JPH03286313A - Unmanned carrier driving device - Google Patents

Unmanned carrier driving device

Info

Publication number
JPH03286313A
JPH03286313A JP2087964A JP8796490A JPH03286313A JP H03286313 A JPH03286313 A JP H03286313A JP 2087964 A JP2087964 A JP 2087964A JP 8796490 A JP8796490 A JP 8796490A JP H03286313 A JPH03286313 A JP H03286313A
Authority
JP
Japan
Prior art keywords
steering angle
unmanned vehicle
point
bending point
unmanned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2087964A
Other languages
Japanese (ja)
Other versions
JP2704024B2 (en
Inventor
Yoshiaki Omori
大森 良明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2087964A priority Critical patent/JP2704024B2/en
Publication of JPH03286313A publication Critical patent/JPH03286313A/en
Application granted granted Critical
Publication of JP2704024B2 publication Critical patent/JP2704024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve the driving accuracy of an unmanned carrier by providing the detection subjects at each bending point on a driving course, and controlling a steering device based on the steering angle stored in a storage means when the detection subject is detected by a detector. CONSTITUTION:The detection subjects 10 are provided at the bending points P1 - P4 and an end point on a driving course of an unmanned carrier. At the same time, the steering angles of points P1 - P4 are stored in a storage means 12 of a controller 7. When the carrier reaches a bending point P, one of detection subject detectors 8a - 8d detects the subject 10 at the point P. Then a steering angle control means 13 controls a steering device 4 based on the steering angle of the point P stored in the means 12. Thus the carrier can be accurately driven, furthermore the number of detection subjects provided can be decreased. Then the overall installing cost is reduced for an unmanned driving device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘導線等の不風ないわゆるティーチング・プ
レイバック方式の無人走行装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an unmanned traveling device using a so-called teaching-playback method that does not require use of guide lines or the like.

[従来の技術] 工場内に設置される無人走行装置は、無人走行車の走行
経路に沿って誘導線を設置し、誘導線に交流信号等を流
して無人走行車を誘導するのか一般的である(例えば実
開昭57−67507号公報参照)。
[Prior Art] Generally speaking, unmanned driving equipment installed in a factory installs a guide line along the route of the unmanned vehicle and guides the unmanned vehicle by sending an AC signal or the like through the guide line. (For example, see Japanese Utility Model Application Publication No. 57-67507).

このような誘導線方式を例えば芝刈機として使用する無
人走行装置に採用した場合、次のような不都合がある。
When such a guide line system is adopted for an unmanned traveling device used as a lawnmower, for example, there are the following disadvantages.

すなわち地面に凹凸があると、センサ感度の関係から誘
導が難しい。また地中に誘導線を埋設するため、埋設丁
:事に経費かかからと共に、芝を傷め、しかも埋設上事
後しばらくは芝が生え揃わない。また地表には芝か生え
ているため、センサと誘導線との間隔が大きくなり、誘
導検出のための構成が複雑で高(曲になる。また誘導線
か地中で経年変化を起こした場合にはメンテナンスが難
しい。また走行経路の変更に多くの時間と経費とを恕す
る。
In other words, if the ground is uneven, guidance is difficult due to sensor sensitivity. In addition, since the guide wire is buried underground, it is not only expensive, but also damages the grass, and furthermore, the grass does not grow back for some time after the wire is buried. In addition, because there is grass growing on the ground, the distance between the sensor and the guide wire becomes large, making the configuration for detecting the guide complicated and expensive (curved). Maintenance is difficult, and changing the travel route requires a lot of time and expense.

そこで、走行跪離と操舵角との関係をティーチングによ
り無人走行車に記憶させ、その記憶に基づいて無人走行
車を自動史行させるいわゆるチイーチング・プレイバッ
ク6式の自動走行車が提案されている。この場合、正確
な走行のためには、設定した走行経路と実際の走行経路
とのずれを修正することか必要であるが、従来の自動走
行装置は、走行経路の直線部分の適所に直線状のガイド
ライン部を設けておき、無人走行車がガイドライン部を
検出して走行経路のずれを修正する構成であった。そし
てガイドライン部は、多数の金属棒等の被検出体を走行
経路に沿って密に並べたちのであった(例えば特開昭5
8−144214号公報、特開昭83−314613号
公報参照)。
Therefore, a so-called teaching playback type 6 automatic driving vehicle has been proposed, which teaches the unmanned vehicle to memorize the relationship between the steering angle and the steering angle, and causes the unmanned vehicle to automatically travel based on that memory. . In this case, in order to drive accurately, it is necessary to correct the discrepancy between the set travel route and the actual travel route. A guideline section is provided, and the unmanned vehicle detects the guideline section and corrects deviations in the driving route. The guideline section had a large number of objects to be detected, such as metal rods, arranged closely along the travel route (for example,
8-144214, JP-A-83-314613).

[発明が解決しようとする課題]。[Problem to be solved by the invention].

上記従来の構成では、走行経路の屈曲点において無人走
行車を誘導することができないので、走行経路のずれを
正確に修正することが困難であった。またガイドライン
部に多数の被検出体を設置する必要があり、設置作業に
多くの時間と経費とを必要としていた。特に無人走行車
の走行精度を向上させるためには、走行経路のほぼ全長
にわたってガイドライン部を設ける必要があり、現実的
でなかった。
With the above-mentioned conventional configuration, it is impossible to guide the unmanned vehicle at the bending point of the travel route, so it is difficult to accurately correct deviations in the travel route. In addition, it was necessary to install a large number of objects to be detected in the guideline section, and the installation work required a lot of time and expense. In particular, in order to improve the running accuracy of an unmanned vehicle, it is necessary to provide a guideline section over almost the entire length of the running route, which is not practical.

[課題を解決するための手段〕 上記課題を解決するため、本発明の無人走行装置は、始
発点から終着点までに複数の屈曲点を有しかつ始発点か
ら最初の屈曲点までと各屈曲点間と最後の屈曲点から終
着、直までとが各々直線である走行経路を自動走行する
無人走行車を備えた無人走行装置であって、走行経路の
各1+ii曲点に被検出体を設置し、無人走行車に、無
人走行車の車輪の操舵角を可変させる操舵装置と、被検
出体を検出する被検出体検出器と、走47経路の各屈曲
点における車輪の操舵角を記憶する記憶手段と、被検出
体検出器か被検出体を検出したときに記憶手段に記憶さ
れている操舵角に基づいて操舵装置を制御する操舵角制
御手段とを設けたものである。
[Means for Solving the Problems] In order to solve the above problems, the unmanned traveling device of the present invention has a plurality of bending points from a starting point to a terminal point, and has a plurality of bending points from the starting point to the first bending point. An unmanned traveling device equipped with an unmanned vehicle that automatically travels along a straight line between points and from the last bending point to a terminal point and a straight line, and a detected object is installed at each 1+ii bending point of the driving route. The unmanned vehicle has a steering device that changes the steering angle of the wheels of the unmanned vehicle, a detected object detector that detects a detected object, and stores the steering angles of the wheels at each bending point of the 47 routes. The apparatus is provided with a storage means and a steering angle control means for controlling the steering device based on the steering angle stored in the storage means when the detected object is detected by the detected object detector.

[作用コ 操舵角制御手段は、被検出体検出器が被検出体を検出し
たときに、記憶手段に記憶されている操舵角に基づいて
操舵g置を制御する。
[Operation] The steering angle control means controls the steering g position based on the steering angle stored in the storage means when the detected object detector detects the detected object.

[実施例コ 以ド、本発明の一実施例を第1図〜第4図に基づいて説
明する。
[Example Code] An example of the present invention will be described below based on FIGS. 1 to 4.

第2図は本発明の一実施例における無人走t−I装置に
採用される無人走行車のド面図で、無人走行車1の下面
には、複数(本実地例では4個)の車輪2a、  2b
、3a、3bと、例えば前側ノ車輪2a、2bの操舵角
を可変させる操舵装置4と、例えば後側の車輪3a、”
3bを「【j1転騨動するS〆駆動装置と、無人走行車
]の走行に伴って芝を刈取る芝刈装置6とか取付けられ
ており、無人走行土1の内部には、操舵装置4や駆動装
置5や芝刈装置6を制御する制御装置7か設置されてい
る。制御装置7はマイクロコンピュータにより構成され
ており、操舵vc置4や駆動装置5や芝刈装置6は周知
の構成のものである。さらに無人走行車1の1曲前縁部
には、無人走行車1の部方向に沿って複数(本実施例で
は4個)の被検出体検出器83〜8dか一定間陥おきに
取付けられている。被検出体検出器8a〜8dは例えば
金層センサにより構成され、後述の被検出体を検出する
FIG. 2 is a side view of an unmanned vehicle employed in an unmanned t-I device according to an embodiment of the present invention. 2a, 2b
, 3a, 3b, a steering device 4 that varies the steering angle of, for example, the front wheels 2a, 2b, and, for example, a rear wheel 3a.
3b is installed with a lawn mower 6 that cuts the grass as the [j1 rotating S-drive device and the unmanned vehicle] moves, and inside the unmanned vehicle 1 there is a steering device 4 and a A control device 7 for controlling the drive device 5 and the lawn mower 6 is installed.The control device 7 is composed of a microcomputer, and the steering VC device 4, the drive device 5, and the lawn mower 6 are of a well-known configuration. Further, at the front edge of one track of the unmanned vehicle 1, a plurality of (four in this embodiment) detection object detectors 83 to 8d are installed at regular intervals along the direction of the unmanned vehicle 1. The detection object detectors 8a to 8d are constructed of, for example, gold layer sensors, and detect objects to be detected, which will be described later.

第3図は被検出体検出器8a〜8dの検出範囲の説明図
で、仮想線で示すように、被検出体検出器88〜8dの
検出範囲は隣接するもの同上が狂いに若干型なっている
。なお、被検出体検出器8a〜8dの間隔は各々等距離
であり、しかも被検出体検出器8a、8bは無人走行車
1の幅方向の中心線りに対して互いに対称の位置にあり
、被検出体検出器8c、8dも無人走行屯1の幅方向の
中心線りに対して互いに対称の位置にある。
FIG. 3 is an explanatory diagram of the detection ranges of the detection object detectors 8a to 8d. As shown by the imaginary lines, the detection ranges of the detection object detectors 88 to 8d are slightly different from those of the adjacent ones. There is. In addition, the intervals between the detected object detectors 8a to 8d are equal distances from each other, and the detected object detectors 8a and 8b are located at mutually symmetrical positions with respect to the center line in the width direction of the unmanned vehicle 1. The detected object detectors 8c and 8d are also located at positions symmetrical to each other with respect to the center line in the width direction of the unmanned traveling turret 1.

第4図は無人走行車1の走行経路の説明[閾で、始発点
Sと、複数(本実施例では4個)のIui曲1点P1〜
P4と、終着点Eとか所定の位置に設定されており、そ
れらの間は各々直線である。各h!1曲「、\PI〜P
4および終着点じには谷々肢検出体〕0か埋設されてい
る。被検出体〕0は例えば釘のような鋤い金属棒により
構成され、全体かρれる程度に戊く地中に挿入されてい
る。を泳ム、始発、L電Sと終着点Eとを同し位置にG
’+′fしても、Jい。
FIG. 4 is an explanation of the traveling route of the unmanned vehicle 1 [with threshold, starting point S, and one point P1 of multiple (four in this example) Iui songs]
P4 and the terminal point E are set at predetermined positions, and there are straight lines between them. Each h! 1 song “、\PI〜P
4 and the terminal point, there is a valley limb detection object]0 buried. The object to be detected] 0 is constituted by a plow metal rod, such as a nail, and is inserted into the ground to the extent that the entire object is exposed. Swim the starting point, L train S and the ending point E at the same position G.
Even if it's '+'f, it's still J.

第1図は本発明の一大弛例にt5ける無人走行装置に採
用される無人走行装置のは略構成図で、制御装置7は、
走行経路の始発、−飄Sから最初の屈曲点P1まてと各
屈曲点P]〜P4間と最後の屈曲、「ハP4から終着点
りまてとの各0口l[)離れよび各屈曲点PI〜P41
こおける車輪2..2bのt冶舵rq z :己慟する
;記憶手段12と、各癲曲点)〕1〜P4において記憶
1段12に記憶されている操舵角に見づいて操舵装置4
を制御する操舵角制御f段コ3と、各屈曲点P1〜P4
においていずれの披検出体検u−1器8a〜8dが被検
出体10(第4図)を検出しまたかにより無人走行車1
のずれ量を判断する位置ずれ全判断手段14と、位置ず
れ全判断手段14の判断結果に基づいて記憶手段12に
記憶されている現在地の屈曲点に関する操舵角を修正し
て操舵角制御手段13に供給する操舵角修正手段15と
、位置ずれ全判断手段14の判断結果に基づいて現在地
よりも1つ前の屈曲点における適正操舵角を/jt算す
る適正操舵角演算手段16と、適正操舵角演算手段16
の演算結果に基づいて記憶手段12に記憶されている現
在地よりも1つ前の屈曲点についての操舵角を書換える
記憶内容変更手段17とを備えている。具体的には、記
憶手段12は各種のメモリにより構成されており、操舵
角制御手段13、位置ずれ全判断手段14、操舵角修正
手段15、適正操舵角演算手段16、および記憶内容変
更手段17はソフトウェアにより実現される。無人走行
車1の操作ボックス(図示せず)には、記憶内容変更手
段17をオン・オフさせる記憶内容変更用操作スイッチ
18や、無人走行車1の走行を開始させるスタートスイ
ッチ(図示せず)等の各種の操作スイッチが設置されて
いる。
FIG. 1 is a schematic configuration diagram of an unmanned traveling device employed in the unmanned traveling device at t5 as a major example of the present invention, and the control device 7 includes:
The starting point of the travel route, from S to the first bending point P1 and each bending point P] to P4, and the last bend, from P4 to the end point P1 and each Bend point PI~P41
Dropping wheels 2. .. 2b's t steering rq z: self-pity; memory means 12 and each curve point)] In 1 to P4, the steering device 4 detects the steering angle stored in the memory 1 stage 12.
Steering angle control f stage 3 that controls the steering angle control and each bending point P1 to P4
The unmanned vehicle 1 depends on which of the detection object detection devices 8a to 8d detects the detection object 10 (FIG. 4).
and a steering angle control means 13 that corrects the steering angle regarding the bending point of the current location stored in the storage means 12 based on the judgment result of the total positional deviation judgment means 14. a steering angle correcting means 15 for supplying the steering angle to Angle calculation means 16
and a storage content changing means 17 for rewriting the steering angle for the bending point one point before the current location stored in the storage means 12 based on the calculation result. Specifically, the storage means 12 is composed of various types of memories, including a steering angle control means 13 , a total positional deviation determination means 14 , a steering angle correction means 15 , an appropriate steering angle calculation means 16 , and a memory content changing means 17 is realized by software. The operation box (not shown) of the unmanned vehicle 1 includes an operation switch 18 for changing memory contents that turns on/off the memory contents changing means 17, and a start switch (not shown) that starts driving the unmanned vehicle 1. There are various operation switches such as:

次に動作を説明する。まず無人走行車1の走行経路を決
定し、各屈曲点P1〜P4および終着点Eに被検出体1
0を設置する。次に、記憶手段12に各屈曲点P1〜P
4における操舵角を記憶させる。この作業は、手動操作
あるいは人力により実際に無人走行車1を走行経路に沿
って走行させなから行ってもよいし、あるいは予め操舵
角を測定してキーボード等を用いて人力してもよい。以
上で設置および準備作業が完了する。
Next, the operation will be explained. First, the traveling route of the unmanned vehicle 1 is determined, and the detected object 1 is placed at each bending point P1 to P4 and the terminal point E.
Set 0. Next, each bending point P1 to P is stored in the storage means 12.
Store the steering angle at 4. This work may be performed manually or manually without actually driving the unmanned vehicle 1 along the travel route, or may be performed manually using a keyboard or the like after measuring the steering angle in advance. This completes the installation and preparation work.

芝刈作業に際しては、まず無人走行車1を始発点Sに位
置させ、最初のJu1曲点P1の方向に向ける。
When mowing the lawn, the unmanned vehicle 1 is first positioned at the starting point S and directed toward the first Ju1 curve point P1.

そして記憶内容変更用操作スイッチ18の操作により記
憶内容変更手段17を作動状態にし、無人走行車1のス
タートスイッチ(図示せず)を操作すると、無人走行車
1は屈曲点P1に向けて走行する。無人走行車1が屈曲
点P1に到着すると、被検出体検出器8a〜8dのいず
れかが被検出体10を検出する。いま、無人走行車1の
位置すれかほとんどなく、被検出体検出器8aと被検出
体検出器8bとが被検出体10を検出したものとする。
Then, by operating the memory content changing operation switch 18, the memory content changing means 17 is activated, and when the start switch (not shown) of the unmanned vehicle 1 is operated, the unmanned vehicle 1 runs toward the bending point P1. . When the unmanned vehicle 1 arrives at the bending point P1, one of the detected object detectors 8a to 8d detects the detected object 10. Now, it is assumed that the position of the unmanned vehicle 1 is almost the same, and the detected object detector 8a and the detected object detector 8b have detected the detected object 10.

この場合は位置ずれ全判断手段14か位置すれなしとマ
11断じ、修正不要信号を操舵角制御手段13に供給す
る。これにより操舵角制御手段13は、記憶手段12に
記憶しているJu1曲点P1における操舵角に基づいて
操舵装置4を制御する。すなわち操舵角制御手段13は
操舵装置4を制御して、まず上記操舵角にし、無人走行
車]の走行に伴って次第に操舵角を小さくしていく。し
たがって無人走行車1は屈曲点P2に向けて走行する。
In this case, the complete positional deviation determination means 14 determines that there is no positional deviation, and supplies a correction-unnecessary signal to the steering angle control means 13. Thereby, the steering angle control means 13 controls the steering device 4 based on the steering angle at the Ju1 curve point P1 stored in the storage means 12. That is, the steering angle control means 13 controls the steering device 4 to first set the above-mentioned steering angle, and gradually decrease the steering angle as the unmanned vehicle travels. Therefore, the unmanned vehicle 1 travels toward the bending point P2.

無人走行車1か屈曲点P2に到着すると、被検出体検出
器8a〜8dのいずれかが被検出体10を検出する。
When the unmanned vehicle 1 arrives at the bending point P2, one of the detected object detectors 8a to 8d detects the detected object 10.

いま、無人走行車1が左側にずれており、被検出体検出
器8dが被検出体10を検出したものとする。この場合
は位置ずれ全判断手段14か位置すれありと判断し、被
検出体検出器8dと無人走行車1の中心線りとの距離た
け無人走行車1が左側にずれた旨の信号を操舵角修正手
段15に供給する。操舵角修正手段15は、記憶手段1
2に記憶されているIti1曲点P2における操舵角お
よびIui曲点P2と屈曲点P3とのd1離を読出し、
Iui山]点P2における操舵角を位置すれ全判断手段
14からの(。号に基づいて修正して、それを操舵角制
御手段13に供給する。すなわち操舵角修正手段15は
、無人走行車1のずれ量と屈曲点P3まての距離とから
適正な操舵角を演算する。操舵角制御手段13は操舵角
修正手段15からの信号に基づいて操舵装置4を制御す
る。したかって無人走行車1は屈曲点P3に向けて走行
する。一方、位置すれ全判断手段14の信号は適正操舵
角演算手段16にも供給され、適正操舵角演算手段16
は、記憶手段12に記憶されている屈曲点P1における
操舵角および屈曲点P1と雇曲1点P2との距離を読出
し、屈曲点P1における操舵角を位置ずれmil+断乎
段]4からの信号に基づいて修正して、記憶手段12に
記憶されている屈曲点PIにおける操舵角を書換える。
It is now assumed that the unmanned vehicle 1 has shifted to the left and the detected object detector 8d has detected the detected object 10. In this case, the total positional deviation determination means 14 determines that there is a positional deviation, and a signal indicating that the unmanned vehicle 1 has shifted to the left by the distance between the detected object detector 8d and the center line of the unmanned vehicle 1 is operated. It is supplied to the corner correction means 15. The steering angle correction means 15 includes the storage means 1
The steering angle at the Iti1 bending point P2 and the d1 distance between the Iui turning point P2 and the bending point P3 stored in 2 are read out,
The steering angle at the point P2 (Mount Iui) is corrected based on the information from the total judgment means 14 (.) and is supplied to the steering angle control means 13. That is, the steering angle correction means 15 An appropriate steering angle is calculated from the amount of deviation and the distance to the bending point P3.The steering angle control means 13 controls the steering device 4 based on the signal from the steering angle correction means 15.Therefore, the unmanned vehicle 1 travels toward the bending point P3. On the other hand, the signal from the position error determining means 14 is also supplied to the appropriate steering angle calculating means 16.
reads out the steering angle at the bending point P1 and the distance between the bending point P1 and the first bending point P2 stored in the storage means 12, and converts the steering angle at the bending point P1 into the signal from the position shift mil+cutting point]4. Based on the correction, the steering angle at the bending point PI stored in the storage means 12 is rewritten.

すなわち適正操舵角演算手段16は、無人走行車〕のず
れ量と屈曲点P1からの距離とから屈曲点PIの適正な
操舵角を/jt算する。以下、各屈曲点P3.P4毎に
同様の動作が繰返され、無人走行車1は總着点Eに至る
。無人走行車1が終着点Cに至り、被検出体検出器88
〜8dが被検出体10を検出すると、制御装置7は駆動
装置5の作動を停止させる。
That is, the appropriate steering angle calculation means 16 calculates the appropriate steering angle of the bending point PI by /jt from the amount of deviation of the unmanned vehicle and the distance from the bending point P1. Below, each bending point P3. The same operation is repeated every P4, and the unmanned vehicle 1 reaches the landing point E. When the unmanned vehicle 1 reaches the destination C, the detected object detector 88
8d detects the detected object 10, the control device 7 stops the operation of the drive device 5.

このとき、無人走行車lの位置がずれていれば、記憶内
容女史手段17により記憶手段12の記憶内容が上記と
同様に書換えられる。
At this time, if the position of the unmanned vehicle l has shifted, the stored content of the storage means 12 is rewritten by the stored content writing means 17 in the same manner as described above.

なお、記憶内容変更手操作スイッチ]8を操作して記憶
内容変更手段17を非作動状態にしておくと、記憶手段
12の記憶内容は書換えられない。
Note that if the memory content change manual operation switch] 8 is operated to put the memory content change means 17 in an inactive state, the memory content of the memory means 12 will not be rewritten.

記憶内容変更手段17による記憶手段12の記憶内容の
書換は、無人走行車1の最初の走行から走行経路を正確
に安定して走行するようになるまで行うようにしてもよ
いし、あるいは強い雨等の特殊な条件以外での走行−に
常に行うようにしてもよい。
The memory contents of the memory means 12 may be rewritten by the memory contents changing means 17 from the time when the unmanned vehicle 1 first runs until it starts to travel accurately and stably on the travel route, or when it rains heavily. It may also be configured to always perform this when driving under special conditions other than those such as.

このように、走行経路の各屈曲点P1〜P4に被検出体
10を設け、各屈曲点P1〜P4毎に被検出体検出器8
a〜8dにより被検出体10を検出して操舵装置4を制
御するようにしたので、従来装置と比較して無人走行t
h1の走行か正確であり、しかも被検出体10の設置数
が少なくて足りることから装置全体の設置コストを低減
できる。また被検出体検出S8a〜8dを無人走行車1
の幅方向に複数設けて、任意の屈曲点P1〜P4におい
て無人走行車1の位置ずれが発生した場合に位置ずれ量
判断手段14により無人走行車1の位置ずれ量を判断し
、操舵角修正手段15により操舵角を修正して、その修
正した操舵角に基づいて操舵装置4を制御するようにし
たので、任意の屈曲点P1〜P4において無人走行車1
の位置ずれが発生しても、無人走行車1は次の屈曲点P
2〜P4あるいは終着点Eに向けて正確に走行し、位置
ずれの累積かないことから、走行の精度をより一層向上
できる。また任意の屈曲点P2〜P4あるいは終着点E
において無人走行車1の位置ずれが発生したということ
は、その1つ手前の屈曲点P1〜P4における操舵角が
適正でなかったということであるから、適正操舵角演算
手段ユ5により1つ手前の屈曲点P1〜P4における適
正な操舵角を演算して、記憶手段12の記憶内容を書換
えるようにしたので、無人走行車1か走行を重ねること
により走行fI!i度か向トする。
In this way, the detected object 10 is provided at each bending point P1 to P4 of the travel route, and the detected object detector 8 is installed at each bending point P1 to P4.
Since the detected object 10 is detected by the signals a to 8d and the steering device 4 is controlled, the unmanned running time is reduced compared to the conventional device.
Since the travel of h1 is accurate and the number of objects to be detected 10 to be installed is small, the installation cost of the entire device can be reduced. In addition, the detected object detection S8a to 8d is performed by the unmanned vehicle 1.
When a positional deviation of the unmanned vehicle 1 occurs at any of the bending points P1 to P4, the positional deviation amount of the unmanned vehicle 1 is determined by the positional deviation amount determining means 14, and the steering angle is corrected. Since the steering angle is corrected by the means 15 and the steering device 4 is controlled based on the corrected steering angle, the unmanned vehicle 1 at any bending point P1 to P4
Even if a positional shift occurs, the unmanned vehicle 1 will move to the next bending point P.
Since the vehicle accurately travels toward 2 to P4 or the destination point E, and there is no accumulation of positional deviations, the traveling accuracy can be further improved. Also, any bending point P2 to P4 or the terminal point E
The fact that the positional deviation of the unmanned vehicle 1 has occurred in , means that the steering angle at the bending point P1 to P4 that is one position before the position is not appropriate. Since the appropriate steering angles at the bending points P1 to P4 are calculated and the stored contents of the storage means 12 are rewritten, the unmanned vehicle 1 can repeatedly travel fI! Go in the direction i degree.

また記憶西容変更t41操作スイッチ18により記憶内
容女史手段17を作動状態と非イ′1:動状態とに切換
可能に構成したので、例えば強い雨の口II等のように
特殊な条件下では記憶手段]2の書換えを中断すること
ができ、記憶手段12の記憶内容か改悪されるのを防I
してきる。なお無人、Ji百行単1位置ずれは、例えば
走行経路の途中に地面の[”It”11部が在住してい
る場合等のように、図面上の:1算たけては適正な操舵
角を正確に把握できない場合に生しる。
In addition, since the memory content changing means 17 is configured to be switchable between an active state and a non-active state by the memory content change operation switch 18, under special conditions such as strong rain opening II, etc. It is possible to interrupt the rewriting of storage means] 2, and prevent the memory contents of storage means 12 from being altered.
I'll do it. In addition, when unmanned, Ji 100 row single position deviation is, for example, when there is a ["It" 11 part] on the ground in the middle of the driving route, the 1 digit on the drawing is the correct steering angle. This occurs when it is not possible to accurately grasp the

[別の実施例コ 第5図は別の実施例における無人走行装置に保用される
無人走行車の概略構成図で、第1図の実施例と異なる、
直は、例えば中軸の回転数等から無人走行車1の走行距
離を検出する周知の走行鉗だ検出手段21と、記憶手段
12の記憶内容と走行距離検出手段21からの信号とに
より無人走行車1が次のhlI曲点P+−P4付近に到
達したてあろうことを判断する屈曲点接近判断手段22
とを設け、屈曲点接近判断手段22か次の屈出1点P1
〜P4に接近したと判断し、かつ被検出体検出器8a〜
8dのいずれかか?EHQ出体1出金1目 操舵VC置4を制御するように構成したことである。
[Another Embodiment] FIG. 5 is a schematic configuration diagram of an unmanned vehicle maintained in an unmanned traveling device in another embodiment, which is different from the embodiment shown in FIG. 1.
Directly, the unmanned vehicle is detected by a well-known traveling forceps detection means 21 that detects the traveling distance of the unmanned vehicle 1 from, for example, the rotational speed of the center shaft, the memory contents of the storage means 12, and a signal from the traveling distance detecting means 21. 1 has just reached the vicinity of the next hlI bending point P+-P4.
The bending point approach judgment means 22 or the next bending point P1 is provided.
It is determined that ~P4 has approached, and the detected object detector 8a~
Is it one of 8d? The configuration is such that the EHQ output 1 output 1 output steering VC device 4 is controlled.

例えば、無人走行車1か屈曲y、’X P lから屈曲
点P2に向けて走行しているものとすると、1lii曲
「へ接近判断手段22は、記煽丁段12から屈曲y、’
、c P 1と屈曲点P2との間の叱離を読出すと)1
、に、走行距離検出手段21からの信号によりlui曲
、6Plと現在の無人走行i’t1.1との間の距離を
演算し、無人41行車重がhj、i曲1点P2から所定
鉗離の位置に到達したII!j、aで操舵角制御手段1
3に接近f。号を出力する。なお、Ju1曲点接点接近
判断手段22体的には制御装置7のソフトウェアにより
実現される。
For example, if the unmanned vehicle 1 is traveling from a bend y,'
, c When reading the distance between P 1 and the bending point P2) 1
, the distance between the lui song, 6Pl and the current unmanned running i't1.1 is calculated based on the signal from the traveling distance detection means 21, and the unmanned line 41 vehicle weight is hj, and from the i song 1 point P2, a predetermined distance is calculated. II has reached the remote position! Steering angle control means 1 with j and a
Approaching 3 f. Output the number. Note that the Ju1 curve point contact approach determination means 22 is physically realized by the software of the control device 7.

このようにすれば、例えば無人走行装置1の、L?j経
路上でかつ屈曲点P1〜P4から離れた位置に水道管等
が配管されていたような場合、被検出体検出器8a〜8
dが被検出体10と間違えて水XrA管等を検出しても
、屈曲点接近判断手段22からの接近信号が操舵角制御
手段13に供給されていないのて、操舵角制御手段13
が操舵装置4を制御することはなく、屈曲点P1〜P4
の誤検出を防止できる。
In this way, for example, L? of the unmanned traveling device 1? If a water pipe or the like is installed on the j route and at a position away from the bending points P1 to P4, the detected object detectors 8a to 8
Even if d detects a water XrA pipe or the like by mistake for the detected object 10, the steering angle control means 13 does not receive the approach signal from the bending point approach judgment means 22 because the approach signal from the bending point approach judgment means 22 is not supplied to the steering angle control means 13.
does not control the steering device 4, and the bending points P1 to P4
Error detection can be prevented.

第6図はさらに別の実施例における無人走行車1の走行
経路の説明図で、このように、実線で示す走行経路全体
を含む所定範囲に、基盤目状に多数の被検出体10を設
置してもよい。もちろん被検出体〕0は、被検出体検出
器88〜8dが同時に2個の被検出体10を検出するこ
とか無いように、適当な間隔をおいて配置されている。
FIG. 6 is an explanatory diagram of the traveling route of the unmanned vehicle 1 in yet another embodiment. In this way, a large number of detected objects 10 are installed in the shape of a base in a predetermined range including the entire traveling route shown by the solid line. You may. Of course, the detected objects] 0 are arranged at appropriate intervals so that the detected object detectors 88 to 8d do not detect two detected objects 10 at the same time.

また第1図の実施例のように、屈曲点接近判断手段22
を設けない場合、走行経路上には屈曲点以外の位置に被
検出体10を配置しないようにする。
Further, as in the embodiment shown in FIG.
If not provided, the detected object 10 should not be placed at any position other than the bending point on the travel route.

このようにすれば、記憶手段12の記憶内容を書換える
たけて、極めて容易に走行経路を変更できる。なお、被
検出体10の配置は益盤目状に限らず、不等ピッチにし
たり、あるいは走行経路の周辺だけにIti1図状に設
置してもよい。また走行経路のパターンを予め複数個設
定しておき、それらの情報を記憶手段12に記憶させ、
操作スイッチの操作により任意の走行経路を選択できる
ように構成してもよい。
In this way, the travel route can be changed extremely easily by rewriting the stored contents of the storage means 12. Note that the arrangement of the detection objects 10 is not limited to the grid pattern, but may be arranged at uneven pitches, or may be arranged only in the periphery of the travel route in the Iti1 pattern. Further, a plurality of travel route patterns are set in advance, and the information is stored in the storage means 12,
It may be configured such that an arbitrary travel route can be selected by operating an operation switch.

第7図はさらに別の実施例における無人走行装置の概略
説明図で、この実施例では、地上側に無線式の送信装置
24を備え、無人JiT車]に受信装置25を搭載して
おり、送1=装置24を操作することにより無人走行車
1を作意に走行させることかできる。またこの実施例に
おける制御装置7は、第5図の制御装置7とほとんど同
してあり、第5図の制御装置7か適正操舵角演算手段1
6を備えているのに対して、この実施例では適正操舵角
演算手段16を備えておらす、その代りに送信装置24
からの操舵角修正情報により記憶内容変更手段17が記
憶手段12の記憶内容を書換えるようにした構成だけが
異なっている。例えば、屈曲点P2において無人走行車
1の位置かすれた場合、その位置ずれ量を操作者か判断
し、それに応じて屈曲点P1の適正操舵角を判断して、
それを送IS装置24により操舵角修正情報として送1
6すれば、受信装置25がそれを受信し、受信装置25
からの信号に基づいて記憶内容変更手段17か記憶手段
]2に記憶されている屈曲点P1の操舵角を書換える。
FIG. 7 is a schematic explanatory diagram of an unmanned traveling device in another embodiment. In this embodiment, a wireless transmitting device 24 is provided on the ground side, and a receiving device 25 is mounted on the unmanned JT vehicle. Sending 1 = By operating the device 24, the unmanned vehicle 1 can be made to travel at will. Further, the control device 7 in this embodiment is almost the same as the control device 7 in FIG. 5, and the control device 7 in FIG.
6, this embodiment is equipped with an appropriate steering angle calculation means 16. Instead, a transmitting device 24 is provided.
The only difference is that the storage content changing means 17 rewrites the storage contents of the storage means 12 based on the steering angle correction information from the steering angle correction information. For example, if the position of the unmanned vehicle 1 is blurred at the bending point P2, the amount of positional deviation is determined by the operator, and the appropriate steering angle for the bending point P1 is determined accordingly.
It is sent as steering angle correction information by the sending IS device 24.
6, the receiving device 25 receives it, and the receiving device 25
The steering angle at the bending point P1 stored in the memory content changing means 17 or the storage means]2 is rewritten based on the signal from the steering wheel.

このようにすれば、記憶手段12の記憶内容が無い状態
において、無線操縦によりチイ〜チングを行うことがで
きるので非常に便111である。しかしその後、無人走
行車1の走行状態を確認しながら記憶手段12の記憶内
容を無線により連室書換えることができるので、より正
確な走行を確保できる。
By doing this, it is possible to perform teaching by radio control even when there is no stored content in the storage means 12, which is extremely convenient. However, after that, the stored contents of the storage means 12 can be rewritten wirelessly while checking the running state of the unmanned vehicle 1, so that more accurate running can be ensured.

[発明の効果コ 以上説明したように本発明によれば、走行経路の各1o
I曲点に被検出体を設置し、無人走行車に、無人走行車
の車輪の操舵角を可変させる操舵装置と、被検出体を検
出する被検出体検出器と、走行経路の各屈曲点における
車輪の操舵角を記憶する記憶手段と、被検出体検出器が
被検出体を検出したときに記憶手段に記憶されている操
舵角に基づいて操舵装置を制御する操舵角制御手段とを
設け、各屈曲点らに被検出体検出器により被検出体を検
出して操舵装置を制御するようにしたので、従来装置と
比較して無人走行車の走行が正確であり、しかも被検出
体の設置数か少なくて足りることから装置全体の設置コ
ストを低減できる。
[Effects of the Invention] As explained above, according to the present invention, each 1o of the travel route
A detected object is installed at the I bend point, and the unmanned vehicle is provided with a steering device that changes the steering angle of the wheels of the unmanned vehicle, a detected object detector that detects the detected object, and each bending point of the driving route. and a steering angle control means for controlling the steering device based on the steering angle stored in the storage means when the detected object detector detects the detected object. , the detected object is detected by the detected object detector at each bending point and the like to control the steering system, so the driving of the unmanned vehicle is more accurate compared to conventional devices, and the detection object is Since only a small number of installations are required, the installation cost of the entire device can be reduced.

また走行経路の各1tiJ曲点に被検出体を設置し、無
人り行事に、無人走行車の走行距離を検出する走行11
ti離検出手段と、無人走行車の車輪の操舵角を可変さ
せる操舵装置と、被検出体を検出する被検出体検出器と
、走行経路の始発点から最初の屈曲点までと各屈曲点間
と最後の屈曲点から終着点までとの各々の距離および各
屈曲点における車輪の操舵角を記憶する記憶手段と、走
行11i離検出手段により検出された走イア距離と記憶
手段に記憶された距離とを比較して無人走行車か次の屈
曲点付近に到達したてあろうことを判断する屈曲点接近
判断手段と、この屈曲点接近判断手段が次の屈曲点への
接近を判断しかつ被検出体検出器が被検出体を検出した
ときに記憶手段に記憶されている操舵角に基づいて操舵
装置を制御する操舵角制御手段とを設け、屈曲点接近判
断手段が次の屈曲点への接近を?I+断しかつ被検出体
検出器か被検出体を検出したときに操舵角制御手段によ
り記憶手段に記憶されている操舵角に基づいて操舵装置
を制御する構成とすることにより、例えば走行経路上で
かつ屈曲点から離れた位置に水道管等が配管されていた
ような場合、被検出体検出器か被検出体と間違えて水道
管等を検出しても、屈曲点接近判断手段からの接近信号
が操舵角制御手段に供給されていないので、操舵角制御
手段が操舵装置を制御することはなく、屈曲点の誤検出
を防止できる。
In addition, objects to be detected are installed at each 1tiJ curve point of the driving route, and the traveling distance of the unmanned vehicle is detected during unmanned events.
a steering device that varies the steering angle of the wheels of the unmanned vehicle; a detected object detector that detects a detected object; and storage means for storing each distance from the last bending point to the terminal point and the steering angle of the wheels at each bending point, and the running distance detected by the travel distance detection means and the distance stored in the storage means. a bending point approach judgment means for determining whether the unmanned vehicle has just arrived near the next bending point by comparing the steering angle control means for controlling the steering device based on the steering angle stored in the storage means when the object detector detects the object to be detected; Approach? By configuring the steering device to be controlled by the steering angle control means based on the steering angle stored in the storage means when the detected object is detected by the detected object detector, the steering device is controlled based on the steering angle stored in the storage means. If a water pipe or the like is located far away from the bending point, even if the water pipe or the like is detected by the detection object detector by mistake for the detection object, the bending point approach judgment means will not be able to approach the object. Since the signal is not supplied to the steering angle control means, the steering angle control means does not control the steering device, and erroneous detection of the bending point can be prevented.

また被検出体を、走行経路全体を含む所定範囲にわたっ
て多数配置し、記憶手段の記憶内容を変更することによ
り走行経路を任意に変更できる構成とすることにより、
記憶手段の記憶内容を書換えるたけで、極めて容易に走
行経路を変更できる。
In addition, by arranging a large number of objects to be detected over a predetermined range including the entire running route, and by changing the memory contents of the storage means, the running route can be arbitrarily changed.
The travel route can be changed extremely easily simply by rewriting the memory contents of the storage means.

また被検出体検出器を、無人走行車の部方向に所定間隔
をあけて複数個配置し、無人走行車に、いずれの被検出
体検出器か被検出体を検出したかにより屈1411点に
おける無人ANT車の位置すれ量を判断する位置ずれ量
判断手段と、この位置ずれ量判断手段による判断結果に
基づいて記憶手段に記憶されている現住地の屈曲点に関
する操舵角を修正I7て操舵角制御手段に供給する操舵
角修正手段とを設置ノ、屈曲点において無人走行車の位
置がずれているときは修正された操舵角に基づいて操舵
角制御手段か操舵装置を制御する構成とすることにより
、任意の屈曲点において無人走行車の位置ずれが発生し
ても、無人走行車は次の屈曲点に向けて正確に走行し、
位置ずれの累積がないことから、走行の精度をより一層
向上できる。
In addition, a plurality of detected object detectors are arranged at predetermined intervals in the direction of the unmanned vehicle, and the unmanned vehicle has 1411 points depending on which detected object detector detects the detected object. A positional deviation amount determining means for determining the positional deviation amount of the unmanned ANT vehicle, and a steering angle with respect to the bending point of the current residence stored in the storage means based on the determination result by the positional deviation amount determining means is corrected I7. A steering angle correction means for supplying the steering angle to the control means is installed, and the steering angle control means or the steering device is controlled based on the corrected steering angle when the position of the unmanned vehicle is deviated at the bending point. Therefore, even if the unmanned vehicle misaligns at any bending point, the unmanned vehicle will accurately travel toward the next bending point.
Since there is no accumulation of positional deviations, the accuracy of traveling can be further improved.

また無人走行車に、位置ずれ量判断手段による判断結果
に基づいて現在地よりも1つ前の屈曲点における適正操
舵角を演算する適正操舵角演算手段と、この適正操舵角
演算手段の演算結果に基づいて記憶手段の記憶内容を変
更する記憶内容変更手段とを設け、屈曲点において無人
走行車の位置かずれているどきは記憶手段に記憶されて
いる現n′地よりも1つ前の屈曲点に関する操舵角を適
正操舵角に書換える構成とすることにより、無人走行車
が走行を重ねることにより走行精度が向上する。
In addition, the unmanned vehicle is provided with an appropriate steering angle calculation means for calculating an appropriate steering angle at a bending point one bending point before the current location based on the determination result by the positional deviation amount determination means, and a calculation result of the appropriate steering angle calculation means. a memory content changing means for changing the memory content of the memory means based on the bending point; By rewriting the steering angle related to a point to an appropriate steering angle, the driving accuracy is improved as the unmanned vehicle repeatedly travels.

また無人走行車に記憶内′8女史用操作スイソナを設け
、この記憶内容女史用操作スイッチにより記憶内′8支
受子段の作動状態と非作動状態とを切換nJ能な構成と
することにより、例えば強い肉の肪等のように特殊な条
件ドては記憶手段の書換えを中断することができ、記憶
手段の記憶内容が政党されるのを5hti−4できる。
In addition, the unmanned vehicle is provided with an operation switch for the memory ``8'', and the memory ``8'' is configured to be able to switch between the operating state and the non-operating state of the memory ``8'' support stage using this memory contents operation switch. However, under special conditions such as strong meat fat, rewriting of the memory means can be interrupted, and the contents of the memory means can be prevented from being changed.

また地上側に、無人走行車を遠隔操縦可能な送1!装置
を設け、無人走行車に、送信装置からの送1o1!号を
受1.;する受16装置と、記憶手段の記憶内容を変更
する記憶内容変更手段とを設け、無人走行車か屈曲点f
=T辺に位iしているときに送13装置から操舵角修正
情報が送信された場合、それを受信装置により受信して
、記憶内容変更手段により、記憶手段に記憶されている
現在地よりも1つ前の屈曲点に関する操舵角を送信装置
から送信された操舵角修正情報に基づいて書換える構成
とすることにより、記憶手段の記憶内容が無い状態にお
いて、遠IW&縦によりヂイーチングを行うことがてき
るので非常に便利である。L7かもその後、無人、L行
車の走行状性を確認しなから記憶手段の記憶内容を遠隔
操0により適宜書換えることかできるので、よりi)′
:確デム正イj5:確保てきる。
Also, on the ground side, there is a transmission system that can remotely control an unmanned vehicle! A device is installed and the transmission from the transmitting device is sent to the unmanned vehicle 1o1! Received the issue 1. ; a receiver 16 device for changing the memory content of the storage means; and a memory content changing means for changing the memory content of the memory means;
= If steering angle correction information is transmitted from the transmission 13 device while the position is on the T side, the receiving device receives it and the storage content changing means changes the current position from the current position stored in the storage means. By configuring the steering angle regarding the previous bending point to be rewritten based on the steering angle correction information transmitted from the transmitting device, it is possible to perform steering by far IW & longitudinal in a state where there is no stored content in the storage means. It is very convenient. After that, the contents of the storage means can be rewritten as needed by remote control 0 without checking the running condition of the unmanned L7 car, so it is more i)'
: Dem correct j5: I'll secure it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における無人走行装置に採用
される無人、L行車の概略構成図、第2図は同無人走行
重の下面図、第3図は被検出体検出器の検出範囲の説明
図、第4図は無人走行車の走行経路の説明図、第5図は
別の実施例における無人走行装置に採用される無人走行
車のは略購成図、第6図はさらに別の実施例における無
人走行車の走行経路の説明図、第7図はさらに別の実施
例における無人走行装置の概略説明図である。 1・無人走行装置、2a、21−、−車輪、4 ・操舵
装置、8a〜8d・被検出体検出器、10・・被検出体
、12・・記憶手段、13 操舵角制御手段、14・−
・位置ずれ息判断手段、15・・操舵角修正手段、16
・・適正操舵角演算手段、17・記憶内容変更手段、1
8・記憶内容変更用操作スイッチ、21・・・走行距離
検出手段、 22・・・屈曲点接近判断 第1図 手段、 24・・・送信装置、 25・・・受信装置
Fig. 1 is a schematic configuration diagram of an unmanned L-row vehicle employed in an unmanned running system according to an embodiment of the present invention, Fig. 2 is a bottom view of the unmanned running vehicle, and Fig. 3 is a detection object detector. FIG. 4 is an explanatory diagram of the driving route of the unmanned vehicle, FIG. 5 is a schematic purchasing diagram of the unmanned vehicle employed in the unmanned traveling device in another embodiment, and FIG. 6 is a further diagram of the unmanned vehicle. An explanatory diagram of a travel route of an unmanned vehicle in another embodiment, and FIG. 7 is a schematic diagram of an unmanned traveling device in yet another embodiment. 1. Unmanned traveling device, 2a, 21-, -wheel, 4. Steering device, 8a to 8d. Detected object detector, 10.. Detected object, 12.. Storage means, 13. Steering angle control means, 14. −
・Position deviation determination means, 15 ・Steering angle correction means, 16
・・Appropriate steering angle calculation means, 17・Memory content changing means, 1
8. Operation switch for changing memory contents, 21.. Travel distance detection means, 22.. Means for determining approach to bending point in FIG. 1, 24.. Transmitting device, 25.. Receiving device.

Claims (1)

【特許請求の範囲】 1、始発点から終着点までに複数の屈曲点を有しかつ始
発点から最初の屈曲点までと各屈曲点間と最後の屈曲点
から終着点までとが各々直線である走行経路を自動走行
する無人走行車を備えた無人走行装置であって、前記走
行経路の各屈曲点に被検出体を設置し、前記無人走行車
に、無人走行車の車輪の操舵角を可変させる操舵装置と
、前記被検出体を検出する被検出体検出器と、前記走行
経路の各屈曲点における車輪の操舵角を記憶する記憶手
段と、前記被検出体検出器が前記被検出体を検出したと
きに前記記憶手段に記憶されている操舵角に基づいて前
記操舵装置を制御する操舵角制御手段とを設けたことを
特徴とする無人走行装置。 2、始発点から終着点までに複数の屈曲点を有しかつ始
発点から最初の屈曲点までと各屈曲点間と最後の屈曲点
から終着点までとが各々直線である走行経路を自動走行
する無人走行車を備えた無人走行装置であって、前記走
行経路の各屈曲点に被検出体を設置し、前記無人走行車
に、無人走行車の走行距離を検出する走行距離検出手段
と、無人走行車の車輪の操舵角を可変させる操舵装置と
、前記被検出体を検出する被検出体検出器と、前記走行
経路の始発点から最初の屈曲点までと各屈曲点間と最後
の屈曲点から終着点までとの各々の距離および各屈曲点
における車輪の操舵角を記憶する記憶手段と、前記走行
距離検出手段により検出された走行距離と前記記憶手段
に記憶された距離とを比較して無人走行車が次の屈曲点
付近に到達したであろうことを判断する屈曲点接近判断
手段と、この屈曲点接近判断手段が次の屈曲点への接近
を判断しかつ前記被検出体検出器が前記被検出体を検出
したときに前記記憶手段に記憶されている操舵角に基づ
いて前記操舵装置を制御する操舵角制御手段とを設けた
ことを特徴とする無人走行装置。 3、被検出体を、走行経路全体を含む所定範囲にわたっ
て多数配置し、記憶手段の記憶内容を変更することによ
り走行経路を任意に変更できる構成としたことを特徴と
する特許請求の範囲第1項または第2項に記載の無人走
行装置。 4、被検出体検出器を、無人走行車の幅方向に所定間隔
をあけて複数個配置し、無人走行車に、前記いずれの被
検出体検出器が被検出体を検出したかにより屈曲点にお
ける無人走行車の位置ずれ量を判断する位置ずれ量判断
手段と、この位置ずれ量判断手段による判断結果に基づ
いて記憶手段に記憶されている現在地の屈曲点に関する
操舵角を修正して操舵角制御手段に供給する操舵角修正
手段とを設け、屈曲点において無人走行車の位置がずれ
ているときは修正された操舵角に基づいて操舵角制御手
段が操舵装置を制御する構成としたことを特徴とする特
許請求の範囲第1項ないし第3項のいずれかに記載の無
人走行装置。 5、無人走行車に、位置ずれ量判断手段による判断結果
に基づいて現在地よりも1つ前の屈曲点における適正操
舵角を演算する適正操舵角演算手段と、この適正操舵角
演算手段の演算結果に基づいて記憶手段の記憶内容を変
更する記憶内容変更手段とを設け、屈曲点において無人
走行車の位置がずれているときは記憶手段に記憶されて
いる現在地よりも1つ前の屈曲点に関する操舵角を適正
操舵角に書換える構成としたことを特徴とする特許請求
の範囲第4項に記載の無人走行装置。 6、無人走行車に記憶内容変更用操作スイッチを設け、
この記憶内容変更用操作スイッチにより記憶内容変更手
段の作動状態と非作動状態とを切換可能な構成としたこ
とを特徴とする特許請求の範囲第5項に記載の無人走行
装置。 7、地上側に、無人走行車を遠隔操縦可能な送信装置を
設け、無人走行車に、前記送信装置からの送信信号を受
信する受信装置と、記憶手段の記憶内容を変更する記憶
内容変更手段とを設け、無人走行車が屈曲点付近に位置
しているときに前記送信装置から操舵角修正情報が送信
された場合、それを前記受信装置により受信して、前記
記憶内容変更手段により、記憶手段に記憶されている現
在地よりも1つ前の屈曲点に関する操舵角を前記送信装
置から送信された操舵角修正情報に基づいて書換える構
成としたことを特徴とする特許請求の範囲第1項ないし
第4項のいずれかに記載の無人走行装置。
[Claims] 1. It has a plurality of bending points from the starting point to the ending point, and the points from the starting point to the first bending point, between each bending point, and from the last bending point to the ending point are each a straight line. An unmanned traveling device equipped with an unmanned vehicle that automatically travels along a certain travel route, wherein a detected object is installed at each bending point of the travel route, and the steering angle of the wheels of the unmanned vehicle is determined by the unmanned vehicle. a steering device for detecting the detected object; a storage means for storing steering angles of wheels at each bending point of the travel route; and a steering device for detecting the detected object; and a steering angle control means for controlling the steering device based on the steering angle stored in the storage means when the steering angle is detected. 2. Automatically travels along a travel route that has multiple bending points from the starting point to the ending point and is a straight line from the starting point to the first bending point, between each bending point, and from the last bending point to the ending point. An unmanned traveling device comprising an unmanned vehicle, wherein a detected object is installed at each bending point of the traveling route, and a traveling distance detecting means for detecting a traveling distance of the unmanned vehicle; a steering device that varies the steering angle of the wheels of the unmanned vehicle; a detected object detector that detects the detected object; A storage means for storing each distance from a point to a terminal point and a steering angle of the wheels at each bending point, and a comparison between the travel distance detected by the travel distance detection means and the distance stored in the storage means. bending point approach determining means for determining whether the unmanned vehicle has reached the vicinity of the next bending point; and a steering angle control means for controlling the steering device based on the steering angle stored in the storage means when the vehicle detects the detected object. 3. Claim 1 characterized in that a large number of objects to be detected are arranged over a predetermined range including the entire running route, and the running route can be arbitrarily changed by changing the stored contents of the storage means. The unmanned traveling device according to item 1 or 2. 4. A plurality of detected object detectors are arranged at predetermined intervals in the width direction of the unmanned vehicle, and a bending point is set on the unmanned vehicle depending on which detected object detector detects the detected object. a positional deviation amount determining means for determining the positional deviation amount of the unmanned vehicle at , and a steering angle with respect to the bending point of the current location stored in the storage means based on the determination result of the positional deviation amount determining means. A steering angle correction means for supplying the steering angle to the control means is provided, and when the position of the unmanned vehicle is deviated at the bending point, the steering angle control means controls the steering device based on the corrected steering angle. An unmanned traveling device according to any one of claims 1 to 3. 5. The unmanned vehicle is provided with an appropriate steering angle calculation means for calculating an appropriate steering angle at a bending point one point before the current location based on the determination result by the positional deviation amount determination means, and a calculation result of the appropriate steering angle calculation means. a memory content changing means for changing the memory content of the memory means based on the information stored in the memory means, and when the position of the unmanned vehicle is shifted at a bending point, the memory content changing means changes the memory content of the memory means based on The unmanned traveling device according to claim 4, characterized in that the steering angle is rewritten to an appropriate steering angle. 6. The unmanned vehicle is equipped with an operation switch for changing the memory contents,
The unmanned traveling device according to claim 5, characterized in that the storage content changing means can be switched between an activated state and a non-activated state by the storage content changing operation switch. 7. A transmitting device capable of remotely controlling the unmanned vehicle is provided on the ground side, and the unmanned vehicle includes a receiving device for receiving a transmission signal from the transmitting device, and a storage content changing means for changing the stored content of the storage device. and when steering angle correction information is transmitted from the transmitting device when the unmanned vehicle is located near a bending point, the receiving device receives the steering angle correction information, and the storage content changing means stores the steering angle correction information. Claim 1, characterized in that the steering angle related to the bending point one point before the current position stored in the means is rewritten based on the steering angle correction information transmitted from the transmitting device. 4. The unmanned traveling device according to any one of items 4 to 4.
JP2087964A 1990-04-02 1990-04-02 Unmanned traveling equipment Expired - Lifetime JP2704024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2087964A JP2704024B2 (en) 1990-04-02 1990-04-02 Unmanned traveling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087964A JP2704024B2 (en) 1990-04-02 1990-04-02 Unmanned traveling equipment

Publications (2)

Publication Number Publication Date
JPH03286313A true JPH03286313A (en) 1991-12-17
JP2704024B2 JP2704024B2 (en) 1998-01-26

Family

ID=13929543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087964A Expired - Lifetime JP2704024B2 (en) 1990-04-02 1990-04-02 Unmanned traveling equipment

Country Status (1)

Country Link
JP (1) JP2704024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163125A (en) * 1998-11-26 2000-06-16 G Three:Kk Automatic traveling cart system
JP2008197922A (en) * 2007-02-13 2008-08-28 Nippon Sharyo Seizo Kaisha Ltd Unmanned carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755404A (en) * 1980-09-19 1982-04-02 Mitsubishi Electric Corp Playback running controller for unmanned running car
JPS5911410A (en) * 1982-07-13 1984-01-21 Kubota Ltd Unmanned traveling truck
JPS59100915A (en) * 1982-12-01 1984-06-11 Kubota Ltd Unattended running service car
JPS59117611A (en) * 1982-12-25 1984-07-07 Tsubakimoto Chain Co Detection for position and direction of unattended wagon
JPS62285114A (en) * 1986-06-03 1987-12-11 Kubota Ltd Traveling controller for automatic traveling vehicle
JPH01280807A (en) * 1988-05-06 1989-11-13 Komatsu Ltd Method and device for guiding traveling object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755404A (en) * 1980-09-19 1982-04-02 Mitsubishi Electric Corp Playback running controller for unmanned running car
JPS5911410A (en) * 1982-07-13 1984-01-21 Kubota Ltd Unmanned traveling truck
JPS59100915A (en) * 1982-12-01 1984-06-11 Kubota Ltd Unattended running service car
JPS59117611A (en) * 1982-12-25 1984-07-07 Tsubakimoto Chain Co Detection for position and direction of unattended wagon
JPS62285114A (en) * 1986-06-03 1987-12-11 Kubota Ltd Traveling controller for automatic traveling vehicle
JPH01280807A (en) * 1988-05-06 1989-11-13 Komatsu Ltd Method and device for guiding traveling object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000163125A (en) * 1998-11-26 2000-06-16 G Three:Kk Automatic traveling cart system
JP2008197922A (en) * 2007-02-13 2008-08-28 Nippon Sharyo Seizo Kaisha Ltd Unmanned carrier

Also Published As

Publication number Publication date
JP2704024B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US6095439A (en) Corner irrigation system including a GPS guidance system
KR102457518B1 (en) Automatic travel implement, automatic travel mower, mower and mower automatic travel system
EP0560881B1 (en) Downward compatible agv system and methods
EP0420447A2 (en) Ofsetting the course of a laser guided vehicle
US5204814A (en) Autonomous lawn mower
EP0273976B1 (en) Guiding apparatus for unmanned movable bodies
US4465155A (en) Automated operatorless vehicles
US20190079537A1 (en) Automatic guided vehicle
EP0329405B1 (en) Apparatus for displaying current location
EP0273044B1 (en) Automated guided vehicle system
GB2143969A (en) Vehicle guidance
JPH03286313A (en) Unmanned carrier driving device
AU766338B2 (en) Self-propelling vehicle
JP2008529122A (en) Auto-driven vehicles, especially for transporting objects on golf courses
JP3378843B2 (en) Correction device for position and direction of automatic guided vehicle
JP3317159B2 (en) Automatic guided vehicle
JPS6170618A (en) Unmanned run system
JP2001350520A (en) Travel controller for automated guided vehicle
JPS62111306A (en) S-shaped traveling carrier car
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JPH09305229A (en) Moving body automatic operation device
JPH0312725B2 (en)
JPS61220006A (en) Autonomous guiding type unmanned carrier
GB2133176A (en) Vehicle guidance system
JPH07104718B2 (en) Driving course teaching device for unmanned vehicles