JPH03286962A - Hot water supplying device - Google Patents

Hot water supplying device

Info

Publication number
JPH03286962A
JPH03286962A JP2088729A JP8872990A JPH03286962A JP H03286962 A JPH03286962 A JP H03286962A JP 2088729 A JP2088729 A JP 2088729A JP 8872990 A JP8872990 A JP 8872990A JP H03286962 A JPH03286962 A JP H03286962A
Authority
JP
Japan
Prior art keywords
hot water
conduit
cold water
area
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088729A
Other languages
Japanese (ja)
Inventor
Yukimasa Tachibana
橘 幸正
Seiichiro Maeda
前田 政一郎
Kosuke Yonekawa
米川 幸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2088729A priority Critical patent/JPH03286962A/en
Publication of JPH03286962A publication Critical patent/JPH03286962A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a large amount of hot water of a predetermined temperature be instantly supplied by a method wherein a conduit is installed either at least by installing a cylindrical flowing element of a large diameter at its upper end or by setting a cylindrical flowing-out element of large diameter at its lower end. CONSTITUTION:A cold water conduit is comprised of a main body 1 of the conduit and a flowing-out element 2 disposed at a lower end of the conduit. The flowing-out element 2 is a cylindrical member having a larger diameter than that of the main body 1 of the conduit and is fixed at a lower end bent in a rightward direction of the main body 1 of the conduit while its axial direction is substantially coincided with its lower end. With such a mounting of the flowing-out element 2, a flowing-out speed of supplementary cold water into a thermal accumulation area 74 is decreased, and then an agitating action of the cold water and hot water in the thermal accumulation area 74 is restricted. As a result, a hot water reducing speed at the hot water area 73 is dampened and then a large amount of hot water of predetermined temperature can be supplied from the hot water area 73 instantly.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、とくに飲料用自動販売機に組み込まれ所定
温度の温水を指令に基づいて外部へ供給する温水供給装
置に関する。
The present invention particularly relates to a hot water supply device that is incorporated into a beverage vending machine and supplies hot water at a predetermined temperature to the outside based on a command.

【従来の技術】[Conventional technology]

飲料用自動販売機に組み込まれて使用される温水供給装
置は、水位を一定に維持させるよう、冷水の補給を受け
てなから、所定温度の温水を供給する装置である。この
温水供給装置は、所定温度の温水を多量に、かつ短時間
に得ることが要求される。 その−従来例について、その断面図の第5図を参照しな
がら説明する。第5図において、タンク71の内部が、
隔壁72によって上位の温水域73と下位の蓄熱域74
とに二分される。なお、隔壁72の外周にはタンク71
の内周との間に各通連部72a 、 72bがあって温
水域73と蓄熱域74とを連通している。 温水域73には、その上方に電磁弁71Aを設けた補給
用冷水配管71aと、下部にt磁弁71Bを設けた供給
用温水配管71bとが接続され、また水位検知器(レベ
ルスイッチ)9が設置される。温水域73には主ヒータ
75が、蓄熱域74には補助ヒータ77がそれぞれの加
熱用に設けられるとともに、温水域73にサーモスタッ
ト76が設置される。また、冷水導管78が温水域73
の全部と、蓄熱域74の一部とを貫通する形で設置され
、上端から冷水配管71aからの冷水が投入され下端か
ら投出される。 電磁弁71Aは、水位検知器9の信号によって作動して
冷水配管71aを介して冷水の補給、停止をおこない、
を磁弁71Bは、販売信号によって作動して温水配管7
1bを介して温水の供給、停止をおこなう、主ヒータ7
5と補助ヒータ77とは、詳しく後述するように、サー
モスタット76の接点信号によってオン・オフ作動して
、それぞれ温水域73と蓄熱域74とを加熱する。 さて、発明における所定温度を設定温度として、主ヒー
タ75がサーモスタット76によってオン・オフ制御さ
れて加熱される。初期には、主ヒータ75はそのオン状
態が持続し、温水域73の温度が設定温度に達するとオ
フされる。この主ヒータ75のオフと同時に補助ヒータ
77がオンされる。さて、この補助ヒータ77の加熱に
よって、隔壁72の外周に設けである各連通部72a、
72bを通して、温水域73と蓄熱域74とにまたがる
対流が生しる。 その結果、温水の供給がおこなわれないとき、第1段階
として温水域73の温度は、設定温度近傍とこれより若
干低い温度との比較的狭い範囲でジグザグ状に変動し、
また蓄熱域74の温度は、対流のために温水域73にお
ける温度範囲より若干低い温度範囲でジグザグ状に変動
する。なお、主ヒータ75と補助ヒータ77とは、主ヒ
ータ75のオン状態を優先し、同時にはオン状態になら
ないように構成される。主、補助の各ヒータ75.77
が同時にオンすると消費電力が増大するから、これを制
限するためである。 温水供給の指令があると、電磁弁71Bが開いて温水配
管71bから温水が外部に供給される。同時に、この供
給による水位の低下が水位検知器9で検知され、この検
知信号に基づき電磁弁71Aが開き、冷水配管71aか
ら冷水が補給され水位が一定に維持される。 さて、補給用冷水は冷水導管78を通り蓄熱域74に補
給されるから、まず蓄熱域74の温度が低下し、ついで
蓄熱域74の温水が温水域73に押し上げられることで
、温水域73の温度も低下する。この温度低下に基づい
て、前に述べたと同様な過程を経て、主ヒータ75によ
る加熱と、補助ヒータ77による加熱とが、前者を優先
的にして交互におこなわれて、温水域73と蓄熱域75
とは再び所定温度に近い状態になる。 なお、第5図には図示してないが、温水域73に温度セ
ンサを設け、その温度が温水供給に適した温度に達した
ら供給可能の旨の通報を出し、またその温度が温水供給
の許容限度以下になったらその旨の警報を発して注意を
促すようにしである。 第6図は別の従来例の断面図である。同図において、3
1はタンク、32.32Aはいずれも隔壁で、−方の隔
壁32は、タンク31を上位の温水域33と、すぐ下位
の蓄熱域34Bとに区分するとともに、一つの連通孔3
2aを備え、他方の隔壁32Aは、各蓄熱域34A、3
4Bに区分するとともに、タンク31の内周面との間に
空隙32Ao、言いかえれば複数個の連続した連通孔を
有する。 温水域33には、主ヒータ35と、サーモスタット36
と、水位検知器9とが設置される。蓄熱域34Aには、
補助ヒータ37と、サーモスタット38とが設置され、
蓄熱域34Bにはなにも設置されてない。 なお、サーモスタット38は蓄熱域34Bの方に設置す
ることもできるが、対流のため蓄熱域34Aに設置した
方が両者の平均的な温度が高くなる。 電磁弁31Aを設けた補給用冷水配管31aは、タンク
31の上部側方に開口して冷水導管39の上開口部につ
ながり、冷水導管39の下開口部は蓄熱域34Aの底部
に位置する。電磁弁31Bを設けた供給用温水配管31
bは温水域33の下部側方から温水を取り出し可能に設
置される。 この別の従来例の動作は概略的に言えば、次のとおりで
ある。最上位の温水域33とこれに隣接する蓄熱域34
Bとを区分する隔壁32には連通孔32aが1個だけで
あるから、この温水域33と蓄熱域34Bとの間に対流
が生じない。したがって、対流によって各垣間で互いの
温度が影響しあうことがほとんどない。各蓄熱域34A
、34B間を区分する隔壁32Aには外周に空隙32A
o (複数個の連通孔に相当する)があるため各蓄熱域
34A、34B間には対流が生じ、また蓄熱域34Aの
設定温度は温水域33の設定温度より高く、さらに各蓄
熱域34A、 34Bの温度は対流のため上位の蓄熱域
34B方が若干高くなる。しかも、温水の供給はまず温
水域33から、次いで隣接する下位の各蓄熱域34A、
34Bの順序でおこなわれるから、温水の供給に応して
冷水が最下位の蓄熱域34Aに補給されたとき、たとえ
−時に多量の温水供給がなされても、温水温度の低下率
が一従来例よりは抑えられる。 さらに別の従来例について、その断面図である第7図を
参照しながら説明する。第7図において、さらに別の従
来例が前記の別の従来例と異なる点は、温水域の下位に
蓄熱域が三つ積層配置され、各蓄熱載量を区分する二つ
の隔壁が設けられることである。すなわち、各蓄熱域3
4X、 34Y、 34Zが下から順に隣接配置され、
各載量が各隔壁32X、32Yによって区分される。各
隔壁32X、 32Yの外周とタンク3Iの内面との間
には空隙が設けである。また、補助し一タ37とサーモ
スタット38とは、最下位の蓄熱域34Xに設置される
。なお、サーモスタット38は各蓄熱域34X 、 3
4Y、 34Zのいずれかに設置することができ、下位
の蓄熱域に設置するほど、対流のため蓄熱域の平均的な
温度が高くなる。 蓄熱域34Xの設定温度は温水域33の設定温度より高
く、さらに各蓄熱域34X、 34Y、 34Zの温度
は対流のため上位にいくほど高くなる。しかも、温水の
供給はまず温水域33から開始され、次いで隣接する下
位の各蓄熱域34Z、34Y、34χの順序でおこなわ
れる。したがって、前記の別の従来例のときより温水の
温度低下率は低くなって、−時に供給できる温水量はさ
らに多くなる。
A hot water supply device used in a beverage vending machine is a device that supplies hot water at a predetermined temperature after being replenished with cold water so as to maintain a constant water level. This hot water supply device is required to obtain a large amount of hot water at a predetermined temperature in a short time. The conventional example will be explained with reference to FIG. 5, which is a sectional view thereof. In FIG. 5, the inside of the tank 71 is
A partition wall 72 separates an upper heated area 73 and a lower heat storage area 74.
It is divided into two parts. Note that a tank 71 is provided on the outer periphery of the partition wall 72.
There are communication portions 72a and 72b between the inner periphery of the hot water area 73 and the heat storage area 74, respectively. The warm water area 73 is connected to a replenishment cold water pipe 71a provided with a solenoid valve 71A above it, and a supply hot water pipe 71b provided with a t-magnetic valve 71B below, and also has a water level detector (level switch) 9. will be installed. A main heater 75 is provided in the hot water area 73, an auxiliary heater 77 is provided in the heat storage area 74, and a thermostat 76 is provided in the hot water area 73. In addition, the cold water conduit 78 is connected to the hot water area 73.
and a part of the heat storage area 74, and cold water from the cold water pipe 71a is introduced from the upper end and discharged from the lower end. The solenoid valve 71A is activated by a signal from the water level detector 9 to supply and stop cold water via the cold water pipe 71a.
The magnetic valve 71B is activated by the sales signal to connect the hot water pipe 7.
The main heater 7 supplies and stops hot water via 1b.
5 and the auxiliary heater 77 are turned on and off by a contact signal from the thermostat 76 to heat the warm water area 73 and the heat storage area 74, respectively, as will be described in detail later. Now, the main heater 75 is heated by being controlled on and off by the thermostat 76, with the predetermined temperature in the invention being set as the set temperature. Initially, the main heater 75 remains on, and is turned off when the temperature of the hot water area 73 reaches the set temperature. At the same time as the main heater 75 is turned off, the auxiliary heater 77 is turned on. By heating the auxiliary heater 77, each communication portion 72a provided on the outer periphery of the partition wall 72,
Through 72b, convection occurs across the warm area 73 and the heat storage area 74. As a result, when hot water is not supplied, the temperature of the hot water area 73 fluctuates in a zigzag pattern in a relatively narrow range between near the set temperature and slightly lower than the set temperature in the first stage.
Further, the temperature of the heat storage area 74 fluctuates in a zigzag manner in a temperature range slightly lower than the temperature range of the hot area 73 due to convection. The main heater 75 and the auxiliary heater 77 are configured so that the on state of the main heater 75 is given priority and they are not turned on at the same time. Main and auxiliary heaters 75.77
This is to limit power consumption since power consumption increases if both are turned on at the same time. When there is a command to supply hot water, the solenoid valve 71B opens and hot water is supplied to the outside from the hot water pipe 71b. At the same time, a drop in the water level due to this supply is detected by the water level detector 9, and based on this detection signal, the solenoid valve 71A is opened, and cold water is replenished from the cold water pipe 71a to maintain the water level constant. Now, since the replenishment cold water is supplied to the heat storage area 74 through the cold water conduit 78, the temperature of the heat storage area 74 first decreases, and then the hot water in the heat storage area 74 is pushed up to the hot water area 73, so that the temperature of the heat storage area 74 decreases. The temperature also decreases. Based on this temperature drop, heating by the main heater 75 and heating by the auxiliary heater 77 are performed alternately, giving priority to the former, through the same process as described above, so that the hot water area 73 and the heat storage area 75
The temperature becomes close to the predetermined temperature again. Although it is not shown in FIG. 5, a temperature sensor is installed in the hot water area 73, and when the temperature reaches a temperature suitable for hot water supply, a notification that the supply is possible is sent out, and when that temperature reaches a temperature suitable for hot water supply, a notification is sent out. If the temperature falls below the permissible limit, a warning will be issued to alert you. FIG. 6 is a sectional view of another conventional example. In the same figure, 3
1 is a tank, 32.32A are both partition walls, and the partition wall 32 on the - side divides the tank 31 into an upper hot area 33 and an immediately lower heat storage area 34B, and has one communication hole 3.
2a, and the other partition wall 32A has heat storage areas 34A, 3
4B, and has a gap 32Ao between it and the inner peripheral surface of the tank 31, in other words, a plurality of continuous communication holes. The hot area 33 includes a main heater 35 and a thermostat 36.
and a water level detector 9 are installed. In the heat storage area 34A,
An auxiliary heater 37 and a thermostat 38 are installed,
Nothing is installed in the heat storage area 34B. Note that the thermostat 38 can be installed in the heat storage area 34B, but because of convection, the average temperature of both will be higher if it is installed in the heat storage area 34A. A replenishing cold water pipe 31a provided with a solenoid valve 31A opens at the upper side of the tank 31 and connects to the upper opening of the cold water conduit 39, and the lower opening of the cold water conduit 39 is located at the bottom of the heat storage area 34A. Supply hot water piping 31 equipped with a solenoid valve 31B
b is installed so that hot water can be taken out from the lower side of the warm water area 33. The operation of this other conventional example is roughly as follows. Top heated area 33 and adjacent heat storage area 34
Since there is only one communication hole 32a in the partition wall 32 that separates the heat storage area 34B from the hot water area 33, no convection occurs between the hot water area 33 and the heat storage area 34B. Therefore, the temperature of each fence hardly influences each other due to convection. Each heat storage area 34A
, 34B has a gap 32A on its outer periphery.
o (corresponding to a plurality of communication holes), convection occurs between each heat storage area 34A, 34B, and the set temperature of the heat storage area 34A is higher than the set temperature of the hot water area 33, and furthermore, each heat storage area 34A, The temperature of the upper heat storage area 34B is slightly higher due to convection. Moreover, hot water is supplied first from the hot water area 33, then from each of the adjacent lower heat storage areas 34A,
34B, when cold water is supplied to the lowest heat storage area 34A in response to hot water supply, even if a large amount of hot water is supplied at - times, the rate of decrease in hot water temperature will be the same as in the conventional example. It can be suppressed more. Still another conventional example will be described with reference to FIG. 7, which is a sectional view thereof. In FIG. 7, another conventional example differs from the other conventional example described above in that three heat storage areas are arranged in a layered manner below the hot water area, and two partition walls are provided to separate each heat storage load. It is. That is, each heat storage area 3
4X, 34Y, 34Z are arranged adjacent to each other in order from the bottom,
Each load is divided by each partition wall 32X, 32Y. A gap is provided between the outer periphery of each of the partition walls 32X, 32Y and the inner surface of the tank 3I. Further, the auxiliary heater 37 and the thermostat 38 are installed in the lowest heat storage area 34X. In addition, the thermostat 38 has each heat storage area 34X, 3
It can be installed in either 4Y or 34Z, and the lower it is installed in the heat storage area, the higher the average temperature of the heat storage area will be due to convection. The set temperature of the heat storage area 34X is higher than the set temperature of the hot water area 33, and the temperature of each of the heat storage areas 34X, 34Y, and 34Z increases as it goes higher due to convection. Moreover, the supply of hot water is first started from the hot water area 33, and then supplied to the adjacent lower heat storage areas 34Z, 34Y, and 34χ in this order. Therefore, the temperature reduction rate of the hot water is lower than in the other conventional example, and the amount of hot water that can be supplied during the period of - is further increased.

【発明が解決しようとする課H】[Question H that the invention attempts to solve]

以上説明したような従来の技術では、温水の供給がある
と、これに伴う冷水の補給とあいまって、程度の差こそ
あれ、温水が供給されるべき温水域の温度がまだ比較的
早く低下する、つまり温水域の時間的温度低下率がまだ
大きい。このことは、言いかえれば、−時に多量の温水
供給がまだ十分にはできないことを意味する。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、冷水補給による上位水域の温度低下の速度を抑制
することによって、ヒータ容量やタンク容積を大きくす
ることなく、−時にさらに多量の所定温度の温水を供給
することができる温水供給装置を提供することにある。
In the conventional technology as explained above, when hot water is supplied, the temperature of the hot water area to which hot water is to be supplied decreases relatively quickly, although there are differences in degree, due to the accompanying replenishment of cold water. , that is, the temporal temperature decrease rate in warm areas is still large. This means, in other words, that sometimes a large amount of hot water cannot be supplied sufficiently. The object of this invention is to solve the problems of the conventional technology and suppress the rate of temperature drop in the upper water area due to cold water replenishment, without increasing the heater capacity or tank volume. An object of the present invention is to provide a hot water supply device that can supply hot water at a predetermined temperature.

【課題を解法するための手段】[Means to solve the problem]

この課題を解決するために、本発明に係る温水供給装置
は、 タンク内の所定温度の温水が指令に基づいて外部へ供給
されるとともに、このタンク内の水位が一定になるよう
に、上端部が前記タンク内温水に接する空間に開口し下
端部が前記タンク内温水の底部に開口する導管の前記上
端部から冷水が補給される装置において、 前記導管は、その上端部に大口径の筒状流入具を設ける
か、その下端部に大口径の筒状流出具を設けるか、の少
なくともいずれかである。
In order to solve this problem, the hot water supply device according to the present invention supplies hot water at a predetermined temperature in the tank to the outside based on a command, and also has an upper end part so that the water level in the tank is constant. In a device in which cold water is supplied from the upper end of a conduit, the conduit opens into a space in contact with the hot water in the tank and the lower end opens at the bottom of the hot water in the tank, the conduit has a large-diameter cylindrical shape at its upper end. Either an inflow device is provided, or a large diameter cylindrical outflow device is provided at the lower end thereof.

【作用】[Effect]

導管上端部の流入具の設置によって、冷水補給時に、冷
水が湯水の水面と衝突して発生する気泡は、導管内に混
入し難くなり、その混入量が少なくなる。この混入気泡
は、導管の下端部から流出するとき、その箇所での冷水
と温水との撹拌作用をもつから、混入気泡が減少するこ
とは撹拌作用の抑制につながる。また、導管下端部の流
出具の設置によって、補給冷水のタンク底部への流出速
度が低下し、タンク底部下での冷水と温水との撹拌作用
が抑制される。この撹拌作用の抑制によって結果的に、
補給冷水による、供給されるべき温水の温度低下の速度
が緩和される。
By installing the inflow device at the upper end of the conduit, air bubbles generated when cold water collides with the surface of hot water during cold water replenishment are less likely to enter the conduit, and the amount of air bubbles that enter the conduit is reduced. When these air bubbles flow out from the lower end of the conduit, they have a stirring effect on the cold water and hot water at that point, so reducing the air bubbles in the air leads to suppression of the stirring effect. Further, by installing the draining device at the lower end of the conduit, the flow rate of supplementary cold water to the tank bottom is reduced, and the stirring action of the cold water and hot water below the tank bottom is suppressed. As a result, by suppressing this stirring action,
The rate at which the temperature of the hot water to be supplied decreases due to the supplementary cold water is reduced.

【実施例】【Example】

本発明に係る温水供給装置の実施例について、以下にそ
の主要部材である冷水導管の側面図を参照しながら説明
する。 第1図は第1実施例の側面図である。第1実施例が一従
来例と異なる点は冷水導管の構造にある。 なお、別の従来例、さらに別の従来例についても同様で
あるから、以下に一従来例で代表として説明する。第一
実施例における冷水導管は、導管本体1と、その下端部
に付設される流出具2とからなる。流出具2は、導管本
体1より大きい口径の筒状部材で、導管本体lの右方向
に折り曲げられた下端部に、軸線方向をほぼ一致させて
固着される。なお、これ以外の一従来例と同じ部材には
同じ符号が付けてあり、説明を省略する。 この流出具2の設置によって、補給冷水の蓄熱域74へ
の流出速度が低下し、蓄熱域74での冷水と温水との撹
拌作用が抑制される。その結果、温水域73での温度低
下速度が緩和されて、温水域73から一時により多量の
所定温度の温水を供給することができるようになる。 第2図は第2実施例における冷水導管(以下、第2冷水
導管という)の側面図である。第2図において、第2冷
水導管は、第1実施例におけるのと同じ導管本体1と、
その下端部に付設される流出具3とからなる。この流出
具3は、第1実施例における流出具2の側壁に流出穴4
が複数個あけられている。この複数個の流出穴4によっ
て、流出具3の実質的な流出用断面積が増大する。その
結果、補給冷水の蓄熱域74(第1図参照)への流出速
度がさらに低下し、蓄熱域74での冷水と温水との撹拌
作用がさらに抑制されることになる。 第3図は第3実施例における冷水導管(以下、第3冷水
導管という)の側面図である。第3図において、第3冷
水導管は、導管本体5と、その上端部に付設される流入
具6とからなる。なお、導管本体5は導管本体1より長
さがやや短いだけの違いである。流入具6は、導管本体
5より大きい口径で所定深さをもつ筒状部材で、各軸線
方向をほぼ一致させる形で固着される。 流入具6の設置によって、冷水補給時に、冷水が温水域
73(第1図参照)の自由表面と衝突して発生する気泡
は、その自由表面と導管本体5の上端との距離がある程
度あるため、導管本体5の内部にまで混入する量が少な
くなる。この混入気泡は、導管本体5の下端部から流出
するとき、蓄熱域74での冷水と温水との撹拌作用をも
つから、混入気泡が減少することは撹拌作用の抑制につ
ながる。この撹拌作用の抑制によって結果的に、補給冷
水による、温水域73の温度低下の速度が緩和され、ひ
いては温水域75から一時により多量の所定温度の温水
を供給することができるようになる。 第4図は第4実施例における冷水導管(以下、第4冷水
導管という)の側面図である。第4図において、第4冷
水導管は、導管本体5と、その上端部に付設される流入
具8とからなる。流入具8は、導管本体5より大きい口
径で所定深さをもつ筒状部材で、各軸線同士を偏位させ
る形で固着される。 流入具8の設置によって、冷水補給時に、冷水が温水域
73の自由表面と衝突して発生する気泡は、その自由表
面と導管本体5の上端との距離が、第3実施例における
のと同じでも、各軸線方向がずれているため、導管本体
5の内部にまで混入する量がさらに少なくなる。その結
果、第4実施例の効果は、第3実施例におけるよりさら
に増す。 ところで当然ながら、第1実施例または第2実施例と、
第3実施例または第4実施例とを組合せれば、さらに効
果的である。
An embodiment of the hot water supply device according to the present invention will be described below with reference to a side view of a cold water conduit, which is a main component thereof. FIG. 1 is a side view of the first embodiment. The first embodiment differs from the conventional example in the structure of the cold water conduit. Note that the same applies to other conventional examples and still other conventional examples, so one conventional example will be described below as a representative example. The cold water conduit in the first embodiment consists of a conduit main body 1 and an outflow device 2 attached to its lower end. The outflow device 2 is a cylindrical member having a larger diameter than the conduit main body 1, and is fixed to the rightwardly bent lower end of the conduit main body 1 with its axial direction substantially aligned. Note that other members that are the same as those in the conventional example are designated by the same reference numerals, and explanations thereof will be omitted. By installing this outflow tool 2, the outflow speed of the supplementary cold water to the heat storage area 74 is reduced, and the stirring action of the cold water and hot water in the heat storage area 74 is suppressed. As a result, the rate of temperature decrease in the hot water area 73 is reduced, and a larger amount of hot water at a predetermined temperature can be supplied from the hot water area 73 at one time. FIG. 2 is a side view of a cold water conduit (hereinafter referred to as a second cold water conduit) in the second embodiment. In FIG. 2, the second cold water conduit has the same conduit body 1 as in the first embodiment,
It consists of a draining tool 3 attached to its lower end. This outflow tool 3 has outflow holes 4 in the side wall of the outflow tool 2 in the first embodiment.
There are multiple holes. The plurality of outflow holes 4 increase the substantial outflow cross-sectional area of the outflow tool 3. As a result, the outflow speed of the supplementary cold water to the heat storage area 74 (see FIG. 1) is further reduced, and the stirring action of the cold water and hot water in the heat storage area 74 is further suppressed. FIG. 3 is a side view of a cold water conduit (hereinafter referred to as a third cold water conduit) in the third embodiment. In FIG. 3, the third cold water conduit consists of a conduit main body 5 and an inlet fitting 6 attached to its upper end. Note that the only difference is that the conduit main body 5 is slightly shorter in length than the conduit main body 1. The inflow device 6 is a cylindrical member having a diameter larger than that of the conduit main body 5 and a predetermined depth, and is fixed in such a manner that its axial directions are substantially aligned. Due to the installation of the inflow device 6, air bubbles generated when the cold water collides with the free surface of the warm water area 73 (see Figure 1) when replenishing cold water are caused by the fact that there is a certain distance between the free surface and the upper end of the conduit main body 5. , the amount that gets mixed into the inside of the conduit main body 5 is reduced. When these air bubbles flow out from the lower end of the conduit main body 5, they have a stirring effect on the cold water and the hot water in the heat storage area 74, so a reduction in the air bubbles leads to suppression of the stirring effect. As a result, by suppressing the stirring action, the rate of temperature drop in the warm water area 73 due to the supplementary cold water is reduced, and as a result, a larger amount of hot water at a predetermined temperature can be supplied from the hot water area 75 at one time. FIG. 4 is a side view of the cold water conduit (hereinafter referred to as the fourth cold water conduit) in the fourth embodiment. In FIG. 4, the fourth cold water conduit consists of a conduit main body 5 and an inlet fitting 8 attached to its upper end. The inflow device 8 is a cylindrical member having a diameter larger than that of the conduit main body 5 and a predetermined depth, and is fixed in such a manner that its axes are offset from each other. Due to the installation of the inflow device 8, the air bubbles generated when the cold water collides with the free surface of the hot water area 73 during cold water replenishment are caused by the fact that the distance between the free surface and the upper end of the conduit main body 5 is the same as in the third embodiment. However, since the respective axial directions are shifted, the amount that gets mixed into the inside of the conduit main body 5 is further reduced. As a result, the effects of the fourth embodiment are even greater than those of the third embodiment. By the way, as a matter of course, the first embodiment or the second embodiment,
It is even more effective if the third embodiment or the fourth embodiment is combined.

【発明の効果】【Effect of the invention】

この発明においては、導管上端部の流入具の設置によっ
て、冷水補給時に、冷水が温水の水面と衝突して発生す
る気泡が、導管内に混入し難くなり、また導管下端部の
流出具の設置によって、補給冷水のタンク底部への流出
速度が低下し、いずれにしてもタンク底部での冷水と温
水との撹拌作用が抑制されて、補給冷水による、供給さ
れるべき温水の温度低下の速度が緩和される。したがっ
て、ヒータ容量やタンク容積を大きくすることなく、−
時に多量の所定温度の温水を外部に供給することができ
る、というすぐれた効果がある。
In this invention, by installing an inflow device at the upper end of the conduit, air bubbles generated when cold water collides with the surface of hot water during cold water replenishment are difficult to enter the conduit, and by installing an outflow device at the lower end of the conduit. As a result, the speed at which make-up cold water flows to the bottom of the tank decreases, and in any case, the stirring action between cold water and hot water at the bottom of the tank is suppressed, and the rate at which the temperature of hot water to be supplied by make-up cold water decreases is reduced. eased. Therefore, without increasing the heater capacity or tank capacity, -
It has the excellent effect of being able to supply a large amount of hot water at a predetermined temperature to the outside.

【図面の簡単な説明】 第1図は本発明に係る第1実施例の側面図、第2図は第
2実施例における冷水導管の側面図、第3図は第3実施
例における冷水導管の側面図、第4図は第4実施例にお
ける冷水導管の側面図、第5図は一従来例の断面図、 第6図は別の従来例の断面図、 第7図はさらに別の従来例の断面図である。 符号説明 15:導管本体、2.3:流出具、 4:流出穴、6.8二流入具。 逼氷塊 第 圀 第
[Brief Description of the Drawings] Fig. 1 is a side view of the first embodiment according to the present invention, Fig. 2 is a side view of the cold water pipe in the second embodiment, and Fig. 3 is a side view of the cold water pipe in the third embodiment. 4 is a side view of the cold water conduit in the fourth embodiment, FIG. 5 is a sectional view of one conventional example, FIG. 6 is a sectional view of another conventional example, and FIG. 7 is yet another conventional example. FIG. Symbol explanation 15: conduit main body, 2.3: outflow tool, 4: outflow hole, 6.8 2 inflow tool. The ice block number 1

Claims (1)

【特許請求の範囲】[Claims] 1)タンク内の所定温度の温水が指令に基づいて外部へ
供給されるとともに、このタンク内の水位が一定になる
ように、上端部が前記タンク内温水に接する空間に開口
し下端部が前記タンク内温水の底部に開口する導管の前
記上端部から冷水が補給される装置において、前記導管
は、その上端部に大口径の筒状流入具を設けるか、その
下端部に大口径の筒状流出具を設けるか、の少なくとも
いずれかであることを特徴とする温水供給装置。
1) Hot water at a predetermined temperature in the tank is supplied to the outside based on a command, and the upper end opens into a space in contact with the hot water in the tank, and the lower end In a device in which cold water is supplied from the upper end of a conduit that opens to the bottom of the hot water in the tank, the conduit is provided with a large-diameter cylindrical inlet at its upper end, or a large-diameter cylindrical inlet at its lower end. 1. A hot water supply device comprising at least one of the following.
JP2088729A 1990-04-03 1990-04-03 Hot water supplying device Pending JPH03286962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088729A JPH03286962A (en) 1990-04-03 1990-04-03 Hot water supplying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088729A JPH03286962A (en) 1990-04-03 1990-04-03 Hot water supplying device

Publications (1)

Publication Number Publication Date
JPH03286962A true JPH03286962A (en) 1991-12-17

Family

ID=13951007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088729A Pending JPH03286962A (en) 1990-04-03 1990-04-03 Hot water supplying device

Country Status (1)

Country Link
JP (1) JPH03286962A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344351B2 (en) * 1976-02-20 1978-11-28
JPS578443B2 (en) * 1975-06-18 1982-02-16
JPS6160056B2 (en) * 1983-07-11 1986-12-19 Honshu Chemical Ind

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578443B2 (en) * 1975-06-18 1982-02-16
JPS5344351B2 (en) * 1976-02-20 1978-11-28
JPS6160056B2 (en) * 1983-07-11 1986-12-19 Honshu Chemical Ind

Similar Documents

Publication Publication Date Title
US4209079A (en) Lubricating system for bearing shoes
US2781061A (en) Flow controller
JPH03286962A (en) Hot water supplying device
US11220809B2 (en) Shower system
JP6686524B2 (en) Filter
JP4513245B2 (en) Heat storage tank
JP3698593B2 (en) Electric water heater
JP2679383B2 (en) Hot water supply device
JP3291095B2 (en) Hot water production and supply equipment
JPH023084Y2 (en)
JP4350292B2 (en) Electric water heater
JP2016169877A (en) Water heater
JPH08110097A (en) Lift type electric water heater
JPH03105154A (en) Hot water supplying device
JP3581165B2 (en) Hot water production equipment
JPH02122112A (en) Combustion control device for hot water feeder
JP2605242Y2 (en) Cup-type vending machine hot water tank
JP4013840B2 (en) Hot water heater
JP4293709B2 (en) Mold temperature controller
JPH07217936A (en) Condensed water treating device of air-conditioner
JP3880126B2 (en) Combustion equipment
JP2019092614A (en) Washing machine
JP3038910U (en) Pump with heater
KR920007974B1 (en) Temperature regulated mixing valve
JPH0737094Y2 (en) Bath drain