JPH03286736A - Adjusting method for uniformity of magnetostatic field - Google Patents

Adjusting method for uniformity of magnetostatic field

Info

Publication number
JPH03286736A
JPH03286736A JP2085862A JP8586290A JPH03286736A JP H03286736 A JPH03286736 A JP H03286736A JP 2085862 A JP2085862 A JP 2085862A JP 8586290 A JP8586290 A JP 8586290A JP H03286736 A JPH03286736 A JP H03286736A
Authority
JP
Japan
Prior art keywords
nmr
signal
sample
pulse
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2085862A
Other languages
Japanese (ja)
Other versions
JP2811891B2 (en
Inventor
Naoto Iijima
直人 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2085862A priority Critical patent/JP2811891B2/en
Publication of JPH03286736A publication Critical patent/JPH03286736A/en
Application granted granted Critical
Publication of JP2811891B2 publication Critical patent/JP2811891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To simply obtain the magnetostatic field of high uniformity and at a high speed by setting magnetization to a stationary precession motion state by radiating repeatedly an RF pulse in a shorter repeat time than a relaxation time of a sample, operating a current value allowed to flow to a magnetostatic field uniformity correction shim coil, while holding this state, and selecting such a current value as an observed NMR signal becomes the maximum value. CONSTITUTION:To a probe 4, an NMR transmitter/receiver 5 is connected, and an RF signal is sent and received. A pulse programmer 6 controls the NMR transmitter/receiver 5, based on a prescribed pulse sequence under the control of a CPU 7, and supplies the RF signal to the probe 4. In such a way, a sample is irradiated with the RF signal. From a nuclear spin of the excited sample, an NMR signal is emitted, and this NMR signal is received by the probe 4 and sent to the transmitter/receiver 5. NMR data obtained through this transmitter/receiver 5 is sent to the CPU 7. The CPU 7 monitors this NMR data, and also, controls a shim coil power source 3 by on-line through the pulse programmer 6.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、NMRイメージング装置やNMRスペクト
ロメータなどのMR装置における静磁場の均一性を調整
する方法に関する。
The present invention relates to a method for adjusting the homogeneity of a static magnetic field in an MR device such as an NMR imaging device or an NMR spectrometer.

【従来の技術】[Conventional technology]

NMRイメージング装置やNMRスペクトロメータなど
のMR装置では、均一な静磁場が必要である。 従来、この静磁場の均一性を上げるための技術として、
静磁場内の空間各点の磁場分布を測定し、計算によりシ
ムコイルに流す電流値を求める方法が公知である。 また、NMRスペクトロメータにおいては、第3図に示
すようにRFパルス(90°パルス)31を照射するこ
とによって発生するNMR信号(FID信号〉32を観
測し、その信号量が最大となるようにシムコイルに流す
電流値を制御する方法が知られている。この場合、RF
パルス31の繰り返し時間TRは緩和時間よりも長く設
定され、通常1程度度に選ばれる。
MR devices such as NMR imaging devices and NMR spectrometers require a uniform static magnetic field. Conventionally, as a technique to increase the uniformity of this static magnetic field,
A known method is to measure the magnetic field distribution at each point in space within a static magnetic field and calculate the value of the current to be passed through the shim coil. In addition, in the NMR spectrometer, as shown in Fig. 3, the NMR signal (FID signal) 32 generated by irradiating the RF pulse (90° pulse) 31 is observed, and the signal amount is maximized. A method of controlling the current value flowing through the shim coil is known.In this case, the RF
The repetition time TR of the pulse 31 is set longer than the relaxation time, and is usually selected to be about 1 degree.

【発明が解決しようとする課題] しかしながら、空間各点の磁場分布を計測することは測
定時間が非常に長くかかることであり、また計算も大変
であるという問題がある。 また、FID信号を観測する方法は簡便であるが、通常
、90’パルスの後の待ち時間を緩和時間よりも長くす
るため、パルス繰り返し時間TRを短くできないという
問題を有する。 こめ発明は、簡便で、且つパルス繰り返し時間を短くす
ることにより調整のための時間を短縮できる、静磁場均
一性の調整法を提供することを目的とする。 【課題を解決するための手段】 上記の目的を達成するため、この発明による静磁場均一
性の調整法においては、試料の緩和時間よりも短い繰り
返し時間でRFパルスを繰り返し照射して磁化を定常歳
差運動状態とし、この状態を保ちながら静磁場均一性補
正用シムコイルに流す電流値を操作して、観測されるN
MR信号が最大値となるような電流値を選ぶことが特徴
となっている。
[Problems to be Solved by the Invention] However, there are problems in that measuring the magnetic field distribution at each point in space requires a very long measurement time and is also difficult to calculate. Furthermore, although the method of observing the FID signal is simple, it usually has the problem that the pulse repetition time TR cannot be shortened because the waiting time after the 90' pulse is longer than the relaxation time. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for adjusting static magnetic field uniformity that is simple and can shorten the time for adjustment by shortening the pulse repetition time. [Means for Solving the Problems] In order to achieve the above object, in the method for adjusting static magnetic field uniformity according to the present invention, RF pulses are repeatedly irradiated with a repetition time shorter than the relaxation time of the sample to maintain magnetization at a steady state. The observed N
The feature is that the current value is selected such that the MR signal has a maximum value.

【作  用】[For production]

試料の緩和時間よりも短い繰り返し時間でRFパルスを
繰り返し照射することにより、磁化の定常歳差運動状態
を出現させることができる。 この定常歳差運動状態では、試料の各点の磁化は、その
点における静磁場強度に対応した位相で回転する。その
ため、各点からのNMR信号は、その点での静磁場強度
を位相情報として含んでいることになる。そして、観測
されるNMR信号は、試料全体の各点からのNMR信号
の和と考えられる。 そこで、この定常歳差運動状態を持続させながら、均一
性補正用シムコイルに流す電流値を変化させて、NMR
信号が最大値となるt流値を選ぶならば、そのt流値を
シムコイルに流すとき試料中の静磁場の均一性が最適な
ものとなる。
By repeatedly irradiating an RF pulse with a repetition time shorter than the relaxation time of the sample, a steady state of precession of magnetization can appear. In this steady precession state, the magnetization at each point on the sample rotates with a phase corresponding to the static magnetic field strength at that point. Therefore, the NMR signal from each point includes the static magnetic field strength at that point as phase information. The observed NMR signal is then considered to be the sum of NMR signals from each point on the entire sample. Therefore, while maintaining this steady precession state, the current value flowing through the uniformity correction shim coil was changed, and the NMR
If the t-current value at which the signal has a maximum value is selected, the uniformity of the static magnetic field in the sample will be optimal when that t-current value is applied to the shim coil.

【実 施 例】【Example】

以下、この発明の一実施例について図面を参照しながら
詳細に説明する。NMRイメージング装置やNMRスペ
クトロメータなどのMR装置では、第1図に示すように
、主マグネツト1内に、この主マグネット1が発生する
静磁場の均一性を補正するための補正用シムコイル2が
配置され、このシムコイル2にシムコイル電源3より補
正用の電流が供給される。この主マグネット1が形式す
る静磁場内にプローブ4が配置され、このプローブ4の
中に図示しない試料が置かれる。 このプローブ4にはNMR送受信機5が接続されており
、このプローブ4を通じてRF倍信号送受が行われる。 パルスプログラマ6は、CPU7の制御のもとで、所定
のパルスシーケンスに基づきNMR送受信機5を制御し
て、このNMR送受信機5からプローブ4にRF倍信号
供給させる。 こうして試料にRF倍信号照射が行われる。励起された
試料の核スピンからNMR信号が放出され、このNMR
信号はプローブ4によって受信され送受信機5に送られ
る。この送受信815を経て得たNMRデータはCPU
7に送られる。CPU7はこのNMRデータを監視する
とともに、パルスプログラマ6を介してシムコイルを源
3をオンラインで制御する。これにより、シムコイル2
に流される電流が増加、または減少させられることにな
る。 この発明の一実施例にかかる静磁場均一性の調整法では
、第2図に示すようにRFパルス21が、繰り返し時間
TRで繰り返し照射される。この繰り返し時間TRは、
プローブ4内の試料の緩和時間TI、T2よりも十分に
短いものとする。このように繰り返し時間TRが試料の
緩和時間Tl。 T2よりも十分に短いと、磁化は5SFPと呼ばれる定
常歳差運動を行う状態となり、第2図に示すようにRF
パルス21の前後両側にNMR信号22が発生するよう
な状態となる9代表的な値としてT 1 = T 2 
、= 500 m sとすると、TR= 100m5程
度とすればこの5SFP状態となる。 このときのNMR信号の大きさは、 Mxy=My+ i Mx ただし、 一χ、My:回転系における横磁化 ωo:N M R共鳴周波数 Φ;TRの間の横磁化の回転量(echo)Ak:定数 で表される(なお、たとえばM、 L、 Gyngel
 I ;J、 Mag。 Re5on、81.474(1989)を参照)。 このときの試料の各部分を考えると、各部分はその場所
の静磁場の大きさによって定まるΦを持ち、その結果、
サンプルの各部分はその場所の静磁場の値に対応する位
相を持つ信号を発生し、その試料全体からの信号の和が
プローブ4によって受信されるNMR信号として観測さ
れることになる。 そこで、パルス繰り返し時間TRを5SFP状態が持続
できる程度〈上記の例であれば100m5程度)に保ち
ながらシムコイル2に流す電流値をオンライン制御し、
受信NMR信号が最大値になるように電流値を定める。 すると、このようにNMR信号が最大値となる状態では
、試料の各部分の位相角Φが試料全体で均一になって、
試料全体から同じ位相を持ったNMR信号が発生してい
ることになる。その結果、試料の各部分が感応している
静磁場の大きさが均一になり、非常に均一性の高い静磁
場を形成できたことになる。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. In an MR device such as an NMR imaging device or an NMR spectrometer, as shown in FIG. 1, a correction shim coil 2 is arranged within a main magnet 1 to correct the uniformity of the static magnetic field generated by the main magnet 1. A correction current is supplied to the shim coil 2 from the shim coil power supply 3. A probe 4 is placed within the static magnetic field formed by the main magnet 1, and a sample (not shown) is placed inside the probe 4. An NMR transceiver 5 is connected to this probe 4, and RF multiplied signals are transmitted and received through this probe 4. The pulse programmer 6 controls the NMR transceiver 5 based on a predetermined pulse sequence under the control of the CPU 7 and causes the NMR transceiver 5 to supply an RF multiplied signal to the probe 4 . In this way, the sample is irradiated with the RF signal. An NMR signal is emitted from the excited nuclear spins of the sample, and this NMR
The signal is received by probe 4 and sent to transceiver 5. The NMR data obtained through this transmission/reception 815 is sent to the CPU
Sent to 7. The CPU 7 monitors this NMR data and controls the shim coil source 3 online via the pulse programmer 6. As a result, shim coil 2
The current flowing through the circuit will be increased or decreased. In a method for adjusting static magnetic field uniformity according to an embodiment of the present invention, as shown in FIG. 2, an RF pulse 21 is repeatedly irradiated with a repetition time TR. This repetition time TR is
It is assumed that the relaxation time TI of the sample in the probe 4 is sufficiently shorter than T2. In this way, the repetition time TR is the relaxation time Tl of the sample. If it is sufficiently shorter than T2, the magnetization will undergo a steady precession called 5SFP, and as shown in Figure 2, the RF
9 Typical values that result in a state where the NMR signal 22 is generated on both sides of the pulse 21 are T 1 = T 2
, = 500 m s, and if TR = about 100 m5, this 5SFP state is obtained. The magnitude of the NMR signal at this time is: Mxy=My+ i Mx However, 1χ, My: Transverse magnetization in the rotating system ωo: NMR resonance frequency Φ; Rotation amount of transverse magnetization during TR (echo) Ak: expressed as a constant (for example, M, L, Gyngel
I; J, Mag. Re5on, 81.474 (1989)). Considering each part of the sample at this time, each part has Φ determined by the magnitude of the static magnetic field at that location, and as a result,
Each portion of the sample will generate a signal with a phase corresponding to the value of the static magnetic field at that location, and the sum of the signals from the entire sample will be observed as the NMR signal received by the probe 4. Therefore, the current value flowing through the shim coil 2 is controlled online while keeping the pulse repetition time TR at a level that allows the 5SFP state to be maintained (about 100m5 in the above example).
The current value is determined so that the received NMR signal reaches its maximum value. Then, when the NMR signal reaches its maximum value like this, the phase angle Φ of each part of the sample becomes uniform throughout the sample, and
This means that NMR signals with the same phase are generated from the entire sample. As a result, the magnitude of the static magnetic field to which each part of the sample is sensitive becomes uniform, and a highly uniform static magnetic field can be created.

【発明の効果】【Effect of the invention】

この発明の静磁場均一性の調整法によれば、簡便で且つ
高速に均一性の高い静磁場を得ることができる。
According to the method of adjusting static magnetic field uniformity of the present invention, a highly uniform static magnetic field can be obtained simply and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例で用いる静磁場均一性補正
系のブロック図、第2図は同実施例における波形図、第
3図は従来例における波形図である。 1・・・主マグネット、2・・・シムコイル、3・・・
シムコイル電源、4・・・プローブ、5・・・NMR送
受信機、6・・・パルスプログラマ、7・・・CPU。
FIG. 1 is a block diagram of a static magnetic field uniformity correction system used in an embodiment of the present invention, FIG. 2 is a waveform diagram in the same embodiment, and FIG. 3 is a waveform diagram in a conventional example. 1... Main magnet, 2... Shim coil, 3...
Shim coil power supply, 4... Probe, 5... NMR transceiver, 6... Pulse programmer, 7... CPU.

Claims (1)

【特許請求の範囲】[Claims] (1)試料の緩和時間よりも短い繰り返し時間でRFパ
ルスを繰り返し照射して磁化を定常歳差運動状態とし、
この状態を保ちながら静磁場均一性補正用シムコイルに
流す電流値を操作して、観測されるNMR信号が最大値
となるような電流値を選ぶことを特徴とする静磁場均一
性の調整法。
(1) Repeatedly irradiating RF pulses with a repetition time shorter than the relaxation time of the sample to bring the magnetization into a steady precession state;
A method for adjusting static magnetic field uniformity, which is characterized in that, while maintaining this state, a current value flowing through a shim coil for correcting static magnetic field uniformity is operated to select a current value such that the observed NMR signal has a maximum value.
JP2085862A 1990-03-31 1990-03-31 Adjustment method of static magnetic field uniformity Expired - Lifetime JP2811891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085862A JP2811891B2 (en) 1990-03-31 1990-03-31 Adjustment method of static magnetic field uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085862A JP2811891B2 (en) 1990-03-31 1990-03-31 Adjustment method of static magnetic field uniformity

Publications (2)

Publication Number Publication Date
JPH03286736A true JPH03286736A (en) 1991-12-17
JP2811891B2 JP2811891B2 (en) 1998-10-15

Family

ID=13870697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085862A Expired - Lifetime JP2811891B2 (en) 1990-03-31 1990-03-31 Adjustment method of static magnetic field uniformity

Country Status (1)

Country Link
JP (1) JP2811891B2 (en)

Also Published As

Publication number Publication date
JP2811891B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US5315249A (en) Stabilized fast spin echo NMR pulse sequence
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
JP2001112736A (en) Field frequency locking system for magnetic resonance system
JPH03191947A (en) Method and device for quickly calibrating nutation angle in mri
GB2052753A (en) NMR systems
US6049206A (en) Compensation for inhomogeneity of the field generated by the RF coil in a nuclear magnetic resonance system
JPH0357774B2 (en)
US5343149A (en) Magnetic resonance imaging system
JP3327603B2 (en) Method and apparatus for reducing gradient coil interaction with room temperature shim coils
JPH0418856B2 (en)
JP2000185028A (en) Method for shimming magnet system of mr tomography device and mr tomography device for executing the method
JPH03286736A (en) Adjusting method for uniformity of magnetostatic field
JP3167038B2 (en) Magnetic resonance imaging equipment
JP3170000B2 (en) Magnetic resonance imaging equipment
JPH0311223B2 (en)
JPS62240040A (en) Magnetic resonance imaging apparatus
JPS60166849A (en) Nmr image apparatus
JPH04343833A (en) Magnetic resonance imaging device capable of correcting primary item of ununiformity of static magnetic field
JPH0228820B2 (en)
JPS59160443A (en) Nuclear magnetic resonance ct apparatus
JPS63296739A (en) Method for controlling rf pulse of nuclear magnetic resonance tomographic imaging apparatus
JPS6363441A (en) Nuclear magnetic resonance image pickup apparatus
JPH0421491B2 (en)
JPH0595928A (en) Magnetic resonance imaging apparatus
JPH0473048A (en) Mr spectroscopy