon and oxygen is 1,
Titanium oxide film with a thickness of 0.77 ann was created using the sputtering method.
An intermediate layer was formed. On top of this, charge of the following composition
transport layer coating liquid, charge generation layer coating liquid and protective layer coating liquid.
A charge transport layer of 22 μm and a charge transport layer of 0.0 μm were sequentially coated and dried.
A charge generation layer of 3 μm and a protective layer of 3 μm were formed.
An electrophotographic photoreceptor of the invention was created. [Charge transport layer coating liquid] Methylene chloride [Charge generation layer coating liquid] Charge generation substance 1 of the following structural formula - Louisene-2,4 - diisocyanate cyglohexa
Non-2-butanone [protective layer coating liquid] 250 parts 0, 1 part 180 parts 85 parts 69- 70- Tin (II) oxide 40 parts
Toluene 250 parts 2
-Butanone 70 parts comparative example
9,15 In Examples 9 and 15, no intermediate layer was provided, respectively.
The rest was the same as in Examples 9 and 15, and in Comparative Examples 9 and 15.
A photoreceptor was created. Methanol 60 parts n-bu
Tanol 40 parts Comparative example 1
0 In Example 10, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 0.5 μm was provided instead of
A photoreceptor of Comparative Example 10 was prepared in the same manner as Comparative Example 10. TiO□ powder 10 parts
Luylene-2,4-diisocyanate 0.1 part 2
-Butanone 100 parts ratio
Comparative Example 1 In place of the intermediate layer made of titanium oxide in Example 1
Using an intermediate layer coating liquid with the following composition, a thickness of 1.0/Im was applied.
Comparative Example 1 was prepared in the same manner as in Example 11 except that an intermediate layer was provided.
Photoconductor No. 1 was prepared. Ti2O3 powder 5 parts water
                         
80 parts methanol 80 parts
Comparative Example 12.13 In Example 12.13, no intermediate layer was provided, respectively.
Other than that, Comparative Example 12.
Thirteen photoreceptors were prepared. Comparative Example 14 In Example 14, instead of the intermediate layer made of titanium oxide
Using an intermediate layer coating liquid with the following composition,
Comparative Example 14 was prepared in the same manner as Example 14 except that an interlayer was provided.
A photoreceptor was created. 71- 72- Toluene 20 parts or more
The characteristics of each photoreceptor were measured using an electrostatic copying paper tester (manufactured by Kawaguchi Electric).
The evaluation was made as follows using a newly manufactured model 5P-428). First, -5.2KV (or +5.6KV) (7)
Perform discharge pressure and corona charging for 20 seconds, then 1
Dark decay for 0 seconds, then 1 (lQux of tungsten
irradiated with light. At this time, the surface potential Vi (v
), V2. (V) and surface potential V3 after 10 seconds of dark decay
0 (V) and also optically attenuate v3o to half the potential.
The exposure amount required to
was measured. In addition, the dark decay rate (D, D) is defined by the following formula
be done. D, D=V3. /V. In addition, the surface potential after 20 seconds of the above exposure is defined as the residual potential vR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-2. Table 2 73- 74- Example 17 Polyethylene terephthalate with aluminum vapor deposited
Using In2O3 as a target on the film, inside a vacuum chamber
by sputtering method by introducing argon gas into
An intermediate layer made of indium oxide with a thickness of 0.3 IJm was set up.
I got it. On top of this, a charge generation layer coating liquid with the following composition, charge transport
The layer coating solution was applied and dried one after another to form an electrode with a thickness of 0.2 μm.
A charge generation layer and a charge transport layer with a thickness of 22 μm were formed, and the present invention
A bright electrophotographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
300 parts of xanone 2-butanone 100 parts [Charge transport M refrigeration fluid] 25 parts of charge transport substance with the following structural formula Tetrahydrofuran 200 parts
Example 18 A tartar was placed on an aluminum plate 1- with a thickness of 0.2III111.
In2 containing 5% by weight of SnO2 in galley 1~1~
Introduce argon gas into the vacuum chamber using O.
Indium oxide with a film thickness of 0.2 pa was made by the uttering method.
An intermediate layer was formed. On top of this, charge of the following composition
Apply and dry the generation layer coating solution and charge transport layer coating solution in sequence.
After drying, a charge generating layer of O, ]μ and a charge generating layer of 17 μm were formed.
A cargo transport layer was formed to produce an electrophotographic photoreceptor of the present invention.
. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 5 parts 5 6- 2 parts of polyester [Charge transport layer coating liquid] Charge transporting substance having the following structural formula 25 parts film thickness
An intermediate layer made of indium oxide with a thickness of 0.15 μm was provided.
. On top of this, a charge generation layer coating solution with the following composition and a charge transport layer are added.
The layer coating solution was applied and dried in sequence to form a coating of 0.2 parts and 7 m each.
A charge generation layer and a charge transport layer of 20 μm were formed, and the present invention
A bright electrophotographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts methyl chloride
Len 200 parts Example 19 In is placed on the target on electroformed nickel with a thickness of 70 mm.
An atmosphere with an oxygen partial pressure of 1.5 millitorr is used in the vacuum chamber.
The reactive sputtering method cyclohexano
2-butanone [Charge transport layer coating liquid] Charge transport material having the following structural formula: 100 parts 100 parts 30 parts - 77 = 78- Example 20 On a nichrome plate with a thickness of 0.2 + nm, In2O3 and In
The starting material is a mixture of
electron beam evaporation method (reactive
Made of indium oxide with a thickness of 0.8 μm by vapor deposition method)
A middle layer was created. On top of this, apply a charge generation layer with the following composition.
The coating solution and the charge transport layer coating solution are applied and dried one after another.
0.3 μm charge generation layer and 18 parts m charge transport layer
An electrophotographic photoreceptor of the present invention was prepared by applying the method. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts cyclohe
Xanone Tetrahydrofuran 150 parts 200 parts [Charge transport layer coating liquid] 27 parts of charge transport substance having the following structural formula Tetrahydrofuran 350 parts
Example 21 Polyethylene terephthalate with nickel as a conductive layer
On the base film, using In2O3 as a target,
Sputtering in an atmosphere where the partial pressure ratio of Rougon and oxygen is 1.
From indium oxide with a film thickness of 0.1μ by the ring method.
An intermediate layer was formed. On top of this, apply a coating liquid with the following composition.
Coating and drying to form a eutectic complex photosensitive layer with a dry film thickness of 15 mm.
Thus, an electrophotographic photoreceptor of the present invention was prepared. Methylene chloride 650 parts The following composition
20 parts of the compound represented by the following structural formula
30 parts of charge transport material h3 Example 22 A target was placed on an aluminum plate with a thickness of 0.2+nm.
Using In, the oxygen partial pressure in the vacuum chamber is 1.0 mTorr.
using reactive sputtering method under an atmosphere of
An intermediate layer made of indium oxide with a thickness of 0.1 μm is provided.
Ta. On top of this, a charge transport layer coating solution with the following composition, a charge generation
The layer coating solution and the protective layer coating solution are applied and dried one after another.
19 charge transport layers, 0.3 charge generation layers, and
The electrophotographic photoreceptor of the present invention is prepared by forming a protective layer of 2 parts.
accomplished. [Charge transport layer coating solution] Tetrahydrofuran [Charge generation layer coating solution] 300 parts of charge generating substance with the following structural formula 3 parts cyclohexanone tetrahydrofuran [Protective layer coating solution] 200 parts 80 parts 81- 82- Conductivity Titanium oxide 90 parts 1 health
En 220 parts n-pig
Nol 60 parts Example 23 In2O3 powder was poured onto a 0.2wn thick nickel plate.
As a starting material, the thickness is 0.5 mm using the vacuum evaporation method using the resistance heating method.
An intermediate layer of indium oxide of .mu.m was formed. this
On top, a charge transport layer coating liquid and a charge generation layer coating liquid having the following compositions.
and protective layer coating solution were sequentially applied and dried, and each
μm charge transport layer, 0.2μm charge generation layer, 0.2μm
The electrode of the present invention has an intermediate layer of 5 μm and a protective layer of 5 μm.
A child photographic photoreceptor was created. [Charge transport layer coating liquid] 25 parts of a charge transport substance having the following structural formula
Tolylene 1,2-dichloroethane [Charge generation layer coating liquid] Charge generation substance toluylene-2,4-diisocyaki 1-tetrahydro having the following structural formula
Furan 4-methyl-2-pentanone [intermediate layer coating liquid] ioo part 100 parts 0.1 part 100 parts 200 parts (Polycarboy manufactured by Mitsubishi Bonsikaji ■, -hZ) Methanol n-butanol 70 parts 40 parts 3- [Protective layer coating liquid] Tin oxide 80 parts Toluene
170 parts 2-butano
100 copies Example 24 Targera 1- and 0.3 mm thick aluminum plate
and has aluminum segments with a surface coverage of 8%.
Using an In target, the oxygen partial pressure in the vacuum chamber is 1.0.
Reactive spatter in an atmosphere of millitorr
Made of indium oxide with a film thickness of 0.15 μm using the
An interlayer was provided. On top of this, apply a charge transport layer coating solution with the following composition.
, charge generation layer coating liquid and protective N coating liquid were applied in sequence.
Dry to 22μM each charge transport layer, 0.3μM charge
A generation layer and a protective layer of 3 μm are formed, and the electrophotography of the present invention is
A euphotoreceptor was created. [Charge generation layer coating liquid] 30 parts of a compound represented by the following structural formula
Tyrene [Charge generation layer coating liquid] Compound 1-lylene-2,4-diisocyanate cyclohexane represented by the following structural formula
Non-2-butanone [Protective M coating liquid] 300 parts 0.2 parts 200 parts 150 parts 5- 86- Tin oxide (n) 40 parts
Ruen 250 parts 2-
Butanone 70 parts Comparative Example 1
7.22 In Example 17.22, no intermediate layer was provided, respectively.
Other than that, Comparative Example 17.
22 photoreceptors were prepared. Comparative Example 18 In Example 18, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example 1 except that an intermediate layer with a thickness of 0.5 nm was provided instead of
A photoreceptor of Comparative Example 18 was prepared in the same manner as in Example 8. In2O3 powder containing 5wt% SnO2
10 parts toluylene-2,4-diisocyanate
0.1 part 2-butanone
100 parts Comparative Examples 19, 23.24 In Examples 19, 23.24, the intermediate layer had the following composition.
In addition to providing an intermediate layer with a thickness of 0.3 - in place of the intermediate layer coating liquid.
Comparative Example 19° was prepared in the same manner as Examples 19, 23, and 24.
No. 23 and 24 photoreceptors were prepared. Methanol 60 parts n-bu
Tanol 40 parts Comparative example 2
0 In Example 20, the intermediate layer made of indium oxide
Instead, use an intermediate layer coating liquid with the following composition, and the thickness is 1.0 μm.
A comparative example was prepared in the same manner as in Example 20 except that an intermediate layer was provided.
Twenty photoreceptors were prepared. In2O3 powder 5 parts water
                         
80 parts methanol 80 parts
Comparative Example 2 In Example 21, the intermediate layer made of indium oxide
Instead, use an intermediate layer coating liquid with the following composition, and apply a coating with a thickness of 2.0 units.
Comparative Example 2 was carried out in the same manner as in Example 21 except that an intermediate layer was provided.
Photoconductor No. 1 was prepared. 87-88 In2O3 powder 20 parts Toluene 20 parts or more
The characteristics of each photoreceptor were measured using an electrostatic copying paper tester (manufactured by Kawaguchi Electric).
The evaluation was made as follows using a newly manufactured model 5P-428). First, -5.2KV (or +5.6KV) discharge
Apply pressure and corona charging for 20 seconds, then 10 seconds.
After dark decay, tungsten light of 10 flux was irradiated.
I shot it. At this time, the surface potential VX (V
), V2o (V) and surface potential V3 after 10 seconds of dark decay
.. (V) and also optically attenuate Van to half the potential.
Exposure amount E□/2 (Qux-sec) required to
was measured. In addition, the dark decay rate (D, D) is defined by the following formula
be done. D, D=V3°c. In addition, the surface potential after 20 seconds of the above exposure is defined as the residual potential vR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-3. Table 3 9 90- Example 25 Polyethylene terephthalate with aluminum vapor deposited
Resistance heating method using Fe2O3 as the vapor deposition material on the film
A medium made of iron oxide with a thickness of 1.0p was made using the vacuum evaporation method of
An interlayer was provided. On top of this, apply a charge generation layer coating solution with the following composition.
, charge transport layer coating solution was sequentially applied and dried to give a coating solution of 0.2
Part 1 m thick charge generation layer and 22 parts m thick charge transport layer.
An electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
Xanone 2-butanone 300 parts 50 parts [Charge transport layer coating liquid] 30 parts of charge transport substance having the following structural formula Tetrahydrofuran 260 parts
Example 26 Fe is used as the evaporation material on an aluminum plate with a thickness of 0.2 mm.
0□ gas is introduced into the vacuum chamber using a reactive vapor deposition method.
An intermediate layer made of iron oxide with a thickness of 0.7 mm was provided. child
On top of this, a charge generation layer coating solution and a charge transport layer having the following composition are applied.
Apply and dry the coating solution in sequence to generate a charge of 0.1 μm each.
Form a charge transport layer of raw N and 17μ of the charge transport layer of the present invention.
A child photographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 5 parts 91-2 Polyester (Vylon 300 manufactured by Toyobo ■) Tetrahydrofuran [Charge transport layer coating liquid] Charge transport substance having the following structural formula 1 part 300 parts 25 300 parts methylene chloride
Example 27 On electroformed nickel with a thickness of 70 mm, the target is Fe2
Using O3, the partial pressure ratio of argon and oxygen gas is 1.
Sputtering method under atmosphere to a thickness of 0.4 ton of acid
An intermediate layer made of iron chloride was provided. This upper layer has the following composition.
Sequentially apply charge generation layer coating solution and charge transport M coating solution
-Dried charge generating layer of 0.2 μm each and 20 parts m
A charge transport layer is formed to produce an electrophotographic photoreceptor of the present invention.
did. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts cyclohe
Xanone 2-butanone [Charge transport layer coating liquid] Charge transport substance having the following structural formula: 100 parts 160 parts 25 parts Tetrahydrofuran 280 parts
Example 28 Fe is added to the evaporation material on a nichrome plate with a thickness of 0.2 nn.
Using Taiichi, oxygen gas is introduced into the vacuum chamber to perform reactive ion blasting.
An intermediate film made of iron oxide with a thickness of 0.31 m was created using the tinging method.
formed a layer. On top of this, apply a charge generation layer coating solution with the following composition.
and charge transport layer coating solution were sequentially applied and dried to 0.
.. Formed 3 charge generation layers and 18/Im charge transport layer.
An electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] Trigonal selenium 10 parts Polyvinyl
Nylcarbazole 10 parts 2-butanone
60 parts toluene
60 parts [Charge transport layer coating liquid
] Charge transport substance with the following structural formula 30 parts tetra
Hydrofuran 280 parts Example 29 On an aluminum plate with a thickness of 0.5 mm, Fe was added as an evaporation material.
Using 2O3, the vacuum evaporation method uses electron beam heating.
An intermediate layer made of iron oxide with a thickness of 0.9 μm was formed. In addition to this, the charge transport W! of the following composition is added! J coating liquid, charge generation
Apply and dry the layer coating liquid and protective layer coating liquid in sequence,
Each has a charge transport layer of 19 layers, a charge generation layer of 0.3μ and
Two protective layers were formed to produce the electrophotographic photoreceptor of the present invention.
did. [Charge transport layer coating liquid] 25 parts of a charge transport substance having the following structural formula (Uni
Tetrahydrofuran 280 parts (manufactured by Chika U-100)
Charge-generating layer coating liquid] Charge-generating substance with the following structural formula 3 parts 95-96- cyclohexalantetrahydrofuran [Protective layer coating liquid] 150 parts 100 parts Cloth/Charge transport layer of 20p each after drying, 0.2- charge of
Forms generation layer, 0.2 μm intermediate layer and 5 protective layers
Then, an electrophotographic photoreceptor of the present invention was prepared. [Charge transport layer coating liquid] Charge transport material with the following structural formula 30 parts Conductive
Titanium oxide 90 parts toluene
220 parts n-butanol
60 parts Example 30 Fe was placed on a 0.2 mm thick nickel plate as an evaporation material.
Using 3O4, a film thickness of 1.3 mm was obtained using a resistance heating vacuum evaporation method.
An intermediate layer of 2 μm of iron oxide was formed. On top of this
Charge transport layer, charge generation layer coating liquid, and intermediate layer coating with the following compositions:
The solution and the protective layer coating solution were sequentially coated: methylene chloride 1,2-dichloroethane [charge generation layer coating solution] 200 parts of a charge generation substance having the following structural formula: 60 parts 5 parts 98% tetrahydrofuran 4-methyl-2-pentanone [intermediate] Layer coating solution] 200 parts 50 parts methanol n-butanol [Protective layer coating solution] 70 parts 40 parts A charge transport layer of 0.22 μm and a protective layer of 0.022 μm were formed and created. [Charge Transport Layer Coating Solution] A 0.3 μm charge generation layer containing a charge transport material having the following structural formula and the electrophotographic photoreceptor of the present invention, 25 parts tin oxide, 80 parts toluene.
170 parts 2-pig
Non 100 copies Example 3
1 Aluminum plate with a thickness of 0.3 mm
Using Fe3O4, the partial pressure ratio of argon and oxygen gas is ■.
A film thickness of 0.3 μm was obtained by sputtering under an atmosphere of
An intermediate layer made of iron oxide was created. Second, below
Composition of charge transport N coating liquid, charge generation layer coating liquid and protection
The layer coating liquids were sequentially coated and dried, and each methylene chloride [charge generation layer coating liquid] 250 parts of a charge generating substance having the following structural formula: 5 parts, 9 parts, 100 1-lylene-2,4-diisocyane-1-0, 2nd part
Clohexanone] 7770 parts 2
-Butanone 100 parts [protective layer
Coating liquid] Methylene chloride 650 parts or less
Compound represented by the structural formula 20 parts titanium oxide
50 parts tin oxide (U)
40 parts toluene
250 parts 2-butanone
70 parts Example 32 Polyethylene terephthalate having Hastelloy as a conductive layer
Second, using Fe2O3 as the target
, sputtering method using argon gas introduced into the vacuum chamber
An intermediate layer made of iron oxide with a thickness of 0.3 μm was created by
I got it. On top of this, apply a coating liquid with the following composition and dry it.
A eutectic complex photosensitive layer with a dry film thickness of 15 μm was provided, and the electron
A photographic photoreceptor was created. Comparative Example 25.31 In each of Example 25.31, no intermediate layer was provided.
Comparative Example 25. was prepared in the same manner as Example 25.31 except for the above.
31 photoreceptors were prepared. Comparative Examples 26, 27.29 In Examples 2G and 27.29, the intermediate layer had the following composition.
Instead of the intermediate layer coating liquid, an intermediate layer with a thickness of 0.3 IJm is provided.
Other than that, Comparative Example 2 was carried out in the same manner as in Examples 26, 27, and 29.
A photoreceptor having a diameter of 6°27.29 was prepared. 150 parts of water and methanol 200 parts - 101 - 102 - Comparative Example 28 In Example 28, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example 2 except that an intermediate layer with a thickness of 0.5 μm was provided instead.
A photoreceptor of Comparative Example 28 was prepared in the same manner as in Example 8. Fe2O3 powder 10 parts
In Example 32, the intermediate layer made of iron oxide had the following composition.
Instead of the intermediate layer coating liquid, an intermediate layer with a thickness of 2.0p+n is provided.
Other than that, the photoreceptor of Comparative Example 32 was prepared in the same manner as in Example 32.
Created. 20 parts of Fe2O3 powder
Luylene-2,4-diisocyanate 0.1 part 2
-Butanone 100 parts comparison
Example 30 In Example 30, the intermediate layer made of iron oxide had the following composition.
In place of the intermediate layer coating liquid, an intermediate layer with a thickness of 1.0 pm is provided.
Other than that, the photoreceptor of Comparative Example 30 was prepared in the same manner as in Example 30.
Created. Fe2O3 powder 5 parts Water Methanol 80 parts 80 parts Comparative Example 32 Toluene 20 parts or more
The characteristics of each photoreceptor were measured using an electrostatic copying paper tester (manufactured by Kawaguchi Electric).
The evaluation was made as follows using a newly manufactured model 5P-428). First, -5.2KV (or +5.6KV) (7)
Perform discharge pressure and corona charging for 20 seconds, then 1
Dark decay for 0 seconds, then 10 flux tungsten
irradiated with light. Surface potential V2 (V) at 2 seconds and 15 seconds after the start of charging at this time
, v, 5 (V) and surface potential v2 after 10 seconds of dark decay
5(v) and also v2. , the light decreases to half the potential
Measure the exposure amount E□/2 (Qux-see) required to attenuate 103-104-
Ta. Note that the dark decay rate (D, D) is defined by the following equation. D, D=v25/v□5 Also, the surface potential after 20 seconds of the above exposure is taken as the residual potential vR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table 4. Table 4 -105- -106- Example 33 Polyethylene terephthalate L/-t with aluminum vapor deposited
・Electrons are formed on the film using 1, a2o3 powder as a starting material.
From lanthanum oxide with a thickness of 0.7 μm by beam evaporation method
An intermediate layer was formed. On top of this is a charge generation layer with the following composition.
Coating liquid and charge transport layer coating liquid are applied and dried one after another.
A 0.2 μm thick charge layer and a 22 μm thick charge transport layer.
An electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] 5 parts of a charge transporting substance having the following structural formula QCQ 200 parts of cyclohexanone 2-butanone 100 parts [Charge transporting layer coating liquid] 25 parts of a charge transporting substance having the following structural formula 300 parts of TeI-lahitorofuran
Example 34 Targera 1-L on an aluminum plate with a thickness of 0 and 2 mm
a,,0. 5 to 20 millimeters of 1 to
Introduce argon gas and use sputtering method to thicken the film.
An intermediate layer of 0.5 pm lanthanum oxide was formed.
. On top of this, a charge generation layer coating solution with the following composition and a charge transport layer are added.
The layer coating solution was applied and dried one after another to form a 0.1μm electric current.
A charge generation layer and a charge transport layer of the present invention are formed.
An electrophotographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 4 parts-107
~ 08 Tetrahydrofuran 280 parts
Charge transport layer coating liquid] 28 parts charge transport material with the following structural formula
A charge of 0.2 μm is generated by sequentially applying and drying the solution.
layer and 20 parts m of the charge transport layer to form an electron transport layer of the present invention.
A photographic photoreceptor was created. [Charge-generating M coating liquid] Charge-generating substance with the following structural formula: 3 parts methoxychloride
260 parts Example 35 On electroformed nickel with a thickness of 70 mm, La2 was applied to Targera I-.
0. , and create an atmosphere where the partial pressure ratio of argon and oxygen is 1.
An acid film with a thickness of 0.4 μm was applied by sputtering under atmospheric pressure.
An intermediate layer of lanthanum chloride was provided. On top of this, the following group
Coating liquid for charge generation layer and charge layer cyclohexanone 2-butanone [Coating liquid for charge transport layer] 200 parts of charge transport substance having the following structural formula: 70 parts, 30 parts - 110 parts - Tetrahydrofuran: 300 parts
Example 36 La is applied as a target on a nichrome plate with a thickness of 0.2 mm.
An atmosphere with an oxygen partial pressure of 10 to 20 mTorr is created in the vacuum chamber.
By reactive sputtering method in an atmosphere,
An intermediate layer made of lanthanum oxide with a film thickness of 0.25 IJm was set up.
I got it. On top of this, a charge generation layer coating solution of the following composition and a charge generation layer coating solution of the following composition are added.
Cargo transportation N coating liquid was applied and dried one after another, and each
A charge generation layer and an 18-charge transport layer are formed, and the present invention
An electrophotographic photoreceptor was prepared. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
200 parts of xanone Tetrahydrofuran [Charge transport layer coating liquid] 90 parts of a charge transport substance having the following structural formula 25 parts Tetrahydrofuran 300 parts
Example 37 A target is placed on an aluminum plate with a thickness of 0.5+m+.
Using La, the oxygen partial pressure inside the vacuum chamber is 20 to 40 mTorr.
For the reactive sputtering method,
Therefore, an intermediate layer made of lanthanum oxide with a film thickness of 0.4 μm is formed.
Established. On top of this, apply a charge transport layer coating solution with the following composition, charge
Apply and dry the generation layer coating liquid and protective layer coating liquid in sequence.
and a charge transport layer of 19/1 m and a charge generation of 0.31 A, respectively.
The electrophotographic image of the present invention is formed by forming a green layer and a protective layer of 2 μm.
A photoreceptor was created. [Charge transport layer coating liquid] -111- -112- 30 parts of a charge transport substance having the following structural formula Tetrahydrofuran [Charge generating layer coating liquid] 280 parts of a charge generating substance having the following structural formula 4 parts Cyclohexanone Tetrahydrofuran [Protective layer coating Liquid] 170 parts 110 parts Rate copolymer conductive titanium oxide 90 parts Toluene
220 parts n-butano
60 parts Example 38 On a nickel plate with a thickness of 0.2 mm, the same plate as in Example 34 was
Thickness 0.2. An intermediate layer made of lanthanum oxide is provided.
Ta. On top of this, a charge transport layer coating solution with the following composition, a charge generation
Apply the layer coating solution, intermediate layer coating solution, and protective layer coating solution in sequence.
Cloth/Dry charge transport layer of 20μm each, 0.2-μm charge transport layer
Load generation layer, o, 2. form the intermediate layer of m and the protective layer of 5
An electrophotographic photoreceptor of the present invention was prepared. [Charge transport layer coating liquid] Charge transport material with the following structural formula: 26 parts chloride
200 parts of tyrene 1,2-dichloroethane 70 parts -113- -114- [Charge generation layer coating liquid] 5 parts of charge generation substance having the following structural formula Toluylene-2,4-cyisocyakitotetrahytotroph
Ran 4-methyl-2-pentanone [Intermediate Ra coating liquid] 0.2 parts 200 parts 80 parts 1 - Luene 170 parts 2
-Butanone 100 copies carried out
Example 39 Same as Example 35 on an aluminum plate with a thickness of 0.3 mm.
An intermediate layer of lanthanum oxide with a thickness of 0.6 pm was prepared in the same way.
Layers were set up. On top of this, a charge transport layer coating solution having the following composition,
Apply and dry the charge generation layer coating liquid and the protective layer coating liquid in sequence.
After drying, a charge transport layer of 227ym each and a charge of 0.3pIQ were formed.
The electron beam of the present invention is formed by forming a charge generation layer and a 3 μm protective layer.
A photographic photoreceptor was created. [Charge transport layer coating liquid] Charge transport substance having the following structural formula: 25 parts methano
n-butanol [Coating liquid for protective layer] 70 parts 40 parts Tin oxide 80 parts Methylene chloride [Coating liquid for charge generation layer] Charge generating substance with the following structural formula 280 parts 5 parts 15 16 Titanyl phthalocyanine 1 Helylene-2, 4-Sicyclohexanone 2-butanone [Protective layer coating liquid] Socyane-1-0,1 parts 150 parts 110 parts Methylene chloride 650 parts The following structure
Compound represented by the formula 20 parts titanium oxide
50 parts tin(II) oxide
40 parts 1-Luene
250 parts 2-butanone
70 parts Example 40 Polyethylene terephthalate having Hastelloy as a conductive layer
A film thickness of 1 was applied to the film using the same method as in Example 33.
An intermediate layer of lanthanum oxide of μm was formed. this"
Second, apply a coating liquid with the following composition and dry it, with a dry film thickness of 15
The electrophotographic photoreceptor of the present invention is provided with a photosensitive layer similar to that of IM.
It was created. Comparative Example 33.39 In each of Examples 33.39, no intermediate layer was provided.
Other than that, Comparative Example 33.
Thirty-nine photoreceptors were prepared. Comparative Examples 34, 35.37 In Examples 34, 35.37, the intermediate layer had the following composition.
Instead of the intermediate M coating liquid, an intermediate layer with a thickness of 0.37 parts m was provided.
Other than that, Comparative Example 3 was prepared in the same manner as in Examples 34, 35, and 37.
A photoreceptor having a diameter of 4°35.37 was prepared. 50 parts of water-soluble polyvinyl butyral 117
- 118 water
150 parts methanol
200 parts Comparative Example 36 In Example 36, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 0.5 μm was provided instead of
A photoreceptor of Comparative Example 36 was prepared in the same manner as Comparative Example 36. 10 parts of La2O3 powder (
Denka Poval H-20) water manufactured by Denki Kagaku Kogyo ■
80 copies
Tanol 80 parts Comparative Example 4
0 In Example 40, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 2.0 pm was provided instead of
A photoconductor of Comparative Example 40 was prepared in the same manner as Comparative Example 40. La2O3 powder 20 parts
Toluylene-2,4-diisocyanate 0.1 part 2-butylene
Tanon 100 copies comparative example
38 In Example 38, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 1.0 μm was provided instead of
A photoreceptor of Comparative Example 38 was prepared in the same manner as Comparative Example 38. La2O3 powder 5 parts
Rivinyl alcohol 2 parts Toluene
20 copies or more of each exposure
The properties of the body were measured using an electrostatic copying paper tester (newly manufactured by Kawaguchi Electric 5).
P-428 type) was used for evaluation as follows. First, -5.2KV (or +5.6KV) discharge
Apply pressure, corona charge for 20 seconds, then 10 seconds.
After dark decay, tungsten light of 10 flux was irradiated.
I shot it. Surface potential V2 (V) at 2 seconds and 15 seconds after the start of charging at this time
, v15(v) and surface potential V2S after 10 seconds of dark decay
(V) and also optically attenuate V25 to half the potential.
Measure the exposure amount E1/□ (Qux-sec) required to
Established. Note that the dark decay rate (D, D) is defined by the following formula:
Ru. D, D''V25/Vls In addition, the surface potential after 20 seconds of the above exposure is taken as the residual potential vR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-5. Table-5 -121- -122- Example 41 Polyethylene terephthalate with aluminum vapor deposited
Argon and acid were applied to the film using ZnO as a target.
The sputtering method is used in an atmosphere where the partial pressure ratio of the element is 1.
An intermediate layer made of zinc oxide with a thickness of 0.5 μm was provided. On top of this, coat a charge generation layer coating solution and a charge transport layer with the following composition.
Apply and dry the liquid one after another to generate a charge with a thickness of 0.2 μm each.
layer and a 220 part thick zero charge transport layer to form a charge transport layer of the present invention.
A child photographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
Xanone 2-butanone 200 parts 1.00 parts [Charge transport layer coating liquid] 26 parts of charge transport substance having the following structural formula Tetrahydrofuran 250 parts
Example 42 Zn is evaporated on an aluminum plate with a thickness of 0.2 mm
Using a reactive ion bulb, oxygen gas is introduced into the vacuum chamber.
From zinc oxide with a film thickness of 0.3 μm using the rating method.
A middle layer was created. On top of this, a charge generation layer with the following composition
Apply and dry the coating solution and charge transport layer coating solution in sequence.
0.1 part m of each charge generation layer and 17p111 charge
A transport layer was formed to produce an electrophotographic photoreceptor of the present invention. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 4 parts - 123
- 124 Tetrahydrofuran [Charge Transport Layer Coating Solution] An intermediate layer consisting of 120 parts, 25 parts, and 0.4 μm of zinc oxide of a charge transport material having the following structural formula was provided. above this
A charge generation layer coating solution and a charge transport M coating having the following composition were applied.
The liquid was applied and dried one after another to form a charge generation layer of 0.2 μm each.
and 20 to form a charge transport layer of the electrophotographic method of the present invention.
A photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts methyl chloride
Len 200 copies Example 43 Using ZnO as a target on electroformed nickel with a thickness of 70 units
The partial pressure ratio of argon and oxygen is Ar102 = 8/2.
The film thickness was increased by sputtering in an atmosphere of
Sanon 2-butanone [Charge transport layer coating liquid] 100 parts of charge transport substance with the following structural formula 200 parts 30 parts - 126 - Tetrahydrofuran 250 parts
Example 44 Zn (C21(s)
)2 and 0□ raw material gases are introduced while being diluted with Ar,
Made of zinc oxide with a film thickness of 0.7 μm by CVD method
It gave shape to the interlayer. On top of this, apply a charge generation layer with the following composition.
The liquid and the charge transport layer coating liquid are applied and dried one after another.
Formed 0.3μm charge generation layer and 18μm charge transport layer.
Then, an electrophotographic photoreceptor of the present invention was prepared. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
230 parts of xanone tetrahydrofuran 80 parts [Charge transport layer coating liquid] 25 parts of charge transport substance having the following structural formula Tetrahydrofuran 220 parts
Example 45 A Zn target was placed on an aluminum plate with a thickness of 0.5 m.
Sputter using O and introducing argon gas into the vacuum chamber.
Made of zinc oxide with a film thickness of 0.3p by the taring method.
Created an interlayer. On top of this, a charge transport layer with the following composition is applied.
Apply liquid, charge generation layer coating liquid, and protective layer coating liquid in sequence.
・Dry, 19 yen each. charge transport layer, 0.3 pm charge generation layer and two
A protective layer was formed to prepare an electrophotographic photoreceptor of the present invention. [Charge transport layer coating liquid] Charge transport substance having the following structural formula 25 parts-12
7- Tetrahydrofuran [Charge generation layer coating solution] 250 parts of charge generation substance with the following structural formula 5 parts Cyclohexanone Tetrahydrofuran [Protective layer coating solution] 200 parts 100 parts Conductive titanium oxide 90 parts Toluene
220 parts n-butano
60 parts Example 46 Same as Example 42 on a 0.2 nyn thick nickel plate.
An intermediate layer made of zinc oxide with a film thickness of 0.2/#11 is formed using the method.
Established. On top of this, apply a charge transport layer coating solution with the following composition, charge
Apply generation layer coating liquid, intermediate layer coating liquid, and protective layer coating liquid in sequence.
, coated and dried to form 20 charge transport layers and 0.2 layers each.
Charge generation layer, 0.2 μm intermediate layer and 5 μm protective layer
An electrophotographic photoreceptor of the present invention was prepared by applying the method. [Charge transport layer coating liquid] Charge transport substance having the following structural formula 30 parts-13
0- Methylene chloride 1,2-dichloroethane [Charge generation layer coating liquid] Charge generation substance toluylene-2,4-diisosiapho-1-tetrahydro having the following structural formula
Furan 4-methyl-2-pentanone [intermediate layer coating liquid] Methanol n-butanol [protective layer coating liquid] Styrene-methyl methacrylate-h 150 parts 100 parts 5 parts 0.2 parts 150 parts 150 parts Tin oxide 80 Department Trouet
1.70 parts 2-bu
Tanon 400 copies Example 4
7 Zn (C5H□
0. ) 2 and 1 (20 are used as raw material gas system, in a vacuum chamber
oxidized to a film thickness of 0.4 μm by CVD method while introducing
An intermediate layer of zinc was provided. On top of this, add an electric current of the following composition.
Load transport layer coating liquid, charge generation layer coating liquid, and protective layer coating liquid
were sequentially coated and dried to form a charge transport layer of 22 pm each,
Forming a charge generation layer of 0.3μ and a protective layer of 3m,
An electrophotographic photoreceptor of the present invention was prepared. [Charge transport layer coating liquid] Charge transport substance having the following structural formula 25 parts 70 parts 40 parts 80 parts (Hunter 1 diacid cleavage panlite C-1400)] 31 32- Methylene chloride [Charge generation layer coating liquid] Below Structural formula of charge generating substance toluylene-2,4-diisocyaphor 1-cyclohexane
Non-2-butanone [Protective layer coating liquid] Titanium oxide tin (II) oxide Toluene 2-butanone Comparative example 41.47 Example 41. .. Comparative Example 4 was prepared in the same manner as in Example 41.47, except that 280 parts, 4 parts, 0.2 parts, 180 parts, 120 parts, 50 parts, 40 parts, 250 parts, and 70 parts were used.
A photoreceptor of 1.47 was prepared. Comparative Example 42 In Example 42, the intermediate layer made of zinc oxide was prepared using the following combination.
Instead of using the same intermediate layer coating liquid, we created an intermediate layer with a thickness of 2.0 mm.
Other than that, the photoconductor of Comparative Example 42 was prepared in the same manner as in Example 42.
Created. ZnO powder 20 parts
Toluene 20 parts comparison
Example 43.46 In Example 43.46, the intermediate layer has the following composition:
In place of the coating liquid, an intermediate layer with a thickness of 0.3 meters was provided.
Exposure of Comparative Example 43.46 in the same manner as Example 43.46
created a body. No intermediate layer provided -133- 134- Methanol 60 parts n-bu
Tanol 40 parts Comparative example 4
4 In Example 44, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example 4 except that an intermediate layer with a thickness of 0.5 mm was provided instead of
A photoreceptor of Comparative Example 44 was prepared in the same manner as in Example 4. ZnO powder 10 parts
Toluylene-2,4-diisocyane-1 to 0.1
Part 2-Butanone 100 parts
Comparative Example 45 In Example 45, the intermediate layer made of zinc oxide was prepared using the following combination.
In place of the intermediate layer coating liquid, an intermediate layer with a thickness of 1.0 mm is provided.
Other than that, the photoreceptor of Comparative Example 45 was prepared in the same manner as in Example 45.
Created. ZnO powder 5 parts
Tanol 80 parts or more each
The characteristics of the photoreceptor were measured using an electrostatic copying paper tester (newly manufactured by Kawaguchi Electric).
5P-428 model) manufactured by Co., Ltd.), and was evaluated as follows. First, -5.2KV (or +5.6KV) discharge
Corona charging was carried out for 20 seconds at pressure, followed by IO seconds.
dark decay, then illuminated with 1(lQux tungsten light).
I shot it. Surface potential V2 (V) at 2 seconds and 20 seconds after the start of charging at this time
, V2o (V) and surface potential V3o after 10 seconds of dark decay
(V) and also optically attenuate V2O to half the potential.
Measure the exposure amount E□/2 (Qux-8ec) required to
Established. Note that the dark decay rate (D, D) is defined by the following formula:
Ru. D, D=v3. /■2゜Also, the surface potential after 20 seconds of the above exposure is taken as the residual potential vR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-6. 80 parts of water - 135 - 136 - Table 6 Example 48 Polyethylene terephthalate with aluminum vapor deposited.
BeO is used as the evaporation material on the film, and a resistance heating method is used.
Beryllium oxide with a thickness of 0.7 pm was made using the vacuum evaporation method.
A new middle layer was created. On top of this is a charge generation layer with the following composition.
Coating liquid and charge transport layer coating liquid are applied and dried one after another.
0.2〃thick charge generation layer and 22μm thick charge transport layer
was formed to produce an electrophotographic photoreceptor of the present invention. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 4 parts cyclohe
Xanone 2-butanone 300 parts 100 parts - 137 -- [Charge transport layer coating liquid] Charge transport material having the following structural formula: 25 parts Polyester 2 parts Tetrahydrofuran 270 parts
Example 49 Targera I ~ on an aluminum plate with a thickness of 0.2 mm
Using BeO, argon gas is introduced into the vacuum chamber, and a spa
Beryllium oxide with a thickness of 0.4 μm by the uttering method
An intermediate layer consisting of In this second, the charge of the following composition
Apply and dry the generation layer coating solution and charge transport layer coating solution in sequence.
After drying, a charge generating layer of 0,] μm and a charge generating layer of 17 μm were formed.
The electrophotographic photoreceptor of the present invention was created by shaping the cargo transport layer.
. [Charge generation layer coating liquid] 5 parts of a charge generation substance having the following structural formula [charge transport
IFl coating liquid] 25 parts of charge transport substance with the following structural formula 240 parts of methylene chloride
Example 50 Be on Targera 1 ~ on electroformed nickel with a thickness of 70 μm
An atmosphere where the partial pressure ratio of argon and oxygen gas is 1 using O.
An intermediate layer of beryllium oxide having a thickness of 0.339 to 140 μm was provided by sputtering under atmospheric pressure. this"
―, a charge generation layer coating liquid and a charge transport layer coating having the following compositions were applied.
A charge of 0.2 μm is generated by sequentially applying and drying the solution.
layer and a 20 μm charge transport layer to form an electron transport layer of the present invention.
A photographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 3 parts cyclohe
Xanone 2-butanone [Charge transport layer coating liquid] 200 parts of charge transport substance having the following structural formula 70 parts 25 parts Tetrahydrofuran 270 parts
Example 5] BeO is used as the evaporation material on a nichrome plate with a thickness of 0.2 mm.
A film thickness of 1.0 μm was obtained using the electron beam heating vacuum evaporation method.
An intermediate layer of beryllium oxide was formed. On top of this, a charge generation layer coating solution with the following composition and a charge transport layer are added.
The layer coating solution was applied and dried one after another to form a layer of 0 and 3 ftm each.
A charge generation layer and a charge transport layer of 18 μm were formed, and the present invention
A bright electrophotographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
Xanone Tetrahydrofuran [Charge Transport Layer Coating Solution] 200 parts of charge transport substance having the following structural formula 60 parts 30 parts 41 42 Tetrahydrofuran 250 parts
Example 52 Same as Example 50 on an aluminum plate with a thickness of 0.2 mm.
An intermediate layer made of beryllium oxide with a film thickness of 0.4 mm was prepared using the same method.
was formed. On top of this, a charge transport layer coating solution having the following composition,
Apply and dry the charge generation layer coating liquid and the protective layer coating liquid in sequence.
After drying, 19 charge transport layers each, 0, Ju+n charge generation
A green layer and a protective layer of 2 μm are formed, and the electrophotographic sensitivity of the present invention is
Created a light body. [Charge generation layer coating liquid] Charge generation substance having the following structural formula 25 parts tetra
Hydrofuran [Charge generating layer coating liquid] 270 parts of charge generating substance with the following structural formula 5 parts Cyclohexanone tetrahydrofuran [Protective layer coating liquid] 200 parts 100 parts Conductive titanium oxide Toluene n-butanol 90 parts 220 parts 60 parts -143- 44 Example 53 The same method as Example 48 was applied on a 0.2 m thick nickel plate.
to form an intermediate layer made of beryllium oxide with a film thickness of 1.2
did. On top of this, a charge transport layer coating solution with the following composition and a charge generating layer are added.
Apply the raw layer coating solution, intermediate layer coating solution, and protective layer coating solution in sequence.
Cloth/Dry charge transport layer of 20P each, charge of 0.2H
Forming a generation layer, a 0.2 μm intermediate layer and a 5 μm protective layer.
An electrophotographic photoreceptor of the present invention was prepared. [Charge transport layer coating solution] 30 parts of a charge transport substance having the following structural formula
Tyrene 1,2-dichloroethane [Charge generation layer coating solution] Trigonal selenium 150 parts 120 parts 10 parts Polyvinylcarbazole 2-butanone Toluene [Intermediate layer coating solution] 10 parts 60 parts 60 parts Methanol n-butanol [Protective layer coating Industrial solution] 70 parts 40 parts Tin oxide Toluene 2-butanone 80 parts 170 parts 100 parts Example 54 Same as Example 51 on a 0.3 mwn thick nickel plate.
An intermediate layer made of beryllium oxide with a thickness of 0.6 μm was formed using
Formed. On top of this, apply a charge transport layer coating solution with the following composition,
Apply and dry the protective layer coating solution and protective layer coating solution in sequence.
to form a charge transport layer of 22 μm, a charge generation layer of -145--146-0.3 μm, and a protective layer of 3 μm, respectively.
An electrophotographic photoreceptor of the present invention was prepared. [Charge transport layer coating liquid] 25 parts of a charge transport substance having the following structural formula
Tyrene [Charge generation layer coating solution] 260 parts 4 parts of the compound represented by the following structural formula [Protective layer coating solution] Titanium oxide 50 parts
Zu (H) 40 Part 1 ~ Rue
250 parts 2-butano
70 parts Example 55 Polyethylene terephthalate having Hastelloy as a conductive layer
Lay 1 - Thickness was applied to the film by the same method as in Example 49.
An intermediate layer made of beryllium oxide with a diameter of 0.6 μm was provided.
. On top of this, apply a two-part coating with the following composition and dry it.
A common photosensitive layer with a film thickness of 15 μm is provided, and the electrophotographic photosensitive layer of the present invention is
A euphotoreceptor was created. Toluylene-2,4-diisosiapho 1-cyclohexane
Non-2-butanone 0.2 parts 200 parts 80 parts Methylene chloride 650 parts The following composition
Compound represented by the formula 20 parts -147-H. Comparative Example 4-8.54 In Example 48.54, no intermediate layer was provided, respectively.
Other than that, Comparative Example 48,
54 photoreceptors were prepared. Comparative Examples 4.9, 50.53 In Examples 19 and 50.53, the intermediate layer had the following composition.
Instead of the intermediate layer coating liquid, an intermediate layer with a thickness of 0.3 μm was provided.
The rest was the same as in Examples 49, 50 and 53, and Comparative Example 49
. Photoreceptors Nos. 50 and 53 were prepared. Methanol 60 parts n-
Butanol 40 parts comparative example
51 In Example 51, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 0.5 μm was provided instead of
A photoreceptor of Comparative Example 51 was prepared in the same manner as Comparative Example 51. BeO powder 10 parts
1-Luylene-2,4-cyisocyane-1-0,1 sound [
S2-butanone 100 parts
Comparative Example 52 In Example 52, the intermediate layer made of beryllium oxide
Instead, use an intermediate layer coating liquid with the following composition and have a thickness of 1. Opm
A comparative example was prepared in the same manner as in Example 52 except that an intermediate layer was provided.
52 photoreceptors were prepared. BeO powder 5 parts
Tanol 60 parts n-buta
Nol 40 parts Comparative Example 55 In Example 55, the intermediate layer made of beryllium oxide
Instead, an intermediate layer coating liquid with the following composition was used, and the thickness was 2.07 mm.
A photoreceptor of Comparative Example 55 was prepared in the same manner as in Example 55, except that the intermediate layer in section m was provided. BeO powder 20 parts Toluene 20 parts or more
The characteristics of each photoreceptor were measured using an electrostatic copying paper tester (manufactured by Kawaguchi Electric).
The evaluation was made as follows using a newly manufactured model 5P-428). First, -5.2KV (or +5.6KV) 171 radiation
Electricity'/pressure b=-c, corona charging for 20 seconds, then
Dark decay for 10 seconds at
Irradiated with stainless steel light. Surface potential V2 (V) at 2 seconds and 15 seconds after the start of charging at this time
, V, 5 (V) and surface potential V2S after 10 seconds of dark decay
(V) and also optically attenuate Vzs to half the potential.
Measure the exposure amount E/2 (Qux-see) required to
Established. Note that the dark decay rate (D, D) is defined by the following formula:
Ru. D, D=V2. /V. In addition, the surface potential after 20 seconds of the above exposure is defined as the residual potential vR.
defined. Furthermore, charging and exposure under the conditions described in ``2'' were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were carried out again. Review
The evaluation results are shown in Table 7. Table 7 51-11521 Example 56 Polyethylene terephthalate with aluminum vapor deposited.
Using CaO as a target on the film, the target was placed in a vacuum chamber.
Introducing rugone gas and using sputtering method to obtain a thickness of 0.3
An intermediate layer of calcium oxide was provided. on this
Charge generation material with the following composition" two parts and charge transport layer coating solution in this order.
Next, apply and dry to form a 0.2-thick charge layer and 22
The electrophotographic photoreceptor of the present invention is formed by forming a charge transport layer with a thickness of μs.
It was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts cyclohe
Xanone 2-butanone [Charge transport layer coating liquid] 250 parts 100 parts Charge transport substance having the following structural formula 9 parts Tetrahydrofuran 81 parts Examples
57 Ca target on a 0.2 mm thick aluminum plate
An atmosphere where the partial pressure ratio of argon and oxygen gas is 1 using O.
Oxidation to a thickness of 0.4 μm by sputtering under atmospheric pressure
An intermediate layer of calcium was provided. On top of this, the following group
The charge generation layer coating liquid and the charge transport layer coating liquid were sequentially applied.
After coating and drying, a charge generation layer of 0.1 μm and 17
The electrophotographic photoreceptor of the present invention is formed by forming a charge transport layer of μm in thickness.
Created. [Charge generation layer coating liquid] Trigonal selenium 10 parts Polyvinyl
Nilcarbazole 10 parts. 2-butanone 60 parts-
153- 54- I.Luene [Charge generation layer coating liquid] 60 parts of charge generation substance having the following structural formula 10 parts Methylene chloride 80 parts Examples
58 Thickness: 70 mm on electroformed nickel.
O is used, and the partial pressure ratio of argon and oxygen is Ar10□=47
Thickness 0 by sputtering method in an atmosphere of 1
, :'l pm of calcium oxide was set up.
I got it. On top of this, a charge generation layer coating solution with the following composition and a charge transport layer are added.
The layer coating solution is applied and dried one after another, each with a charge of 0.2 μm.
A generation layer and a charge transport layer of 20 μm were formed, and the present invention
An electrophotographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 8 parts cyclo
Xanone 2-butanone [Charge transport layer coating liquid] 300 parts of charge transport substance with the following structural formula] 20 parts 10 parts Polycarbonate -10 parts (Teijin Kasei Kyu Panfy I-1-1300) Tetrahydride
LoFlan 75 parts Example 59 Shiko on a nichrome plate with a thickness of 0.2nrn, same as Example 56
rJ made of calcium oxide with a film thickness of 0.5 μm was prepared using the same method.
A y-interlayer was formed. On top of this, a charge generation layer of Sengonchi Kumiho
Apply and dry the coating solution and charge transport layer coating solution in 11 steps.
and a charge generation layer of 0 and 3 pm and a charge generation layer of 18 μm, respectively.
An electrophotographic photoreceptor of the present invention was prepared by forming a cargo transport layer. [Charge generation layer coating liquid] Charge generation substance cyclohexanone tetrahydrofuran having the following structural formula [Charge transport layer coating liquid] 5 parts of charge transporting substance having the following structural formula Example 58 and 5 parts were coated on a 0.5-thick aluminum plate. same
Intermediate film made of calcium oxide with a film thickness of 0.67+m
Created a layer. Second, apply a charge transport layer with the following composition.
Apply liquid, charge generation layer coating liquid, and protective layer coating liquid in sequence.
・Dry to form a charge transport layer of 19 μm and 0.3 μm respectively.
A charge generation layer and a protective layer of 2 μm are formed, and the charge generation layer of the present invention is
A child photographic photoreceptor was created. [Charge transport layer coating liquid] Charge transport material having the following structural formula 7 parts 200 parts 200 parts 25 parts Tetrahydrofuran [Charge generation layer coating liquid] Charge generating substance having the following structural formula 80 parts 3 parts Tetrahydrofuran Example 60 220 parts 1 157- Charge transport substance with the following structural formula 10 parts cyclohexanone tetrahydrofuran [protective layer coating liquid] 100 parts 40 parts Conductive titanium oxide 90 parts Toluene
220 parts n-pig
Knoll 60 parts Example 61 On a 0.2 mm thick nickel plate, the same one as Example 56
An intermediate layer made of calcium oxide with a thickness of 0.2 μm is formed using
Formed. On top of this, apply a charge transport layer coating solution with the following composition,
Apply the load-generating layer coating liquid, intermediate layer coating liquid, and protective layer coating liquid in this order.
Next, apply and dry a charge transport layer of 20 μm each, 0.2
- charge generation layer, 0.2 intermediate layer and 5H protective layer
was formed to produce an electrophotographic photoreceptor of the present invention. [Charge transport layer coating solution] Methylene chloride 1,2-dichloroethane [Charge generation layer coating solution] 50 parts of charge generation substance having the following structural formula 30 parts 7 parts 1 - Louisene-2,4-diisocyanate tetrahydro
Furan 4-methyl-2-pentanone [Intermediate layer coating liquid] 0.2 parts 400 parts 100 parts Alcohol-soluble polyamide (Amiran CM-8000 manufactured by Toshi ■) 2 parts 59 -160- Methanol n-butanol [Protective layer coating Industrial solution] 70 parts 40 parts Compound represented by the following structural formula 20 parts Tin oxide 80 parts Toluene
170 parts 2-pig
Non 100 parts Example 62 Polyethylene terephthalate having Hastelloy as a conductive layer
The same method as in Example 57 was applied to the rate film to a thickness of 0.
An intermediate layer of 6-calcium oxide was provided. above this
A coating liquid with the following composition was applied and dried to obtain a dry film thickness of 15 μm.
The electrophotographic photoreceptor of the present invention is prepared by providing a eutectic complex photosensitive layer of m.
Created. Comparative Example 56.60 In each of Examples 56 and 60, no intermediate layer was provided.
Comparative Example 56. was prepared in the same manner as Example 56.60 except for
Sixty photoreceptors were made. Comparative Example 59.62 In Example 59.62, the intermediate layer was an intermediate layer having the following composition.
In place of the coating liquid, an intermediate layer with a thickness of 0.3 mm was used.
Photoreceptor of Comparative Example 59.62 as in Example 59.62
It was created. Methanol 60 parts n-bu
Tanol 40 parts Comparative Example 5
7 In Example 57, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
-16 except that an intermediate layer with a thickness of 0.5 μm was provided instead of
1- -162- A photoreceptor of Comparative Example 57 was created in the same manner as Example 57.
. CaO powder] 0 parts A photoreceptor of Comparative Example 61 was prepared. CaO powder 20 parts toluylene-2,/I-diisocyanate-1-0, 1 part 2
-Butanone 1.00 parts ratio
Comparative Example 58 In Example 58, the intermediate layer made of calcium oxide
Instead, use an intermediate layer coating liquid with the following composition, and the thickness is 1.0 μm.
A comparative example was prepared in the same manner as in Example 58 except that an intermediate layer was provided.
Fifty-eight photoreceptors were prepared. CaO powder 5 parts
Tanol 60 parts n-buta
Nol 40 parts Comparative Example 61 In Example 61, the intermediate layer made of calcium oxide was
Instead of the intermediate layer coating liquid with the following composition, an intermediate layer with a thickness of 2.0 μm was used.
Toluene was prepared in the same manner as in Example 61 except that a layer was provided.
20 parts 0'' of each photoreceptor
The characteristics were measured using an electrostatic copying paper tester (Kawaguchi Electric Seisakusho theory 5P-
428 type) and was evaluated as follows. First, -5.2KV (or +5.6KV) discharge
Pressure discharge, coronamer; conduct pressure for 20 seconds, then 10
Dark and dark decay for seconds, then 10 Qux tungsten light
Irradiated. Surface potential V2 (V) at 2 seconds and 20 seconds after the start of charging at this time
, V2o (V) and surface potential v3o after 10 seconds of dark decay
(v) and also optically attenuate V2O to half the potential.
Exposure amount required to achieve
e) was measured. In addition, the dark decay rate (D, D) is expressed by the following formula:
defined. D, D''V30/V20 63- 164- Also, the surface potential after 20 seconds of the above exposure is taken as the residual potential VR.
defined. Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-8. Table 8 Example 63 Polyethylene terephthalate with aluminum vapor deposited
Using MgO as the evaporation material on the film, electron beam heating
magnesium oxide with a thickness of 1.1 μm using the vacuum evaporation method
An intermediate layer consisting of This second one generates a charge with the following composition.
Apply and dry the raw layer coating liquid and charge generation layer coating liquid in sequence.
Each 0.2 μm thick charge generation layer and 22 μm thick charge
A transport layer was formed to produce an electrophotographic photoreceptor of the present invention. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 4 parts cyclo
Xanone 2-butanone C charge transport layer coating liquid] 1.50 parts 110 parts -165- -166- 25 parts of charge transport substance having the following structural formula Tetrahydrofuran 280 parts
Example 64 0.2mm thick aluminum plate” Second, target
Using MgO in an atmosphere with a partial pressure ratio of argon and oxygen of 1
An oxide mask with a thickness of 0.3 μm was deposited using the sputtering method.
An intermediate layer made of gnesium was formed. On top of this, below
The charge generation layer coating solution and the charge transport layer coating solution of the composition were sequentially added.
After coating and drying, a charge generation layer of 0.1 pm and 1
Seven charge transport layers were formed to form an electrophotographic photoreceptor of the present invention.
Created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula 3 parts tetra
Hydrofuran [Charge Transport N Coating Solution] 250 parts of charge transport substance with the following structural formula 25 parts Methylene chloride 240 parts
Example 65 MgO is added as an evaporation material on electroformed nickel with a thickness of 70 μm.
Electron beam processing is performed while introducing oxygen gas into the vacuum chamber.
Magnesium oxide with a thickness of 0.7 μm is produced using a thermal vacuum evaporation method.
An intermediate layer consisting of the following layers was formed. On top of this, add an electric current of the following composition.
Apply the charge generation layer coating liquid and the charge transport layer coating liquid in sequence.
Dry to form a charge generating layer of 0.2 mm and 20/Im respectively.
A charge transport layer is formed to produce an electrophotographic photoreceptor of the present invention.
Ta. -1167-- [Charge generation layer coating liquid] Trigonal selenium polyvinylcarbazole 2-butanone toluene [Charge generation layer coating liquid] Charge generation substance of the following structural formula 10 parts 10 parts 60 parts 60 parts 25 parts Layer and 18 □ A charge transport layer of □□ is formed, and the charge transport layer of the present invention is
A child photographic photoreceptor was created. [Charge generation layer coating liquid] Charge generation substance with the following structural formula: 5 parts tetrahydrogen
Dorofuran 250 parts Example 66 On a nichrome plate with a thickness of OJnwn, Mg on Targera 1-
Sputtering is performed by introducing argon gas into the vacuum chamber using O.
Magnesium oxide with a film thickness of 0.2/111 by the ring method
We created a middle layer consisting of: Next, add the following composition on top of this.
Apply the charge generation layer coating solution and the charge transport layer coating solution in sequence.
Cloth/Dry, each generates a charge of 0.3/111 cyclohex
Sanon Tetrahydrofuran [Charge Transport Layer Coating Solution] 150 parts of charge transport material having the following structural formula 150 parts 30 parts -169- -170- Tetrahydrofuran 300 parts carried out
Example 67 Polyethylene terephthalate with Hastelloy as conductive layer
A second film was prepared in the same manner as in Example 64 to a thickness of 0.
An intermediate layer of 5 μm of magnesium oxide was provided. child
Apply a coating liquid with the following composition on top and dry it to determine the dry film thickness.
A eutectic complex photosensitive layer with a thickness of 15 μm is provided, and the electrophotographic sensitivity of the present invention is
Created a light body. An intermediate layer was formed. In this "-, charge transport with the following composition
Apply layer coating solution, charge generation layer coating solution, and protective layer coating solution in sequence.
, coated and dried, charge transport layer of 19 μm each, 0.3 μm
A charge generation layer of m and a protective layer of 2 μm were formed, and the present invention
An electrophotographic photoreceptor was prepared. [Charge transport layer coating solution] 30 parts of a charge transport substance having the following structural formula
Tyrene 650 parts Structural formula below
Compound represented by 20 parts tetrahydrofura
[Charge generation M coating liquid] 300 parts of charge generation substance having the following structural formula, 4 parts Example 68 Example 66 and
Using the same method, a film of magnesium oxide with a thickness of 0.4 μm was prepared.
171-172 Cyclohexanonetetrahydrofuran [Protective layer coating solution] 170 parts 1.00 parts Charge transport material with the following structural formula 28 parts Conductive titanium oxide 90 parts Toluene
220 parts n-pig
Knoll 60 parts Example 69 On a 0.2 mm thick nickel plate, in the same manner as Example 63.
Intermediate layer made of magnesium oxide with a film thickness of 0.8 μm
was formed. On top of this, a charge transport layer coating solution having the following composition,
charge generation layer coating liquid, intermediate layer coating liquid and protective layer coating liquid.
A charge transport layer of 20 pm and a charge transport layer of 0.0 pm were sequentially coated and dried.
2 charge generation layers, 0.2μm intermediate layer and 5 offshore protection layers.
A protective layer was formed to produce an electrophotographic photoreceptor of the present invention. [Charge transport layer coating solution] Methylene chloride 1,2-dichloroethane [Charge generation reverse layer coating solution] 200 parts of a charge generation substance having the following structural formula 60 parts 5 parts Toluylene-2,4-diisocyaphor 1-tetrahydro
Furan 4-methyl-2-pentanone [Intermediate M coating liquid] 0.3 parts 150 parts 100 parts 73 -174- Methanol n-butanol 70 parts 40 parts [Protective layer coating liquid] Tin oxide 80 parts Toluene
170 parts 2-pig
Non-100 copies Example 70 Example 65 and
From magnesium oxide with a film thickness of 0.9 parts m by the same method.
I created a middle layer. On top of this, charge transport with the following composition
Apply layer coating solution, charge generation layer coating solution, and protective layer coating solution in sequence.
, coated and dried to form a charge transport layer of 22n each, 0.3 parts m
The charge generation layer of the present invention and the protective layer of 3C are formed.
A child photographic photoreceptor was created. [Charge transport layer coating solution] 30 parts of a charge transport substance having the following structural formula
Tyrene [Charge generating layer coating liquid] 250 parts of charge generating substance with the following structural formula 4 parts Toluylene-2,4-diisocyapho-1-cyclohexane
Non-2-butanone [protective layer coating liquid] 0.1 part 100 parts 120 parts 175- 76- Titanium oxide 50 parts Oxidation
Tin(II) 40 parts torr
En 250 parts 2-Pig
Non 70 parts Comparative Example 63
.. 70 In Examples 63 and 70, no intermediate layer was provided, respectively.
Other than that, Comparative Example 63.
Seventy photoreceptors were made. Comparative Example 64, 66.69 In Example 64, 66.69, the intermediate layer had the following composition.
Instead of the intermediate layer coating liquid, an intermediate layer with a thickness of 0.5 μm was provided.
The rest was the same as in Examples 64, 66, and 69, and Comparative Example 64
A photoreceptor having a diameter of 66.69° was prepared. In Example 65, the intermediate layer was coated with an intermediate layer coating liquid having the following composition.
Example except that an intermediate layer with a thickness of 0.5 μm was provided instead of
A photoconductor of Comparative Example 65 was prepared in the same manner as Comparative Example 65. MgO powder 10 parts
Luylene-2,4-diisocyapho-1 to 0.1 part
2-butanone 100 parts
Comparative Example 67 In Example 67, the intermediate layer made of magnesium oxide
Instead, use an intermediate layer coating liquid with the following composition, and the thickness is 1.0-
A comparative example was prepared in the same manner as in Example 67 except that an intermediate layer was provided.
67 photoreceptors were prepared. MgO powder 5 parts Water Methanol 150 parts 200 parts Comparative Example 65 Methanol 60 parts N-butyl
Tanol 40 parts Comparative Example 6
8 In Example 68, medium-17 made of calcium oxide
7-7 Replace the interlayer with an interlayer coating liquid with the following composition, and make a layer with a thickness of 2.0 μm.
A comparative example was prepared in the same manner as in Example 68 except that an intermediate layer was provided.
Sixty-eight photoreceptors were prepared. CaO powder 20 parts
The dark decay rate (D, l)) is defined by the following equation. D, D=Vzs/L, s Also, the surface potential after 20 seconds of -1- placement light is the residual potential v11
It was defined as . Furthermore, charging and exposure under the above conditions were performed simultaneously for 30 minutes.
After fatigue, the same measurements as above were performed again. evaluation
The results are shown in Table-9. I-Luene 20 parts or more-
) The characteristics of each photoreceptor in 1 were measured using an electrostatic copying paper tester
The evaluation was made as follows using the newly manufactured Denki Seisaku 5P-7128 model).
I valued it. First, -5.2KV (or +5.6KV) (7)
Discharge/ Pressure discharge and corona charging for 20 seconds, then
dark decay for 10 seconds, then ]0Qux tungsten
irradiated with light. At this time, the surface potential V at 1 second and 15 seconds after the start of charging, (V)
, V, 5 (V) and the surface potential after 10 seconds of dark decay, V2.
.. (V) and v2. light attenuation to half potential
The exposure amount E1/□ ((lux-sec) required to
was measured. Note that 79 1.80 [Effects of the Invention] According to the present invention, after repeated use of the photoreceptor; lit:
It becomes possible to prevent deterioration of mold retention. In other words, image density decreases in copying machines, printers, etc.
Density unevenness, fog, or background during reverse development.
Good images without skin stains can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明に係る電子写真感光体の模式断
面図である。
1 to 6 are schematic cross-sectional views of an electrophotographic photoreceptor according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性基体上に感光層を設けてなる電子写真感光
体において、該導電性基体と感光層の間に真空薄膜作成
法により形成された酸化スズ、酸化チタン、酸化インジ
ウム、酸化鉄、酸化ランタン、酸化亜鉛、酸化ベリリウ
ム、酸化カルシウム及び酸化マグネシウムから選ばれた
少なくとも1種よりなる中間層を有することを特徴とす
る電子写真感光体。
(1) In an electrophotographic photoreceptor comprising a photosensitive layer provided on a conductive substrate, tin oxide, titanium oxide, indium oxide, iron oxide, An electrophotographic photoreceptor comprising an intermediate layer made of at least one selected from lanthanum oxide, zinc oxide, beryllium oxide, calcium oxide, and magnesium oxide.
JP8883490A 1990-04-03 1990-04-03 Electrophotographic sensitive body Pending JPH03287275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8883490A JPH03287275A (en) 1990-04-03 1990-04-03 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8883490A JPH03287275A (en) 1990-04-03 1990-04-03 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03287275A true JPH03287275A (en) 1991-12-17

Family

ID=13953978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8883490A Pending JPH03287275A (en) 1990-04-03 1990-04-03 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03287275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225487A (en) * 1994-02-14 1995-08-22 Nec Corp Electrophotographic photoreceptor
JP2009282166A (en) * 2008-05-20 2009-12-03 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07225487A (en) * 1994-02-14 1995-08-22 Nec Corp Electrophotographic photoreceptor
JP2009282166A (en) * 2008-05-20 2009-12-03 Ricoh Co Ltd Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge

Similar Documents

Publication Publication Date Title
JPWO2007086439A1 (en) P-terphenyl compound mixture and electrophotographic photoreceptor using the compound mixture
US4487824A (en) Electrophotographic photosensitive member containing a halogen substituted hydrazone
JPH1130872A (en) Electrophotographic photoreceptor
TWI414913B (en) Photographic photoreceptor for electrophotography and method of manufacturing the same
JPH0943885A (en) Electrophotographic photoreceptor
JPH03287275A (en) Electrophotographic sensitive body
DE69411659T2 (en) Benzidine derivatives and electrophotosensitive material using the same
JP3644972B2 (en) Electrophotographic photoreceptor
JPH02146049A (en) Electrophotographic sensitive body
DE60216307T2 (en) Stilbenamine derivatives and electrophotosensitive material using the same
JP5377367B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP3141171B2 (en) Manufacturing method of electrophotographic photoreceptor
JP3245764B2 (en) Electrophotographic photoreceptor
JPH0627695A (en) Electrophotographic sensitive body
JPH03101739A (en) Electrophotograthic sensitive body
JP2805050B2 (en) Electrophotographic photoreceptor
JPS58152248A (en) Electrophotographic receptor
JPH04330452A (en) Electrophotographic sensitive body
JP2512098B2 (en) Electrophotographic photoreceptor
JP3398767B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2003107761A (en) Electrophotographic photoreceptor
JPH049960A (en) Electrophotographic sensitive body
JP2817844B2 (en) Electrophotographic photoreceptor
JP2013186400A (en) Electrophotographic photoreceptor, and image forming apparatus using the same
JPH03284758A (en) Electrophotographic sensitive material