JPH03285836A - Manufacture of heat-resistant glass container - Google Patents

Manufacture of heat-resistant glass container

Info

Publication number
JPH03285836A
JPH03285836A JP2088090A JP8809090A JPH03285836A JP H03285836 A JPH03285836 A JP H03285836A JP 2088090 A JP2088090 A JP 2088090A JP 8809090 A JP8809090 A JP 8809090A JP H03285836 A JPH03285836 A JP H03285836A
Authority
JP
Japan
Prior art keywords
glass
glass container
compressive stress
heat
regulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088090A
Other languages
Japanese (ja)
Inventor
Fujio Shimono
下野 富二雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2088090A priority Critical patent/JPH03285836A/en
Priority to KR1019900010661A priority patent/KR930009886B1/en
Publication of JPH03285836A publication Critical patent/JPH03285836A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/06Tempering or quenching glass products using gas for glass products other than flat or bent glass plates, e.g. hollow glassware, lenses
    • C03B27/065Stresses, e.g. patterns, values or formulae
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/06Tempering or quenching glass products using gas for glass products other than flat or bent glass plates, e.g. hollow glassware, lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a heat-resistant glass container free from a scattering phenomenon at the time of breaking with good productive efficiency at low cost by molding a prescribed glass container by soda-lime glass having a specified compsn., controlling its temp. and thereafter tempering the glass by cooling in a specified manner. CONSTITUTION:At first, soda-lime glass essentially consisting of by weight, 60 to 80% SiO2, 5 to 20% CaO and 5 to 20% Na2O is prepd. Next, by using this soda-lime glass, a glass container with <=15cm depth in which the opening angle at the mouth part against the bottom face is regulated to >=5 degrees, the radius of the curved part in the bottom part is regulated to >=25mm and its central angle is regulated to >=45 degrees is molded. Then, this glass container is subjected to temp. controlling, is thereafter mildly exposed to a cooling wind in such a manner that the heat transfer coefficient (h) in the surface is approximately regulated to 0.001 (Cal/sec.m<2>. deg.C) and is tempered by the cooling. In the above-mentioned manner, a layer subjected to compressive stress in which the compressive stress value on the surface of the glass container lies in the range of 250 to 650kg/cm<2> is formed, by which the objective glass container can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は耐熱性ガラス容器の製造方法に係り、特には
−船釣なソーダライムガラスからなる容器であって、内
外表面に急冷強化法による圧縮応力層を形成して耐熱性
を向上させた耐熱性ガラス容器の製造方法に関するもの
である。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a method for manufacturing a heat-resistant glass container, and more particularly to a container made of soda lime glass, the inner and outer surfaces of which are formed by rapid cooling strengthening. The present invention relates to a method for manufacturing a heat-resistant glass container with improved heat resistance by forming a compressive stress layer.

(従来の技術) 従来からコツプ、皿等のガラス容器あるいはジュース壜
、食料用壜等のガラス製包装用壜等のガラス容器は1通
常ソーダライムガラスと称される最も一般的なガラス組
成のものから構成されている。しかるに、このソーダラ
イムガラス容器の耐熱強度(温度差)はせいぜい50〜
60℃であり。
(Prior Art) Glass containers such as glass containers such as cups and plates, and glass packaging bottles such as juice bottles and food bottles have traditionally been made of the most common glass composition called soda-lime glass. It consists of However, the heat resistance strength (temperature difference) of this soda lime glass container is at most 50 ~
It is 60℃.

このガラス容器内に高温の内容物を入れた直後に水等に
接触して急激に冷やされると温度差が耐熱強度以上とな
り、熱衝撃によって破損するおそれがあった(後述の第
6図参照)。
Immediately after placing high-temperature contents in this glass container, if it comes into contact with water or the like and is rapidly cooled down, the temperature difference will exceed the heat resistance strength, and there is a risk of damage due to thermal shock (see Figure 6 below) .

そこで、従来からイオン交換による化学的強化法あるい
は冷却エアによる急冷強化法によってこの種ガラス容器
の内外表面に圧縮応力層を形成しもってその耐熱強度の
向上を図ることがなされているのであるが、前者の場合
は製造コストが高くなることおよび加傷による劣化が著
しく繰り返しの使用に耐えられないという欠点があり、
後者の場合は破損時にガラス破片が飛散する可能性があ
り安全上の問題があった。
Therefore, conventional efforts have been made to improve the heat resistance of glass containers by forming compressive stress layers on the inner and outer surfaces of such glass containers using chemical strengthening methods using ion exchange or rapid cooling strengthening methods using cooling air. In the former case, the disadvantages are that the manufacturing cost is high and that the material deteriorates significantly due to damage and cannot withstand repeated use.
In the latter case, there was a risk of glass fragments scattering when broken, posing a safety problem.

さらに、ガラス組成中に酸化硼素(B203)を加えて
熱膨張係数を小さくし耐熱強度を大きくしたいわゆる耐
熱ガラスも公知であるが、この耐熱ガラスは特殊な組成
のガラスであり溶融性が劣るため大量生産に向いておら
ず、成形コストが非常に高くなるという問題があった。
Furthermore, so-called heat-resistant glass is also known, in which boron oxide (B203) is added to the glass composition to reduce the coefficient of thermal expansion and increase heat-resistant strength, but this heat-resistant glass has a special composition and has poor meltability. There was a problem that it was not suitable for mass production and the molding cost was extremely high.

(発明が解決しようとする課題) この発明は上記のような従来の問題点に鑑み、十分な耐
熱性を有するとともに破損時における飛散現象もなく、
また生産効率もよく、量産性が高く、製造コストも廉価
なソーダライムガラスよりなる耐熱ガラス容器の製造方
法を提供することを目的として提案されたものである。
(Problems to be Solved by the Invention) In view of the above-mentioned conventional problems, the present invention has sufficient heat resistance, no scattering phenomenon when broken,
It was also proposed for the purpose of providing a method for manufacturing heat-resistant glass containers made of soda lime glass that has good production efficiency, high mass productivity, and low manufacturing costs.

(課題を解決するための手段) すなわち、この発明は、S r 02  : 60〜8
0(重量%)、Cab: 5〜20 (重量%) 、N
 a 2o:5〜20(重量%)を主成分とするソーダ
ライムガラスによって深さ15cm以下で、底面に対す
る口部開口角度が5度以上、底部の曲面部の半径が25
mm以上でかつその中心角が45度以上であるガラス容
器を成形し、調温後、このガラス容器に対しその表面に
おける熱伝達係数(h)が慨ね0.001 (cal/
secem’*”o)程度となるようにゆるやかに冷却
風をあてて冷却強化をなし、ガラス容器表面の圧縮応力
値が250〜650kg/cm2の範囲内の圧縮応力層
を形成することを特徴とする耐熱性ガラス容器の製造方
法に係る。
(Means for solving the problem) That is, the present invention solves the problem
0 (wt%), Cab: 5-20 (wt%), N
A2O: Made of soda lime glass whose main component is 5 to 20 (wt%), the depth is 15 cm or less, the opening angle of the mouth to the bottom is 5 degrees or more, and the radius of the curved part of the bottom is 25 cm.
A glass container with a diameter of 45 degrees or more and a central angle of 45 degrees or more is molded, and after temperature control, the heat transfer coefficient (h) on the surface of this glass container is approximately 0.001 (cal/
The cooling is strengthened by gently blowing cooling air so that the temperature is about secem'*"o), and a compressive stress layer with a compressive stress value in the range of 250 to 650 kg/cm2 is formed on the surface of the glass container. The present invention relates to a method for manufacturing a heat-resistant glass container.

(作用) この発明のガラス容器は、S i02  : 60〜8
0(重量%)、CaO:5〜20(重量%)、N a 
20 : 5〜20(重量%)を主成分とするソーダラ
イムガラスよりなるものでガラス食器、ガラス製包装用
壜等として広く一般に使用されているものである。上記
主成分の他、微量のAl2O3、K2O、MgO等を含
むものであってよいことはいうまでもなく、また着色を
目的として必要量のFe、Cu、Cr、Ni等の化合物
が添加されることもある。
(Function) The glass container of this invention has Si02: 60-8
0 (wt%), CaO: 5-20 (wt%), Na
20: It is made of soda lime glass whose main component is 5 to 20 (wt%), and is widely used for glass tableware, glass packaging bottles, etc. In addition to the above main components, it goes without saying that it may contain trace amounts of Al2O3, K2O, MgO, etc., and necessary amounts of compounds such as Fe, Cu, Cr, Ni, etc. may be added for the purpose of coloring. Sometimes.

冷却風による急冷強化法とは、周知のように600〜7
00℃の温度域にあるガラス表面を冷却風によって急冷
してガラス表面に圧縮応力層を形成してガラスを強化す
る方法である。
As is well known, the rapid cooling strengthening method using cooling air is
This method strengthens the glass by rapidly cooling the glass surface in the temperature range of 00° C. with cooling air to form a compressive stress layer on the glass surface.

まず、ガラス容器の表面に冷却風によって圧縮応力層を
均一に形成するためには冷却エアの供給を確実に行う必
要がある。この目的のために、ガラス容器の好ましい形
状範囲が規定される。すなわち、第1図に図示したよう
に、開口形状を有するガラス容器lOにおいて、内側の
深さ(D、)が15cm以下で、底面に対する口部の開
口角度(di)が5度以上、底部の半径(r)が25m
m以上でかつその中心角(d2)が45度以上であるも
のが、より均一かつ確実に冷却エアの供給を行なうこと
ができ、またより工程の安定した急冷強化処理を施すこ
とができる。この形状範囲外の容器にあっては、通常の
エア供給方法ではガラス容器表面に対するエア供給が確
実に行なわれず従って均一な圧縮応力層の形成がむずか
しい。
First, in order to uniformly form a compressive stress layer on the surface of a glass container using cooling air, it is necessary to reliably supply cooling air. For this purpose, a range of preferred shapes for glass containers is defined. That is, as shown in FIG. 1, in a glass container lO having an opening shape, the inner depth (D,) is 15 cm or less, the opening angle (di) of the mouth with respect to the bottom is 5 degrees or more, and the bottom Radius (r) is 25m
m or more and whose central angle (d2) is 45 degrees or more, it is possible to supply cooling air more uniformly and reliably, and it is possible to perform rapid cooling strengthening treatment with a more stable process. For containers outside this shape range, ordinary air supply methods cannot reliably supply air to the surface of the glass container, making it difficult to form a uniform compressive stress layer.

次に、圧縮応力層の応力値はその値に比例してガラス自
体の強度が向上するものであるが、しかしながら、例え
ば700kg/cm2以上の応力層を形成しようとする
と、応力値のバラツキが生ずることが避けられず従って
局部的に非常に高い応力値を有する箇所ができ大きな平
面歪みを生じ、破損時にガラス破片が飛散する危険性が
ある。また、その応力値が250kg/cm2未満であ
ると、所望する耐熱強度(温度差120℃以上)が得ら
れない、このようなことから、ガラス容器の内外表面に
形成される圧縮応力層は250〜650kg/crrr
の範囲の応力値であることが望ましい。
Next, the strength of the glass itself improves in proportion to the stress value of the compressive stress layer; however, when attempting to form a stress layer of, for example, 700 kg/cm2 or more, variations in the stress value occur. This is unavoidable, and as a result, there are areas with extremely high stress values locally, resulting in large plane distortions, and there is a risk of glass fragments flying off when broken. In addition, if the stress value is less than 250 kg/cm2, the desired heat resistance strength (temperature difference of 120°C or more) cannot be obtained.For this reason, the compressive stress layer formed on the inner and outer surfaces of the glass container is less than 250 kg/cm2. ~650kg/crrr
It is desirable that the stress value be in the range of .

さらに、上のような応力値を有するような急冷強化方法
としては、ガラス容器に対しその表面における熱伝達係
数(h)が慨ねO,0O1cal/ s e c a 
rn′e ”C程度となるようにゆるやかに冷却風をあ
てて冷却強化をなすことが望ましい。
Furthermore, as for the rapid cooling strengthening method that has the above stress value, the heat transfer coefficient (h) at the surface of the glass container is generally O,0O1cal/s e c a
It is desirable to strengthen cooling by applying cooling air gently so that rn'e ''C is achieved.

般に知られているように、残留応力は、熱膨張係数、ガ
ラス肉厚、および熱伝達率に比例する。そして、熱伝達
率(h)は通常の自然対流では0゜0002〜0.00
03 (cal/5ecenfe℃)であるところ、現
在性なわれているところの一般的急冷強化ではおよそ0
.005である。しかしながら、このような急激な冷却
では圧縮応力値が高くなり、前記したようなガラス破損
時におけるガラス飛散のおそれがある。そこで、本発明
では、この熱伝達率(h)をおよそo、ooi程度とな
るようにゆるやかな冷却とすることによって、ガラス飛
散の無いかつ十分な耐熱強度を有するようにしたのであ
る。
As is generally known, residual stress is proportional to the coefficient of thermal expansion, glass wall thickness, and heat transfer coefficient. The heat transfer coefficient (h) is 0°0002 to 0.00 in normal natural convection.
03 (cal/5ecenfe℃), but in the current general rapid cooling strengthening method, it is approximately 0.
.. It is 005. However, such rapid cooling increases the compressive stress value, and there is a risk of glass scattering when the glass breaks as described above. Therefore, in the present invention, by cooling slowly so that the heat transfer coefficient (h) becomes approximately o, ooi, it is possible to prevent glass from scattering and to have sufficient heat resistance strength.

このようにして得られたガラス容器においては、内外表
面に急冷強化法による圧縮応力層が形成されており、該
圧縮応力層が引張応力による破壊応力を大幅に向上させ
ているとともに、圧縮応力層の存在によって熱疲労が完
全に防止されるために急冷時の温度差による熱衝撃に対
する強度が上り結果的に耐熱強度を向上させることなる
。また、前記の圧縮応力値は250〜650kg/cr
n′の範囲内にあるため、破損時にガラス破片が飛散す
ることもなく安全である。
In the glass container obtained in this way, a compressive stress layer is formed on the inner and outer surfaces by the rapid cooling strengthening method, and the compressive stress layer significantly improves the breaking stress due to tensile stress, and the compressive stress layer Since thermal fatigue is completely prevented by the presence of , the strength against thermal shock due to the temperature difference during rapid cooling increases, resulting in an improvement in heat resistance strength. Moreover, the compressive stress value mentioned above is 250 to 650 kg/cr.
Since it is within the range of n', it is safe because glass fragments will not scatter when broken.

(実施例) 次に実施例を説明すると、添付の図面第1図はこの発明
の一実施例を示すガラス容器の一例を示す中央縦断面図
、第2図はガラス厚みと圧縮応力値の関係を示すグラフ
、第3図はこの発明方法の一例を示す概略工程図、第4
図は熱処理工程における温度変化を示すグラフ、第5図
はこの発明によるガラス容器の耐熱疲労性を示すグラフ
、第6図は未強化ガラスの耐熱疲労性を示すグラフであ
る。
(Example) Next, to explain an example, FIG. 1 of the attached drawings is a central vertical sectional view showing an example of a glass container showing an example of the present invention, and FIG. 2 is a relationship between glass thickness and compressive stress value. FIG. 3 is a schematic process diagram showing an example of the method of this invention, and FIG.
FIG. 5 is a graph showing the temperature change in the heat treatment process, FIG. 5 is a graph showing the heat fatigue resistance of the glass container according to the present invention, and FIG. 6 is a graph showing the heat fatigue resistance of unstrengthened glass.

第3図に図示したように、まず、公知のガラス成形機2
0によって第1図に図示したようなソーダライムガラス
からなる小鉢10が成形される。
As shown in FIG. 3, first, a known glass forming machine 2
0, a small bowl 10 made of soda lime glass as shown in FIG. 1 is formed.

このガラス小鉢10の組成(重量%)は次の通りである
The composition (weight %) of this small glass bowl 10 is as follows.

S i O: 72 、5 CaO:11.5 N a 20  : 13.0 A1203 :  1.5 KO:l、Q MgO:  0.5 この小鉢の形状は、口部内径140mm、胴部内径12
0mm、深さ(D)50mm、最大肉厚5.5mm、最
小肉厚3.5mmで、底面に対する口部開口角度(d 
l)は約15度、底部の半径(r)が36度、その中心
角度(d2)は75度である。
S i O: 72, 5 CaO: 11.5 N a 20: 13.0 A1203: 1.5 KO: l, Q MgO: 0.5 The shape of this small bowl is that the inner diameter of the mouth is 140 mm and the inner diameter of the body is 12 mm.
0mm, depth (D) 50mm, maximum wall thickness 5.5mm, minimum wall thickness 3.5mm, mouth opening angle (d) with respect to the bottom surface.
l) is about 15 degrees, the radius of the bottom (r) is 36 degrees, and its center angle (d2) is 75 degrees.

前記の小鉢10の成形後、第3図に図示のように、小鉢
lOはコンベア21を経て口焼き工程30へ移送される
0口焼き工程3oで口部が加熱成形された後、予備加熱
工程35を経て製品の全体温度のバラツキをより少なく
し、次の調温工程40に送られる。この調温工程40で
は、第4図の温度グラフのように、ガラスの製品温度を
慨ね650℃プラスマイナス3CI以内となるように調
温する。
After forming the small bowl 10, as shown in FIG. 3, the small bowl 10 is transferred to a baking process 30 via a conveyor 21.The mouth of the small bowl 10 is heated and formed in a baking process 3o, and then a preheating process is carried out. After passing through step 35, the variation in the overall temperature of the product is further reduced, and the product is sent to the next temperature control step 40. In this temperature control step 40, as shown in the temperature graph of FIG. 4, the temperature of the glass product is controlled to generally be within 650° C. plus or minus 3 CI.

そして、この調温工程40後、冷却工程5oに入る。実
施例では、製品の表面温度が約640’C!である時に
、ノズルから温度的15℃の冷却風を風速10m/秒で
約20秒間噴射し急冷強化を施し、ガラス表面温度を約
3oo℃まで降温した。
After this temperature adjustment step 40, a cooling step 5o is entered. In the example, the surface temperature of the product was approximately 640'C! At that time, cooling air at a temperature of 15°C was jetted from a nozzle at a wind speed of 10 m/sec for about 20 seconds to strengthen the glass surface by rapidly cooling it, and the glass surface temperature was lowered to about 30°C.

(なお、従来の急冷強化では通常10秒以下で約200
℃まで急激に降温するのが一般である。第4図のグラフ
中の破線部分参照) 冷却工程50後、コンベア51.52等を経てガラス小
鉢を室温まで徐々に冷却する。
(In addition, in conventional rapid cooling strengthening, it usually takes about 20 seconds or less to
It is common for the temperature to drop rapidly to ℃. (See the broken line in the graph of FIG. 4) After the cooling step 50, the small glass bowl is gradually cooled down to room temperature via conveyors 51, 52, etc.

上の製法によって得られたガラス小鉢の表面の圧縮応力
層の厚さは約750.で、その圧縮応力値は平均450
kg/cm2であった。
The thickness of the compressive stress layer on the surface of the small glass bowl obtained by the above manufacturing method is approximately 750 mm. The average compressive stress value is 450
kg/cm2.

ここで、ガラス厚みと圧縮応力値の関係についてふえん
すると、第2図はその両者の関係を示すグラフである。
Now, regarding the relationship between glass thickness and compressive stress value, FIG. 2 is a graph showing the relationship between the two.

同図から理解されるように、ガラス厚み(1)と圧縮応
力値とはほぼ一定の比例関係にあり、圧縮応力値250
〜650kg/crn′の範囲内のガラス製品の厚み(
1)はほぼ2.5〜6.5mmの範囲内にある。
As can be understood from the figure, there is a nearly constant proportional relationship between the glass thickness (1) and the compressive stress value, and the compressive stress value 250
The thickness of glass products within the range of ~650 kg/crn' (
1) is approximately within the range of 2.5 to 6.5 mm.

(実験例) 次にこの発明方法によるガラス製品の比較実験例につい
て説明する。まず、製品形状について特に底部曲面部の
形状に関して発明品と対比量との実験結果について述べ
る。
(Experimental Example) Next, a comparative experimental example of glass products produced by the method of this invention will be explained. First, we will discuss the experimental results of the invented product and a comparative product regarding the shape of the product, particularly the shape of the curved bottom portion.

いずれも同質のソーダライムガラスよりなり、深さ50
mm、内径的120mm、肉厚3.8〜4.6の範囲内
にある丸形鉢である。製品Aは本発明品で、Bは対比量
である0強化条件は、ともに、製品温度的640℃に均
一加熱後、15℃で風速10m7秒の冷却風で急冷して
製品表面に圧縮応力値350〜450 k g/ ct
n′ノ圧縮応力層を形成したものである。
Both are made of the same soda lime glass and have a depth of 50 mm.
It is a round pot with an inner diameter of 120 mm and a wall thickness of 3.8 to 4.6 mm. Product A is the product of the present invention, and B is the comparative amount. Both reinforcing conditions were as follows: After uniformly heating the product to 640°C, the product was rapidly cooled at 15°C with cooling air at a speed of 10 m and 7 seconds, resulting in a compressive stress value on the product surface. 350~450kg/ct
A compressive stress layer of n' is formed.

試験方法は、ガラス鉢の■底中心部および■底油面部を
先端の鋭いポンチをハンマーでたたきながら徐々に傷を
深くしていき、その破損状態を観察する方法である。
The test method is to gradually deepen the scratches by hitting the center of the bottom of the glass pot and the oil level part of the bottom with a hammer with a sharp tip, and then observe the state of damage.

次に第5図および第6図に従って耐熱疲労試験について
説明する。
Next, a thermal fatigue test will be explained according to FIGS. 5 and 6.

この実験では、急冷強化後の圧縮応力値が約280kg
/cm’のガラス製品(軟化点720℃のソーダライム
ガラスで直径6〜6.5mmの丸棒)について熱衝撃試
験をしたもので、第5図の上部の白丸は熱衝撃温度差が
150℃の場合、下部の黒丸は故意に加傷しかつ熱衝撃
温度差が150℃の場合である。いずれの場合も30回
の衝撃回数では曲げ強度の変化を生ぜず、熱疲労がほと
んど生じていない。
In this experiment, the compressive stress value after rapid cooling strengthening was approximately 280 kg.
/cm' glass product (soda lime glass with a softening point of 720°C, round bar with a diameter of 6 to 6.5 mm) was subjected to a thermal shock test, and the white circle at the top of Figure 5 indicates a thermal shock temperature difference of 150°C. In the case of , the black circle at the bottom is the case where the damage was done intentionally and the thermal shock temperature difference was 150°C. In either case, no change in bending strength occurred after 30 impacts, and almost no thermal fatigue occurred.

これに対して、第6図は第5図と同一のガラス製品の未
強化のものついて行なった実験であるが、この未強化量
では、熱衝撃回数15回まで曲げ強度は連続的に低下し
、30回では35本中の2本が破損し、大きな熱疲労が
生じていることがわかる。
On the other hand, Figure 6 shows an experiment conducted on the same unstrengthened glass product as in Figure 5, but with this unstrengthened amount, the bending strength decreased continuously up to 15 thermal shocks. , 30 times, 2 out of 35 were damaged, indicating that large thermal fatigue had occurred.

(効果) 以上図示し説明したように、この発明によれば、十分な
耐熱性を有するとともに破損時における飛散現象もなく
、また生産効率もよく、量産性が高く、製造コストも廉
価なソーダライムガラスよりなる耐熱ガラス容器の製造
方法を提供することができたものである。
(Effects) As illustrated and explained above, according to the present invention, soda lime has sufficient heat resistance, no scattering phenomenon at the time of breakage, good production efficiency, high mass productivity, and low manufacturing cost. It has been possible to provide a method for manufacturing a heat-resistant glass container made of glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すガラス容器の一例を
示す中央縦断面図、第2図はガラス厚みと圧縮応力値の
関係を示すグラフ、第3図はこの発明方法の一例を示す
概略工程図、第4図は熱処理工程における温度変化を示
すグラフ、第5図はこの発明によるガラス容器の耐熱疲
労性を示すグラフ、第6図は未強化ガラスの耐熱疲労性
を示すグラフである。 第 1 図 第 図 第 図 第 図
Fig. 1 is a central vertical sectional view showing an example of a glass container showing an embodiment of the present invention, Fig. 2 is a graph showing the relationship between glass thickness and compressive stress value, and Fig. 3 is an example of the method of this invention. A schematic process diagram, FIG. 4 is a graph showing the temperature change in the heat treatment process, FIG. 5 is a graph showing the heat fatigue resistance of the glass container according to the present invention, and FIG. 6 is a graph showing the heat fatigue resistance of unstrengthened glass. . Figure 1 Figure 1 Figure 1

Claims (1)

【特許請求の範囲】[Claims]  SiO_2:60〜80(重量%)、CaO:5〜2
0(重量%)、Na_2O:5〜20(重量%)を主成
分とするソーダライムガラスによって深さ15cm以下
で、底面に対する口部開口角度が5度以上、底部の曲面
部の半径が25mm以上でかつその中心角が45度以上
であるガラス容器を成形し、調温後、このガラス容器に
対しその表面における熱伝達係数(h)が慨ね0.00
1(cal/sec・m^2・℃)程度となるようにゆ
るやかに冷却風をあてて冷却強化をなし、ガラス容器表
面の圧縮応力値が250〜650kg/cm^2の範囲
内の圧縮応力層を形成することを特徴とする耐熱性ガラ
ス容器の製造方法。
SiO_2: 60-80 (weight%), CaO: 5-2
0 (wt%), Na_2O: 5 to 20 (wt%) as the main component, the depth is 15 cm or less, the opening angle of the mouth to the bottom is 5 degrees or more, and the radius of the curved surface of the bottom is 25 mm or more. A glass container with a large center angle of 45 degrees or more is molded, and after temperature control, the heat transfer coefficient (h) on the surface of this glass container is approximately 0.00.
The compressive stress on the surface of the glass container is within the range of 250 to 650 kg/cm^2. A method for producing a heat-resistant glass container, characterized by forming a layer.
JP2088090A 1990-04-02 1990-04-02 Manufacture of heat-resistant glass container Pending JPH03285836A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2088090A JPH03285836A (en) 1990-04-02 1990-04-02 Manufacture of heat-resistant glass container
KR1019900010661A KR930009886B1 (en) 1990-04-02 1990-07-13 Manufacture of heat-resistant glass container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088090A JPH03285836A (en) 1990-04-02 1990-04-02 Manufacture of heat-resistant glass container

Publications (1)

Publication Number Publication Date
JPH03285836A true JPH03285836A (en) 1991-12-17

Family

ID=13933169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088090A Pending JPH03285836A (en) 1990-04-02 1990-04-02 Manufacture of heat-resistant glass container

Country Status (2)

Country Link
JP (1) JPH03285836A (en)
KR (1) KR930009886B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526476A (en) * 2010-05-25 2013-06-24 エムハート・グラス・ソシエテ・アノニム Method for thermal strengthening of glass containers after production
JP2013526479A (en) * 2010-05-25 2013-06-24 エムハート・グラス・ソシエテ・アノニム Thermal strengthening of glass containers on conveyor after production
JP2014161437A (en) * 2013-02-22 2014-09-08 Ishizuka Glass Co Ltd Multipurpose reinforced glass tableware
US9133051B2 (en) 2010-05-25 2015-09-15 Emhart Glass S.A. Cooling shroud for a post-manufacture glass container thermal strengthening station

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347039B1 (en) * 2011-12-15 2014-01-16 삼광유리 주식회사 Heat resistant soda-lime glass with low thermal expansion and manufacturing method thereof
KR101964705B1 (en) * 2018-07-06 2019-04-02 클래드코리아포항 주식회사 Dimensioning unit of pipe and dispenser device of pipe using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270330A (en) * 1987-04-24 1988-11-08 Ishizuka Glass Ltd Method for improving thermal resistance of soda-lime glass vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270330A (en) * 1987-04-24 1988-11-08 Ishizuka Glass Ltd Method for improving thermal resistance of soda-lime glass vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526476A (en) * 2010-05-25 2013-06-24 エムハート・グラス・ソシエテ・アノニム Method for thermal strengthening of glass containers after production
JP2013526479A (en) * 2010-05-25 2013-06-24 エムハート・グラス・ソシエテ・アノニム Thermal strengthening of glass containers on conveyor after production
US9133051B2 (en) 2010-05-25 2015-09-15 Emhart Glass S.A. Cooling shroud for a post-manufacture glass container thermal strengthening station
JP2014161437A (en) * 2013-02-22 2014-09-08 Ishizuka Glass Co Ltd Multipurpose reinforced glass tableware

Also Published As

Publication number Publication date
KR930009886B1 (en) 1993-10-13
KR910018317A (en) 1991-11-30

Similar Documents

Publication Publication Date Title
KR900003447B1 (en) Strengthened glass articles and method for making
AU2004232803B2 (en) Method and apparatus for strengthening glass
JP5484074B2 (en) Bismuth-containing glass, glass / ceramic, article, and production method
US3791809A (en) Method of strengthening glass articles using powdered salts for ion exchange
US3498773A (en) Method of strengthening glass by ion exchange
US3637453A (en) Glass-ceramic articles having an integral compressive stress surface layer
US3445316A (en) Method of differential chemical tempering glass and article
US3524738A (en) Surface stressed mineral formed glass and method
US3728095A (en) Chemically-strengthened glass-encapsulated glass articles and process therefor
JP2005325018A (en) Translucent or opaque colored glass ceramic product used as cooking surface and its use
US3485702A (en) Mechanical strengthening of glass by ion exchange
US20050061033A1 (en) Method of making amber glass composition having low thermal expansion
US3955989A (en) Crystallized glass article having a surface pattern
JPS63270330A (en) Method for improving thermal resistance of soda-lime glass vessel
JPH03285836A (en) Manufacture of heat-resistant glass container
CN113480197B (en) Strengthening process for lithium silicate glass and strengthened glass
JPS61197444A (en) Production of tempered glass
US3615322A (en) Chemical strengthening of glass articles produced with flame treatment
US3834911A (en) Glass composition and method of making
US1949884A (en) Method of coloring vitreous articles
EP1413557A1 (en) Method for producing air-quench-touchende glass plate
JPH01261240A (en) Heat resistant glass container
Copley The composition and manufacture of glass and its domestic and industrial applications
US2225161A (en) Glaze for decorating glassware
CN108623154A (en) A kind of transparent glass of surface peening