JPH03287111A - Reflection type nearby visual field scanning microscope - Google Patents

Reflection type nearby visual field scanning microscope

Info

Publication number
JPH03287111A
JPH03287111A JP2087863A JP8786390A JPH03287111A JP H03287111 A JPH03287111 A JP H03287111A JP 2087863 A JP2087863 A JP 2087863A JP 8786390 A JP8786390 A JP 8786390A JP H03287111 A JPH03287111 A JP H03287111A
Authority
JP
Japan
Prior art keywords
light
measured
reflected
light source
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087863A
Other languages
Japanese (ja)
Inventor
Toru Fujii
透 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2087863A priority Critical patent/JPH03287111A/en
Publication of JPH03287111A publication Critical patent/JPH03287111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To photodetect omnidirectionally reflected light in an equal direction and to improve measurement accuracy by arranging an optical lens which guides light to a photodetector nearby a body to be measured opposite and making a projection fiber penetrate its center. CONSTITUTION:The optical system 20 which forms an optical path from the light source 5 to the photodetector 10 consists of the projection fiber 22 which guides the light 21 from the light source 5 to the surface of the body 3 to be measured on a stage 2, a convex lens (optical lens) 24 which photodetects and guides reflected light 23, emitted by the light source 5 and reflected by the surface of the body 3 to be measured, to the photodetector 10, and a total reflecting mirror 25 and a condenser lens 26. Then the surface of the optical lens 24 which faces the body 3 to be measured closely is a continuous ring- shaped photodetection surface which surrounds the projection fiber 22. Consequently, the reflected light which is reflected by the surface 3 to be measured can be photodetected over the entire surface omnidirectionally and the measurement accuracy can be improved.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、光源からの光の波長より小さい開口を被測定
物に近接させて走査し、被測定物の表面形状を高分解能
で測定する反射型光学近接視野走査顕微鏡に関するもの
である。
[Detailed Description of the Invention] Industrial Field of Application] The present invention measures the surface shape of a workpiece with high resolution by scanning an aperture smaller than the wavelength of light from a light source in close proximity to the workpiece. This invention relates to a reflective optical close-field scanning microscope.

[従来の技術] 従来、この種の光学近接視野走査顕微鏡(Near−F
ield  Scanning  0ptLcat  
Microscope)(以下N50Mと称する)とし
ては特開昭59−121.310号公報等が知られてい
る。このN50Mは一般の光学顕微鏡と異なり走査型電
子顕微鏡と同程度の高分解F、 (20n m ;光学
顕微鏡の場合は200〜300nm程度)が空気中や溶
液中でも得られること、被測定物の光学的な性質が情報
として得られることなどの優れた特徴を有し、特に薄膜
試料の観測や、生体試料をそのまま観測できることから
大きな期待が寄せられている。N50Mの基本原理は、
1被測定物を照射すべく光源から放射された可視光の波
長より小さい開口によって被測定物の表面を走査し、表
面形状、すなわち三次元形状を測定するもので、開口を
被測定物から波長よりも短い距離(500nm以下)に
置いて走査することから、近接視野走査顕微鏡と呼ばれ
ている。
[Prior Art] Conventionally, this type of optical near-field scanning microscope (Near-F
ield Scanning 0ptLcat
Japanese Patent Laid-Open No. 121.310/1984 is known as a microscope (hereinafter referred to as N50M). Unlike general optical microscopes, this N50M can obtain high resolution F, equivalent to that of scanning electron microscopes (20 nm; approximately 200 to 300 nm in the case of optical microscopes), even in air or in solutions, and the optical It has excellent features such as the ability to obtain information on biological properties, and has great expectations, especially since it can be used to observe thin film samples and biological samples as they are. The basic principle of N50M is
1 The surface of the measured object is scanned with an aperture smaller than the wavelength of the visible light emitted from the light source to illuminate the measured object, and the surface shape, that is, the three-dimensional shape, is measured. It is called a close-field scanning microscope because it scans at a distance shorter than that (500 nm or less).

開口は、通常光学ファイバの先端を円錐状に形成してそ
の頂点を1μm以下の直径に形成することで得られる。
The aperture is usually obtained by forming the tip of the optical fiber into a conical shape and forming the apex to a diameter of 1 μm or less.

波動の理論からすれば、通常の光学顕微鏡の分解能はλ
/2(λ:波長〉程度に制約されるため、可視光領域で
は200nm〜300nmが限度されている。しかし、
」二連したような波長より小さい極微小な開口に光を導
くと、通常の光のように自由空間を広がることはできな
いが、開口の周囲を行ったり来たりして放射エネルギを
開口の反対側に移すことができる。この移った光は消滅
波(evanescent  wave)と呼ばれるも
ので、これで測定表面を照射することで高分解能な光学
的測定を可能にしている。
According to wave theory, the resolution of a normal optical microscope is λ
/2 (λ: wavelength), so the visible light range is limited to 200 nm to 300 nm. However,
” When light is guided through an extremely small aperture that is smaller than the wavelength, it cannot spread through free space like normal light, but it travels back and forth around the aperture and directs the radiant energy to the opposite side of the aperture. Can be moved to the side. This transferred light is called an evanescent wave, and by illuminating the measurement surface with it, high-resolution optical measurements are made possible.

N50Mによる測定方法には、■開口から試料表面の近
接基に照射して、その透過光を顕微鏡の対物レンズで集
光して測定する方法、■試料を透過した光を近接基の開
口を通って検出する方法および■近接基の開口から照射
された光の反射光を測定する方法の三種類が知られてい
る。このうち■の反射光を測定する方法は、反射型N5
0Mと呼ばれるもので、最も高い分解能が得られる特徴
を有している。第3図はこのような反射型N50Mの従
来例(上記特開昭59−1−21−31−0号)を示す
もので、これを概略説明すると、1−は基台で、この基
台1は除振装置(図示せず)によって外部振動を受けな
い!t4造とされる。2は基台1」二に配設されたステ
ージで、このステージ2は不図示の駆動装置によってX
、Y、方向にそれぞれ独立に移動制御されるように構成
され、」二面に被測定物3が設置されている。4は前記
基台]」二に設置された支柱、5は支柱4の先端アーム
部4Aに垂直調整装W6を介して取り付けられた光源で
、この光源5は半導体レーザ等からなり、被測定物3と
近接対向する開ロアを備え、前記被測定物3をX、Y方
向に移動させることで、相対的に開ロアが測定表面上を
走査する。8は前記光源5から放射されて開ロアを通り
被測定物3の表面で反射した反射光を検出するセンサで
、このセンサ8に入光した反射光は光ファイバ9によっ
て光検出器10に導かれ、電気信号に変換される。
Measurement methods using N50M include: 1) irradiating the adjacent group on the sample surface from the aperture and focusing the transmitted light with a microscope objective lens; 2) irradiating the light that has passed through the sample through the aperture of the nearby group There are three known methods: (2) a method of detecting light emitted from the aperture of a proximal group; Among these methods, the method for measuring the reflected light is the reflective type N5.
It is called 0M and has the characteristic of obtaining the highest resolution. Fig. 3 shows a conventional example of such a reflective type N50M (Japanese Patent Laid-Open No. 59-1-21-31-0). To briefly explain this, 1- is a base; 1 is not subjected to external vibration by a vibration isolator (not shown)! It is said to be of T4 construction. Reference numeral 2 denotes a stage disposed on the base 1''2, and this stage 2 is driven by an unillustrated drive device.
, Y, and directions, and the object to be measured 3 is installed on two sides. Reference numeral 4 denotes a column installed on the base 2, and 5 is a light source attached to the tip arm portion 4A of the column 4 via a vertical adjustment device W6.The light source 5 is composed of a semiconductor laser, etc. 3, and by moving the object to be measured 3 in the X and Y directions, the open lower relatively scans over the measurement surface. Reference numeral 8 denotes a sensor that detects the reflected light emitted from the light source 5 and reflected by the surface of the object to be measured 3 after passing through the open lower part. It is converted into an electrical signal.

[発明が解決しようとする課題] しかしながら、上記した従来の反射型N50Mにあって
は、受光する光の強度を増大させるため複数個のセンサ
8を開ロアの周囲に配設しているものの、光の受光には
異方性があり、斜面による影等の影響が出て測定精度を
高めることができないと云う問題があった。そこで、こ
の問題を解決する方法としてセンサ8の数を増加するこ
とも考えられるが、そうすると部品点数の増加に加えて
センサの取付け、調整作業が面倒である。
[Problems to be Solved by the Invention] However, in the conventional reflective N50M described above, although a plurality of sensors 8 are arranged around the open lower part in order to increase the intensity of the received light, There is an anisotropy in the reception of light, and there is a problem that the measurement accuracy cannot be improved due to the influence of shadows caused by the slope. Therefore, increasing the number of sensors 8 may be considered as a method of solving this problem, but doing so would not only increase the number of parts but also make mounting and adjusting the sensors cumbersome.

したがって、本発明は上記したような従来の問題点に鑑
みてなされたもので、その目的とするところは、最少の
部品点数にて受光面積が大きく開口の全周囲から等方向
に反射光を受光することができ、測定精度を向上させる
と共に、視覚による観察を可能にした反射型光学近接視
野走査顕微鏡を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and its purpose is to have a large light-receiving area with a minimum number of parts, and to receive reflected light equidirectionally from all around the aperture. The object of the present invention is to provide a reflection type optical near-field scanning microscope that can improve measurement accuracy and enable visual observation.

[課題を解決するための手段] 本発明は上記目的を達成するために、光源と、この光源
から放射される光の波長より小さい直径を有して検査す
べき被測定物の表面に近接される開口と、前記光源から
の光を前記開口に導く投光ファイバと、前記開口を通過
して前記被測定物により反射した前記光源からの光を受
光して電気信号に変換する光検出器と、前記被測定物に
当たって反射した前記光を集光し前記光検出器に導く光
学レンズとを備え、前記光学レンズは前記測定物に近接
対向して配置され、中心に前記投光ファイバ22を貫通
させたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a light source, a light source having a diameter smaller than the wavelength of the light emitted from the light source, and a light source that is close to the surface of the object to be inspected. a light emitting fiber that guides the light from the light source to the aperture; a photodetector that receives the light from the light source that passes through the aperture and is reflected by the object to be measured, and converts it into an electrical signal; , an optical lens that condenses the light reflected by the object to be measured and guides it to the photodetector, the optical lens being disposed close to and facing the object to be measured, and passing through the light projection fiber 22 in the center. This is what I did.

[作用] 本発明において、光学レンズの被測定物と近接対向する
面は、投光ファイバを取り巻く連続したリング状の受光
面を形成し、被測定物の表面にて反射する反射光を全面
にて等方向に受光する。
[Function] In the present invention, the surface of the optical lens that closely faces the object to be measured forms a continuous ring-shaped light-receiving surface surrounding the light emitting fiber, and the surface of the optical lens that closely faces the object to be measured forms a continuous ring-shaped light-receiving surface that surrounds the light emitting fiber, so that the reflected light reflected from the surface of the object to be measured is completely absorbed. The light is received in the same direction.

[実施例] 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
[Example] Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は本発明に係る反射型光学近接視野走査顕微鏡の
一実施例を示す概略構成図である。なお、図中第3図と
同一構成部品のものに対しては同一符号を以て示し、そ
の説明を省略する。同図において、本実施例は光源5か
ら光検出器10までの光路を形成する光学系20として
、光源5からの光21をステージ2上の被測定物3の表
面に導く投光ファイバ22と、光源5から出て被測定物
3の表面で反射した反射光23を受光し前記光検出器(
0に導く凸レンズ(光学レンズ)24、全反射鏡25お
よび集光レンズ26と、光源5から放射された光21を
集光し前記投光ファイバ22の入光面に入光させる集光
レンズ27と、前記投光ファイバ22の被測定物3と近
接対向する出光面に設けられた開ロアとで構成されてい
る。
FIG. 1 is a schematic diagram showing an embodiment of a reflective optical near-field scanning microscope according to the present invention. Components in the figure that are the same as those in FIG. 3 are designated by the same reference numerals, and their explanations will be omitted. In the figure, the present embodiment includes a light emitting fiber 22 that guides light 21 from the light source 5 to the surface of the object to be measured 3 on the stage 2, as an optical system 20 forming an optical path from the light source 5 to the photodetector 10. , receives the reflected light 23 emitted from the light source 5 and reflected on the surface of the object to be measured 3, and transmits the light to the photodetector (
a convex lens (optical lens) 24 that guides the light to zero, a total reflection mirror 25, a condensing lens 26, and a condensing lens 27 that condenses the light 21 emitted from the light source 5 and makes it enter the light incident surface of the light projection fiber 22. and an open lower portion provided on the light emitting surface of the light emitting fiber 22 that closely faces the object to be measured 3.

前記光源5としては、例えば波長488nmのArレー
サが使用される。
As the light source 5, for example, an Ar laser with a wavelength of 488 nm is used.

前記投光ファイバ22は石英等で製作され、200 /
1m程度の直径を有している。投光ファイバ22の被測
定物3側端部は前記凸レンズ24の中心に貫通形成され
た挿通孔28に挿通固定されている。そして、投光ファ
イバ22は凸レンズ24と共に支柱4のアーム部4Aに
垂直調整装置6を介して垂直方向に移動調整自在に取り
付けられている。
The light emitting fiber 22 is made of quartz or the like, and has a diameter of 200 /
It has a diameter of about 1 m. The end of the light emitting fiber 22 on the side of the object to be measured 3 is inserted and fixed into an insertion hole 28 formed through the center of the convex lens 24 . The light emitting fiber 22 and the convex lens 24 are attached to the arm portion 4A of the support column 4 via a vertical adjustment device 6 so as to be movable and adjustable in the vertical direction.

前記垂直調整装置6としては、一般にマイクロメータ等
からなる粗調整装置と、印加電圧に応答して伸縮する積
層形のピエゾ素子等からなる微調整装置とで構成され、
これによって前記開ロアが被測定物3の測定表面から光
源5の光の波長よりも短い距離に設定される。
The vertical adjustment device 6 generally includes a coarse adjustment device such as a micrometer, and a fine adjustment device such as a laminated piezo element that expands and contracts in response to an applied voltage.
As a result, the open lower part is set at a distance shorter than the wavelength of the light from the light source 5 from the measurement surface of the object 3 to be measured.

なお、開ロアによる測定表面の走査のためステージ3を
X、Y方向に移動させる不図示の駆動装置もピエゾ素子
が使用される。その場合、4つの積層形ピエゾ素子を十
字状に配置し、その中心にステージ2を設置すればよい
Note that a piezo element is also used for a drive device (not shown) that moves the stage 3 in the X and Y directions to scan the measurement surface with the open lower part. In that case, four stacked piezo elements may be arranged in a cross shape, and the stage 2 may be placed at the center thereof.

前記開ロアは、第2図に示すように投光ファイバ22の
被測定物3側端部を円錐状に加工形成し、その尖った先
端を前記光源5から放射される光の波長より小さい直径
、例えば■μm以下にすることで得られる。そして、前
記投光ファイバ22の端部に設けられた円錐部には、前
記開ロアを除いてアルミニウム等からなる金属の遮光膜
(厚み2OOμm程度)2つがスバ・ツタリング等によ
って形成されている。開ロアの形成に際しては、予め円
錐部全体に遮光膜29を形成し、しかる後円錐部先端と
遮光膜をイオン切削によって除去することで形成される
As shown in FIG. 2, the open lower lower part is formed by processing the end of the light emitting fiber 22 on the side of the object 3 into a conical shape, and the pointed tip thereof has a diameter smaller than the wavelength of the light emitted from the light source 5. , for example, by making it less than ■μm. On the conical portion provided at the end of the light emitting fiber 22, except for the open lower portion, two metal light-shielding films (thickness approximately 200 μm) made of aluminum or the like are formed by means of sputtering or the like. When forming the open lower part, the light shielding film 29 is formed on the entire conical part in advance, and then the tip of the conical part and the light shielding film are removed by ion cutting.

このような構成からなる反射型N50Mにおいて、被測
定物3の表面形状の測定に際しては、光源5から出た光
を集光レンズ27によって集光し、投光ファイバ22の
入光面より該ファイバ内に入光させて開ロアに導き、該
開ロアを通過する光(消滅光)で被測定物3の測定表面
を照射する。また、この状態で被測定物3の表面を開ロ
アによって走査する。
In the reflective type N50M having such a configuration, when measuring the surface shape of the object to be measured 3, the light emitted from the light source 5 is focused by the condensing lens 27, and the light is transmitted from the light incident surface of the light projection fiber 22 to the fiber. The measurement surface of the object to be measured 3 is irradiated with the light (extinguishing light) that passes through the open lower part. Further, in this state, the surface of the object to be measured 3 is scanned by the open lower.

前記開ロアを通過して被測定物3の測定表面を照射する
照射光は測定表面に当たって反射し、その反射光23が
2万レンズ2・1によって受光されることにより平行光
線となって全反射鏡25および集光レンズ26を経て光
検出器1−0に導かれ、電気信号に変換される。測定表
面に当たって反射する反射光の反射方向は全方向である
が、各反射方向における反射光の光量は表面形状によっ
て変化するため、光検出器10の各受光素子の出力信号
も変化する。したがって、反射光23を検出することで
、被測定物3の測定表面の三次元形状が光源5の光の波
長以下(20nm程度〉の高分解能で測定される。
The irradiation light that passes through the open lower door and irradiates the measurement surface of the object to be measured 3 hits the measurement surface and is reflected, and the reflected light 23 is received by the 20,000 lens 2.1 and becomes parallel light rays, resulting in total internal reflection. The light is guided to the photodetector 1-0 via the mirror 25 and the condensing lens 26, where it is converted into an electrical signal. Although the reflected light that hits the measurement surface is reflected in all directions, the amount of reflected light in each reflection direction changes depending on the surface shape, so the output signal of each light receiving element of the photodetector 10 also changes. Therefore, by detecting the reflected light 23, the three-dimensional shape of the measurement surface of the object to be measured 3 can be measured with a high resolution equal to or less than the wavelength of the light from the light source 5 (approximately 20 nm).

この場合、凸レンズ24は測定表面と近接対向し投光フ
ァイバ22の周りを取り巻く連続した環状の受光面24
aを有しているので、反射光23の受光に異方性がなく
、全方向に反射した反射光を等方向に受光することがで
きる。したがって、受光する光量、換言すれば光の強度
が増加し、また表面の凹凸による光の影の影響が少なく
、測定精度をあげることができる。
In this case, the convex lens 24 is a continuous annular light-receiving surface 24 that closely faces the measurement surface and surrounds the light-emitting fiber 22.
a, there is no anisotropy in the reception of the reflected light 23, and the reflected light reflected in all directions can be received in the same direction. Therefore, the amount of received light, in other words, the intensity of light, increases, and the influence of light shadows due to surface irregularities is reduced, making it possible to improve measurement accuracy.

なお、遮光膜29の開ロア付近の厚みは薄く、この部分
から漏れる光が凸レンズ24に入光する恐れがあるので
、凸レンズ24を開ロアから若干離して設けておくこと
が望ましい。
Note that the thickness of the light-shielding film 29 near the opening lower part is thin, and there is a possibility that light leaking from this part may enter the convex lens 24, so it is desirable to provide the convex lens 24 a little apart from the opening lower part.

また、l二足実施例は全反射鏡25を使用したが、光検
出器10を凸レンズ24の上方に配置した場0 合は不要である。また、全反射鏡25の代わりにハーフ
ミラ−を用いれば、光検出器10による検出と、肉眼で
の表面観察を同時に行うことが可能である。
Further, although the total reflection mirror 25 is used in the two-legged embodiment, it is not necessary if the photodetector 10 is placed above the convex lens 24. Further, if a half mirror is used instead of the total reflection mirror 25, detection by the photodetector 10 and surface observation with the naked eye can be performed simultaneously.

[発明の効果] 以上説明したように本発明に係る反射型光学近接視野走
査顕微鏡は、被測定物の表面で反射した光源からの光を
光学レンズによって受光し光検出器に導くように構成し
たので、光の受光に異方性が無く、照射点を中心として
全方向に反射する反射光を一つのレンズで等方向に受光
できる。したがって、複数個のセンサを開口の周囲に配
置する場合と比較してi造が簡単で安価であるばかりか
、受光する光の強度が増加し、影の影響が少なく、より
測定精度を向上させることができる。加えて、光学レン
ズを使用しているので、肉眼での観察用としても使用で
きる。
[Effects of the Invention] As explained above, the reflection type optical near-field scanning microscope according to the present invention is configured to receive the light from the light source reflected on the surface of the object to be measured by the optical lens and guide it to the photodetector. Therefore, there is no anisotropy in light reception, and reflected light that is reflected in all directions around the irradiation point can be received in the same direction with one lens. Therefore, compared to the case where multiple sensors are placed around the aperture, the structure is not only simpler and cheaper, but also increases the intensity of the received light, reduces the influence of shadows, and further improves measurement accuracy. be able to. Additionally, since it uses an optical lens, it can also be used for observation with the naked eye.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る反射型光学近接視野走査顕微鏡の
一実施例を示す概略III戒図、第2図は開口の拡大断
面図、第3図は反射型光学近接視野走査顕微鏡の従来例
を示す概略構成図である。 1・・・基台、2・・・ステージ、3・−・被測定物、
5・−・光源、6・−・垂直調整装置、7・・・開口、
10・・・光検出器、 22・・−投光ファイバ、24−−・凸レンズ、24a
・・−受光面、25・・・全反射鏡、26.27−・・
集光レンズ、28・・・挿通孔、29・・・遮光膜。
FIG. 1 is a schematic diagram showing an embodiment of a reflective optical near-field scanning microscope according to the present invention, FIG. 2 is an enlarged sectional view of the aperture, and FIG. 3 is a conventional example of a reflective optical near-field scanning microscope. FIG. 1... Base, 2... Stage, 3... Measured object,
5... Light source, 6... Vertical adjustment device, 7... Aperture,
DESCRIPTION OF SYMBOLS 10... Photodetector, 22...-Light projection fiber, 24-- Convex lens, 24a
...-Light receiving surface, 25... Total reflection mirror, 26.27-...
Condenser lens, 28... insertion hole, 29... light shielding film.

Claims (1)

【特許請求の範囲】[Claims] 光源と、この光源から放射される光の波長より小さい直
径を有して検査すべき被測定物の表面に近接される開口
と、前記光源からの光を前記開口に導く投光ファイバと
、前記開口を通過して前記被測定物により反射した前記
光源からの光を受光して電気信号に変換する光検出器と
、前記被測定物に当たって反射した前記光を集光し前記
光検出器に導く光学レンズとを備え、前記光学レンズは
前記測定物に近接対向して配置され、中心に前記投光フ
ァイバ21が貫通されていることを特徴とする反射型光
学近接視野走査顕微鏡。
a light source; an aperture having a diameter smaller than the wavelength of the light emitted from the light source and located close to the surface of the object to be inspected; a light projecting fiber that guides the light from the light source to the aperture; a photodetector that receives the light from the light source that passes through the aperture and is reflected by the object to be measured and converts it into an electrical signal; and a photodetector that collects the light that is reflected by the object to be measured and guides it to the photodetector. 1. A reflection type optical close-field scanning microscope, comprising: an optical lens, the optical lens being disposed close to and facing the object to be measured, and having the projection fiber 21 penetrated through the center thereof.
JP2087863A 1990-04-02 1990-04-02 Reflection type nearby visual field scanning microscope Pending JPH03287111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087863A JPH03287111A (en) 1990-04-02 1990-04-02 Reflection type nearby visual field scanning microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087863A JPH03287111A (en) 1990-04-02 1990-04-02 Reflection type nearby visual field scanning microscope

Publications (1)

Publication Number Publication Date
JPH03287111A true JPH03287111A (en) 1991-12-17

Family

ID=13926725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087863A Pending JPH03287111A (en) 1990-04-02 1990-04-02 Reflection type nearby visual field scanning microscope

Country Status (1)

Country Link
JP (1) JPH03287111A (en)

Similar Documents

Publication Publication Date Title
US5294804A (en) Cantilever displacement detection apparatus
KR100743591B1 (en) Confocal Self-Interference Microscopy Which Excluding Side Lobes
KR100192097B1 (en) Configuration measuring method and apparatus for optically detecting a displacement of a probe due to an atomic force
EP0665417A2 (en) Atomic force microscope combined with optical microscope
JPH0785060B2 (en) Confocal imaging system and method for inspecting and / or imaging an object
JPH0723844B2 (en) Surface shape measuring instrument
JPS62121340A (en) Method and device for displaying target body to be observed in dark field by scanning type optical microscope
JP2009505126A (en) Microscope and method for total reflection microscopy
JPH0821844A (en) Near field light scanning type microscope
JPH10161195A (en) Autofocusing method and device
JP4214196B2 (en) Scanning device for detecting fluorescence
JP2009540346A (en) Interference confocal microscope
JPS63131116A (en) Confocal microscope
JP3453128B2 (en) Optical scanning device and defect detection device
US5764364A (en) Scattered-light laser microscope
JPH03287111A (en) Reflection type nearby visual field scanning microscope
JPH09325278A (en) Confocal type optical microscope
JP2000509825A (en) Optical scanning device
JP2010266452A (en) Scanning optical near-field microscope
JPH03287110A (en) Reflection type optical nearby visual field scanning microscope
JPH0694613A (en) Infrared microscopic measuring apparatus
JP3953914B2 (en) Cantilever with translucent hole, manufacturing method thereof, and beam measuring method using the same
CN220690787U (en) Detection and measurement microscopic system based on three-mirror closed-loop scanning confocal
JP2613130B2 (en) Confocal scanning phase contrast microscope
KR20060111142A (en) Microscope using confocal array detector