JPH03287238A - Optical arithmetic unit - Google Patents

Optical arithmetic unit

Info

Publication number
JPH03287238A
JPH03287238A JP8752490A JP8752490A JPH03287238A JP H03287238 A JPH03287238 A JP H03287238A JP 8752490 A JP8752490 A JP 8752490A JP 8752490 A JP8752490 A JP 8752490A JP H03287238 A JPH03287238 A JP H03287238A
Authority
JP
Japan
Prior art keywords
spatial
light wave
phase distribution
fourier transformation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8752490A
Other languages
Japanese (ja)
Other versions
JP2749944B2 (en
Inventor
Takashi Doi
崇史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8752490A priority Critical patent/JP2749944B2/en
Publication of JPH03287238A publication Critical patent/JPH03287238A/en
Application granted granted Critical
Publication of JP2749944B2 publication Critical patent/JP2749944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for encoding of logical level by processing numerals which are represented as the amplitude and phase of a light wave optically by spatial inverse Fourier transformation and performing addition and subtraction, and reconverting the result into a spatial frequency by spatial Fourier transformation. CONSTITUTION:The light wave 9 is split by a half-mirror 11 into two directions, and one wave passes through an ND filter 12 and a beam expander 13 to has its diameter increased, and then passes through a phase distribution modulator 14. The phase distribution modulator 14 modulates the input light wave into 1, 0, and -1 and a numeral which is represented in binary or ternary notation is obtained by the modulation. The other split light wave is modulated through a similar process. Those light waves are put one over the other by a half-mirror 15 and processed through the spatial inverse Fourier transformation of a Fourier transforming lens 16, then the addition and subtraction are represented by superposing gratings which have some spatial frequencies, and the result is processed through the spatial Fourier transformation of a Fourier transforming lens 17. Consequently, the need for arithmetic of logical representation level is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は制御装置等の光を利用した高速演算装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed arithmetic device using light, such as a control device.

〔従来の技術〕[Conventional technology]

従来技術の例を第2図により説明する。2値入力画像A
1及びB2はmXnの画素からなり、第3図(、)に示
す方法で2値レベルのOと1に対応する符号を光を通す
、通さないの明暗で表現し、重ね合せて第3図(b)で
表現される符号化入力画像3とする。この画像を投影光
学系の入力面4に置き、光源面5上で格子状に配したL
ED 6によって照明する。系の配置を調整して、4つ
のLED 6による符号化入力画像3の投影像がスクリ
ーン7上で互いに上下、左右に半画素ずつずれるように
投影する。この投影像を正方格子状に並んだ正方形窓を
持つ復号マスク8を通して観察する。その結果、2変数
2値論理関数の演算結果が画像を構成する全画素に対し
て並列に光の明暗信号として得られる。4つのLED 
6の点滅状態の組み合せを第4図に示すように変えると
16種類の論理演算が可能となる。この方法は、光の並
列性による並列論理演算が実行できる。
An example of the prior art will be explained with reference to FIG. Binary input image A
1 and B2 are composed of mXn pixels, and by the method shown in Figure 3 (, ), the codes corresponding to the binary levels O and 1 are expressed as light and dark, whether light passes through or not. Let it be an encoded input image 3 expressed as (b). This image is placed on the input surface 4 of the projection optical system, and the L
Illumination by ED6. The arrangement of the system is adjusted so that the projected images of the encoded input image 3 by the four LEDs 6 are projected on the screen 7 so that they are shifted by half a pixel from each other vertically and horizontally. This projected image is observed through a decoding mask 8 having square windows arranged in a square grid. As a result, the calculation results of the two-variable binary logic function are obtained in parallel as light brightness signals for all pixels constituting the image. 4 LEDs
By changing the combinations of the 6 blinking states as shown in FIG. 4, 16 types of logical operations become possible. This method can perform parallel logical operations due to optical parallelism.

これについての詳細はオーム社刊「光コンピ−タ」10
2乃至111頁に記載されている。
For details on this, please refer to “Hikari Computer” 10 published by Ohmsha.
It is described on pages 2 to 111.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術の問題点は次のと釦りである。 The problems with the prior art are as follows.

a、この方法で数値演算のための負表現をするためには
、論理レベルでの符号化が必要である。
a. In order to perform negative expression for numerical operations using this method, encoding at the logic level is required.

そのため、例えば補数表現が必要になる。Therefore, for example, complement representation is required.

60画像の一部が欠けるだけでエラーが生じる。60 An error occurs if only a part of the image is missing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、数値を2値もしくは3値表現であられし、そ
の表現方法で表わさ力た数値の各桁に対して、1つの空
間周波数を割りあてる手法と、これを光波の状態で表現
するための光波の振幅と位相を調整する手段と、複数の
光波を重ねあわせる手段光学的に空間逆フーリエ変換し
空間周波数をコサインもしくはサイン波振幅格子に変換
する手段と、それら格子を空間ツーエリ変換して空間周
波数に戻す手段、とより構成されている。
The present invention is a method for expressing numerical values in binary or ternary values and assigning one spatial frequency to each digit of the numerical value expressed in that method, and a method for expressing this in the state of light waves. A means for adjusting the amplitude and phase of a light wave, a means for superimposing multiple light waves, a means for optically performing spatial inverse Fourier transform to convert the spatial frequency into a cosine or sine wave amplitude grating, and a means for spatially transforming the gratings into a cosine or sine wave amplitude grating. and a means for returning the frequency to the spatial frequency.

〔作用〕[Effect]

数値を2値もしくは3値表現で表わし、各桁に対し空間
周波数上の1つ周波数を割りあてる。例えば、1つの桁
が1であれば割りあてられた周波数は存在し、0であれ
ば存在しないという方法で各桁を表現する。さらに、3
値表現において、−1の桁があれば、割りあてられた周
波数は存在し、その光波の位相は1である場合に較べて
遅れたものになるように、調整する。この光波による数
値表現を行うものが、光波の振幅と位相を表現する手段
である。
Numerical values are expressed in binary or ternary representation, and one frequency on the spatial frequency is assigned to each digit. For example, each digit is expressed in such a way that if a digit is 1, the assigned frequency exists, and if it is 0, it does not exist. Furthermore, 3
In the value representation, if there is a -1 digit, the assigned frequency exists, and the phase of the light wave is adjusted so that it is delayed compared to when it is 1. What performs numerical expression using this light wave is a means for expressing the amplitude and phase of the light wave.

このように、光波の振幅と位相により表現された数値を
光学的に空間逆フーリエ変換する手段で変換すると、各
桁はサインもしくはコサイン波振幅格子の明暗パターン
となる。この状態で、以上のように表わされた2つの数
値を重ねあわせると、各桁を表わす振幅格子は強めあっ
たり、弱めあったりすることで、加算、減算を行う。さ
らに、その結果を今度は逆に空間フーリエ変換する手段
で空間周波数に戻すと、加算と減算の結果が反映された
もとの数値表現に戻る。
In this way, when a numerical value expressed by the amplitude and phase of a light wave is optically converted by means of spatial inverse Fourier transform, each digit becomes a bright/dark pattern of a sine or cosine wave amplitude lattice. In this state, when the two numerical values expressed as described above are superimposed, the amplitude grids representing each digit strengthen or weaken each other, thereby performing addition or subtraction. Furthermore, when the result is converted back to a spatial frequency by means of spatial Fourier transform, the result returns to the original numerical expression that reflects the results of addition and subtraction.

〔実施例〕〔Example〕

本発明の一実施例を第1図と第5図をもとに説明する。 An embodiment of the present invention will be described based on FIGS. 1 and 5.

コヒーレントな光が好ましい光源10を出た光波9はハ
ーフミラ−11より分割され2方向に分けられる。一方
は、NDフィルター12を通過しビームエキスパンダ1
3を通り光波の径が拡大され位相分布変調器14を通過
する。位相分布変調器14は、第5図に示す原理図のよ
うに、位相遅延材料30と振幅制御材料31とピンホー
ル32から構成されており、入力した光波を第5図下半
分に示す1,0.−1に相当するように変調する。この
変調により、2値もしくは3値により表現された数値を
与える。これは与えられた数値の各桁毎に行なわれる。
A light wave 9 emitted from a light source 10, which preferably provides coherent light, is split by a half mirror 11 into two directions. One side passes through the ND filter 12 and the beam expander 1
3, the diameter of the light wave is expanded, and the light wave passes through a phase distribution modulator 14. The phase distribution modulator 14 is composed of a phase delay material 30, an amplitude control material 31, and a pinhole 32, as shown in the principle diagram shown in FIG. 0. -1. This modulation gives a numerical value expressed in binary or ternary values. This is done for each digit of the given number.

位相遅延材料30は、電気光学材料等により実現でき、
振幅制御材料31はフィルター等により実現できる。
The phase retardation material 30 can be realized by an electro-optic material or the like,
The amplitude control material 31 can be realized by a filter or the like.

!た、もう一方にわかれた光波も同様の過程を得て変調
される。これらの光波をハーフミラ−15により重ねあ
わせ、フーリエ変換レンズ16で空間逆フーリエ変換す
ると数値の各桁は第5図下半分の右方に例示される振幅
格子となる。これらは、元の桁が各々1と−1の場合、
格子の位相が180°異なるため互いに相殺され、その
空間周波数成分は消える。また、元の桁がOと1,0と
−1,1+1.−1+−1の組み合せの場合は、各々の
空間周波数成分はその1會保存される。し5− たがって、加算と減算がある空間周波数を有する格子同
志の重ねあわせで実現する。
! In addition, the light wave split into the other side undergoes a similar process and is modulated. When these light waves are superimposed by a half mirror 15 and subjected to spatial inverse Fourier transform by a Fourier transform lens 16, each digit of the numerical value becomes an amplitude lattice as illustrated on the right side of the lower half of FIG. These are, when the original digits are 1 and -1 respectively,
Since the phases of the gratings differ by 180°, they cancel each other out, and their spatial frequency components disappear. Also, the original digits are O and 1, 0 and -1, 1+1. In the case of a combination of -1+-1, each spatial frequency component is conserved for one session. 5- Therefore, addition and subtraction are realized by superimposing lattices with a certain spatial frequency.

さらに、この結果をフーリエ変換レンズ17により空間
フーリエ変換し、光波の中心に表われる直流成分と、他
方の空間周波数成分を受光素子プレイ25上で重ねあわ
せると、2値もしくは3値であられされる数値が得られ
、これが加算もしくは減算結果と々る。
Furthermore, this result is subjected to spatial Fourier transformation using the Fourier transformation lens 17, and when the DC component appearing at the center of the light wave and the other spatial frequency component are superimposed on the light receiving element play 25, they are converted into binary or ternary values. A numerical value is obtained, and this is the result of addition or subtraction.

なか前記実施例の位相分布制御手段によれば6ピツトの
情報が得られる。すなわち光軸を挾む対象の位置にある
一対の材料で1ピツトを表すことができる。
Among them, according to the phase distribution control means of the embodiment described above, information on 6 pits can be obtained. In other words, one pit can be represented by a pair of materials located at target positions sandwiching the optical axis.

〔発明の効果〕 本発明によれば0,1.−1の表現が光学的に実現でき
るため、論理表現のレベルでの演算が不用となる。また
振幅格子の集1りとして数値を表現しているので、格子
の一部が欠如しても、もとの数値は再現できる。
[Effect of the invention] According to the present invention, 0, 1. Since the representation of -1 can be realized optically, calculations at the level of logical representation are unnecessary. Furthermore, since numerical values are expressed as a collection of amplitude grids, even if part of the grid is missing, the original numerical values can be reproduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1実施例に係る装置の全体6− 図であり、第2図は従来の光演算装置の原理図であり、
第3図1よび第4図は従来の光演算装置の入力ふ・よび
出力論理表現を示す図であり、第5図は本発明の位相分
布変調器による数表現と空間逆フーリエ変換の関係を示
す図である。
FIG. 1 is an overall diagram of a device according to an embodiment of the present invention, and FIG. 2 is a principle diagram of a conventional optical calculation device.
3. 1 and 4 are diagrams showing the input and output logic expressions of a conventional optical arithmetic device, and FIG. 5 shows the relationship between the numerical expression by the phase distribution modulator of the present invention and the spatial inverse Fourier transform. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)光源と、同光源から面的に広がった光波の位相分
布を制御する複数の位相分布制御手段を有し、複数の位
相分布制御手段でそれぞれ与えられる空間的な余弦もし
くは正弦波状の格子の像に空間周波数により符号を付与
すると共に、上記位相分布制御手段から出た光波を合成
して空間(逆)フーリエ変換する手段と、再度空間フー
リエ変換する手段とを有することを特徴とする光演算装
置。
(1) It has a light source and a plurality of phase distribution control means for controlling the phase distribution of light waves spread over a plane from the light source, and a spatial cosine or sine wave-like grating is provided by each of the plurality of phase distribution control means. The light is characterized in that it has a means for assigning a code to the image according to a spatial frequency, a means for synthesizing the light waves emitted from the phase distribution control means and spatial (inverse) Fourier transform, and a means for performing spatial Fourier transform again. Computing device.
JP8752490A 1990-04-03 1990-04-03 Optical arithmetic unit Expired - Lifetime JP2749944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8752490A JP2749944B2 (en) 1990-04-03 1990-04-03 Optical arithmetic unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8752490A JP2749944B2 (en) 1990-04-03 1990-04-03 Optical arithmetic unit

Publications (2)

Publication Number Publication Date
JPH03287238A true JPH03287238A (en) 1991-12-17
JP2749944B2 JP2749944B2 (en) 1998-05-13

Family

ID=13917385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8752490A Expired - Lifetime JP2749944B2 (en) 1990-04-03 1990-04-03 Optical arithmetic unit

Country Status (1)

Country Link
JP (1) JP2749944B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517721U (en) * 1991-08-19 1993-03-05 三菱重工業株式会社 High-speed optical processor
WO2023139922A1 (en) * 2022-01-20 2023-07-27 株式会社フジクラ Optical computation device and optical computation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517721U (en) * 1991-08-19 1993-03-05 三菱重工業株式会社 High-speed optical processor
WO2023139922A1 (en) * 2022-01-20 2023-07-27 株式会社フジクラ Optical computation device and optical computation method

Also Published As

Publication number Publication date
JP2749944B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
Ichioka et al. Optical parallel logic gates using a shadow-casting system for optical digital computing
Tanida et al. Optical logic array processor using shadowgrams
JPH10268740A (en) Phase shift digital holography device
JPH03287238A (en) Optical arithmetic unit
WO2006126540A1 (en) Convolution integral calculation apparatus
Wong et al. Optical modified signed-digit addition based on binary logical operations
Lohmann et al. Optical logic processing based on scattering
US4842370A (en) Optical spatial logic arrangement
US5770854A (en) Pattern-recognition computing and method for producing same
US6265707B1 (en) Pattern-recognition computing and method for producing same
JP2564394Y2 (en) High-speed optical computing device
Brenner et al. Architectures for digital optical image processing using morphological filters
US4791306A (en) Method and apparatus for converting image into electrical signals
Zi-ping et al. Real-Time Optical Logical Operations Using Grating Filtering
Saleh Architectures For Nonlinear Optical Image Processing
Tanida et al. Image encoding by a computer generated holographic filter
JPH02234136A (en) Method and device for optical arithmetic processing
Khoury et al. Phase coding technique for signal recovery from distortion
Cherri et al. Edge detection using optical symbolic substitution
JPH0451224A (en) Method and device for optical parallel arithmetic processing
Awwal et al. Architectural relationship of symbolic substitution and optical shadow casting
Rizvi et al. Design of ternary half-adder and-subtractor using frequency modulation in grating structures
WO2024121388A1 (en) Fast optical qubit addressing
Chao Optical implementation of mathematical morphology
Francis et al. Application Of Holographic Associative Memories To Hybrid Binary Adder