JPH03285802A - Ozonizer - Google Patents
OzonizerInfo
- Publication number
- JPH03285802A JPH03285802A JP2083065A JP8306590A JPH03285802A JP H03285802 A JPH03285802 A JP H03285802A JP 2083065 A JP2083065 A JP 2083065A JP 8306590 A JP8306590 A JP 8306590A JP H03285802 A JPH03285802 A JP H03285802A
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- power source
- power supply
- electrode
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 238000007599 discharging Methods 0.000 claims abstract description 3
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 41
- 239000002994 raw material Substances 0.000 description 26
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000013011 mating Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000006385 ozonation reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/10—Preparation of ozone
- C01B13/11—Preparation of ozone by electric discharge
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、オゾン発生装置に関するもので、特に小型、
簡易な放電式のオゾン発生装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an ozone generator, in particular a compact,
This invention relates to a simple discharge type ozone generator.
「従来の技術」
従来、小型、簡易な放電式のオゾン発生装置として第3
図に示すごときものが提案されている。``Conventional technology'' Conventionally, the third type of compact, simple discharge-type ozone generator was developed.
Something like the one shown in the figure has been proposed.
この第3図従来例は、気体流路10°内に誘電板31°
を収納し、この誘電板31°の一面には放電電極32゛
を他面には相手側電極33゛を配してなり、該誘電板3
1°と相手側電極33°とは、気体流路10’の外に配
設されて商用電源を高電圧・高周波電源に変換する電源
回路20“に夫々連結してなるもので、この電源回路2
0°によって誘電板31” と相手側電極33°との間
に高電圧・高周波電源を印加すると誘電板31°の表面
に沿面放電が発生し、気体流路10’内を流れる原料気
体中の酸素はこの沿面放電によってオゾン化される様に
なしている。The conventional example shown in Fig. 3 has a dielectric plate 31° within the 10° gas flow path.
A discharge electrode 32' is arranged on one side of this dielectric plate 31°, and a mating electrode 33' is arranged on the other side.
1° and the opposite electrode 33° are respectively connected to a power supply circuit 20" which is arranged outside the gas flow path 10' and converts commercial power into a high voltage/high frequency power supply, and this power supply circuit 2
When a high voltage and high frequency power source is applied between the dielectric plate 31" and the opposite electrode 33° due to 0°, a creeping discharge occurs on the surface of the dielectric plate 31", and the discharge in the raw material gas flowing in the gas flow path 10' is generated. Oxygen is turned into ozone by this creeping discharge.
「発明が解決しようとする課題j
しかし、この種の小型オゾン発生装置は大型装置に比較
して大変効率が低いことが指摘されている。``Problems to be Solved by the Inventionj'' However, it has been pointed out that this type of small-sized ozone generator has very low efficiency compared to large-sized devices.
小型装置で有るが故、電源装置もコンパクトに設定せざ
るをえず、そのために電源出力が小さ(て高濃度のオゾ
ンが発生できないという制約は避けられないが、実際に
試作したところでは、消費電力に対するオゾン発生率自
体が小型装置では大型装置に比較して極端に低いことが
判明した。Since it is a small device, the power supply has to be compact, and as a result, the power output is small (and cannot generate high concentration ozone), but in actual prototype production, the consumption It was found that the ozone generation rate with respect to electric power was extremely low in small equipment compared to large equipment.
そこで、本発明者は上記低効率の原因を鋭意究明したと
ころ、小型装置ではit電源出力小さいため気体流速を
大型装置に比較して遅く設定していることが主たる原因
で有るのではないかと推考するに至った。酸素が放電界
でオゾン化されるに必要な時間は瞬時でよいとされ、一
般に、この種小型装置でも3〜10KHzの高周波電源
が使用され、この周波数を高める程オゾン化効率が高ま
ることから、印加した電圧の立ち上がり時にオゾン化が
進行完了し、その後引き続き一定電圧で印加される電気
エネルギーはオゾン化にはほとんど有効に消費されてい
ないとする説も通説化されているようで有る。すなわち
、放電界において発生したオゾンは放電界より即座に取
りだし、該放電界に新たな原料気体が接触することが効
率向上に必要で有り、第3図従来例では上流側で発生し
たオゾンは、放電界内を通って下流側にまで、原料気体
の流れに随伴されて移動することになり、新たに酸素が
オゾン化される機会を減少せしめているばかりか、発生
したオゾンが放電界内に比較的長い時間留まることで、
放電界のエネルギーを受けて再分解される可能性も高い
確率で予想できることで有る。Therefore, the inventor of the present invention diligently investigated the cause of the above-mentioned low efficiency and found that the main cause may be that the gas flow velocity is set slower in small equipment than in large equipment due to the small IT power output. I ended up doing it. It is said that the time required for oxygen to be ozonated in the discharge field is instantaneous, and generally, a high frequency power source of 3 to 10 KHz is used even in this type of small equipment, and as this frequency is raised, the ozonation efficiency increases. There also seems to be a commonly accepted theory that ozonation progresses and completes when the applied voltage rises, and that the electrical energy that is subsequently applied at a constant voltage is not effectively consumed for ozonation. That is, it is necessary to immediately extract the ozone generated in the discharge field from the discharge field and bring new raw material gas into contact with the discharge field to improve efficiency. In the conventional example shown in Fig. 3, the ozone generated on the upstream side is It moves along with the flow of raw material gas through the discharge field to the downstream side, which not only reduces the chance that oxygen will be newly converted into ozone, but also causes the generated ozone to enter the discharge field. By staying for a relatively long time,
It is also possible to predict with a high probability that it will be re-decomposed by the energy of the discharge field.
しからば、原料気体の流速を早くすれば効率向上が可能
となるわけで、第3図従来例で、空気を・R料気体とし
て流速を3倍となしたところ立ユ匣」度の効率向上を測
定できた。しか
し、いたずらに流速を早めることは、低濃度のオゾンを
多量に得ることになり使用目的に合致しない場合が有り
、これを解決するには放電反応電極体に近い局所部位に
限って流速を高めるべく特別な流速調整機構が必要どな
り、また、単に流速を早めるのにも送I!I装宜の大型
化等の、小型装置にとっては望ましくない例加装置が必
要となる。Therefore, it is possible to improve efficiency by increasing the flow rate of the raw material gas.In the conventional example shown in Figure 3, when air is used as the R feed gas and the flow rate is tripled, the efficiency is as high as 100%. I was able to measure the improvement. However, unnecessarily increasing the flow rate may result in obtaining a large amount of low-concentration ozone, which may not meet the intended use.To solve this problem, increase the flow rate only in localized areas near the discharge reaction electrode body. A special flow rate adjustment mechanism is required, and it is also possible to simply increase the flow rate. Additional equipment is required, which is undesirable for small devices, such as increasing the size of the I-equipment.
また、第3図従来例を初めとして、−射的には電源部を
別体に構成している。電源部には抵抗、トランス等の発
熱源が有り、オゾンは加熱されると分解するため、発生
したオゾンを可能な限り安定した状態で取り出すための
配慮では有るが、別体の電源部を用意することは小型化
に大きな支障となっているもので有る。In addition, starting from the conventional example shown in FIG. 3, the power supply section is visually constructed separately. The power supply unit has heat generating sources such as resistors and transformers, and ozone decomposes when heated, so a separate power supply unit is provided, although consideration has been given to extracting the generated ozone in as stable a state as possible. This is a major hindrance to downsizing.
そこで本発明は上記欠点に鑑みなされたもので流速を早
めるのに変え、放電反応電極体の形状と、原料気体の流
れ方向とを合理的に設定し、発生したオゾンが放電界よ
り直ちに取り除かれる効率的なオゾン発生装置を提供す
ることを目的としたもので有る。Therefore, the present invention was devised in view of the above-mentioned drawbacks, and by increasing the flow velocity, the shape of the discharge reaction electrode body and the flow direction of the raw material gas are set rationally, and the generated ozone is immediately removed from the discharge field. The purpose is to provide an efficient ozone generator.
また、本発明の別の目的は、電源部と放電反応電極体と
を一つのケース内に収納し、小型化を計るとともに電源
部のは詰め津に依る影響を最小にとどめたオゾン発生装
置を提供することを目的としたもので有る。Another object of the present invention is to provide an ozone generator in which a power supply section and a discharge reaction electrode body are housed in one case, thereby achieving miniaturization and minimizing the effects of the power supply section being crowded. It is intended to provide.
「課題を解決するための手段」
上記の目的に沿い、先述特許請求の範囲を要旨とする本
発明の構成は前述課題を解決するために、ケース体10
の左右いずれかの一側面にフィルター12を有した原料
気体流入口11を、上下いずれか一面に該ケース体10
内の気体を外方に吐き出すファン14を有した吐き出し
口13を設け、
上記ケース体10内には、商用電源を高電圧・高周波電
源に変換する電源回路20と、水平方向に配した円筒状
の誘電体31の外周面に上記電源回路2oに連結される
放電電極32を配設するとともに筒部内には上記電源回
路20に連結される相手側電極33を設けてなる放電反
応電極体30とを、横方向に並べて収納したことを特徴
とする技術的手段を講じたものである。"Means for Solving the Problems" In line with the above object, the configuration of the present invention, which has the gist of the above-mentioned claims, is to solve the problems described above.
A raw material gas inlet 11 with a filter 12 is provided on either the left or right side of the case body 10, and a raw material gas inlet 11 with a filter 12 is provided on one side of the case body 10
A discharge port 13 is provided with a fan 14 for discharging the gas inside to the outside. Inside the case body 10, there is a power supply circuit 20 for converting commercial power into high voltage/high frequency power, and a cylindrical shape arranged horizontally. A discharge reaction electrode body 30 is provided with a discharge electrode 32 connected to the power supply circuit 2o on the outer peripheral surface of the dielectric body 31, and a counterpart electrode 33 connected to the power supply circuit 20 in the cylindrical portion. This technical means is characterized by the fact that they are housed side by side in the horizontal direction.
「作用」
それ故、本発明オゾン発生装置は、ファン14を運転す
ると、ケース体lOの気体は吐き出し2013より吐き
出され、その分の原料気体(図示実施例では空気を使用
しているが酸素でも無論差し支えない)が原料気体流入
口11より流入する。すなわち、第2図に於て、ファン
14で上方に向けて送風すると、ケース体10内では、
垂直方向の上昇流が発生することになるが、原料気体流
入口11は吐き出し口13と対向していないので、原料
気体が流入する際は水平方向で、途中で垂直上昇流に変
化する鎖線状の気体の流れが発生することになる。この
気体の流れを放電反応電極体30部位で局所的に観察す
ると、横または斜め方向より流入した気体が各部位に衝
突または近接して流れ方向を垂直上方に変えることにな
る。したがって、この流れ方向の変化で、放電電極32
に沿って流れる気体の流れは減少し、原料気体は放電界
と接触した後、直ちに放電界より離れるという作用を呈
することになる。"Operation" Therefore, in the ozone generator of the present invention, when the fan 14 is operated, the gas in the case body 10 is discharged from the discharge 2013, and the raw material gas (air is used in the illustrated embodiment, but oxygen is also used). (of course, there is no problem) flows in from the raw material gas inlet 11. That is, in FIG. 2, when the fan 14 blows air upward, inside the case body 10,
A vertical upward flow will be generated, but since the raw material gas inlet 11 does not face the outlet 13, the raw material gas flows in a horizontal direction, and in the middle it changes to a vertical upward flow in a chain line shape. A flow of gas will be generated. When this gas flow is observed locally at the discharge reaction electrode body 30, the gas flowing in from the side or diagonal direction collides with or approaches each part and changes the flow direction vertically upward. Therefore, due to this change in flow direction, the discharge electrode 32
The flow of gas flowing along the discharge field decreases, and the source gas exhibits the effect of immediately leaving the discharge field after coming into contact with the discharge field.
また、上記気体の流れを電源回路20部位で観察すると
、上記と同じ流れ方向の気体流で効率的な冷却が行われ
、抵抗等が発熱するのが防止され、また発生した熱エネ
ルギーは付近の上昇流によって放電反応電極体30ff
位に移動することなく吐き出し口13より排出されるこ
とになる。Furthermore, when observing the above gas flow at the power supply circuit 20, efficient cooling is performed by the gas flow in the same flow direction as above, preventing resistance etc. from generating heat, and the generated thermal energy is transferred to nearby areas. Discharge reaction electrode body 30ff due to upward flow
It will be discharged from the outlet 13 without moving to the position.
また、上記放電反応電極体30は水平方向に配した円筒
状の誘電体31の外周面に上記放電電極32を配設して
なるため、仮令ケース体10内に上昇流のみが存在した
としても、断面部で上昇流は半周面に添って流れること
は有ってもその距離は短いので放電界と原料気体との接
触時間が短く原料気体が長時間放電界と接触することが
回避できる作用を呈するもので有る。Further, since the discharge reaction electrode body 30 is formed by disposing the discharge electrode 32 on the outer peripheral surface of a cylindrical dielectric body 31 disposed in the horizontal direction, even if only an upward flow exists in the temporary case body 10, Although the upward flow may flow along the half circumferential surface at the cross section, the distance is short, so the contact time between the discharge field and the raw material gas is short, and the raw material gas can avoid long-term contact with the discharge field. It is something that exhibits.
r実施例」
次に、本発明の実施例を添附図面に従って説明すれば以
下の通りである。Embodiment 1 Next, embodiments of the present invention will be described below with reference to the accompanying drawings.
図中、10がケース体で、このケース本体10の左右い
ずれかの一側面にフィルター12を有した原料気体流入
口11を、上下いずれか一面に該ケース体10内の気体
を外方に吐き出すファン14を有した吐き出し口13を
設けである。In the figure, 10 is a case body, and a raw material gas inlet 11 having a filter 12 on either the left or right side of the case body 10 is used to discharge the gas inside the case body 10 to the outside on either the top or bottom side. An outlet 13 with a fan 14 is provided.
上記、ケース体10の形状は、特に制約は無いが、図示
例では立方体となっており、左側面に原料気体流入口1
1を、上面に吐き出し口13を設けてあり、この原料気
体流入口11と吐き出し口13とは夫々が直交する面に
設けである。また、上記フィルター12およびファン1
4は従来公知なものを使用し、図ではその取付は構造部
を省略したが締着用の螺子等の従来公知な取付は方法で
取付けらることは無論である。なお、図示例において、
このファン14は、電動機14aのよって回転する送風
翼14bを有し、必要に応じては金網等の安全カバー1
4cを設けてなる。There are no particular restrictions on the shape of the case body 10, but in the illustrated example it is cubic, with a raw material gas inlet 1 on the left side.
1, a discharge port 13 is provided on the upper surface, and the raw material gas inlet 11 and discharge port 13 are provided on surfaces that are perpendicular to each other. In addition, the filter 12 and the fan 1
Reference numeral 4 uses a conventionally known one, and the structural parts for its attachment are omitted in the figure, but it goes without saying that conventionally known attachment methods such as screws for fastening can be used. In addition, in the illustrated example,
This fan 14 has blower blades 14b that are rotated by an electric motor 14a, and if necessary, a safety cover such as a wire mesh is provided.
4c is provided.
そして、上記ケース体10内には、商用電源を高電圧・
高周波電源に変換する電源回路20と、水平方向に配し
た円筒状の誘電体31の外周面に上記電源回路20に連
結される放電電極32を配設するとともに筒部内には上
記電源回路20に連結される相手側電極33を設けてな
る放電反応電極体30とを、横方向に並べて収納しであ
る。In the case body 10, a commercial power source is connected to a high voltage.
A power supply circuit 20 for converting into a high frequency power supply and a discharge electrode 32 connected to the power supply circuit 20 are arranged on the outer peripheral surface of a horizontally arranged cylindrical dielectric 31, and a discharge electrode 32 connected to the power supply circuit 20 is provided in the cylindrical portion. A discharge reaction electrode body 30 provided with a mating electrode 33 to be connected is housed side by side in the horizontal direction.
上記電源回路2oは、商用電源を高電圧・高周波電源に
変換するものであれば従来公知なものが使用できるため
、図示は省略したが、本実施例では商用電源を整流子に
よって一度直流となし、この直流をダイオードとコンデ
ンサーとで構成された周波数変換回路で高周波電流に変
換した後、トランスで昇圧するようになしたものを使用
している。The power supply circuit 2o is not shown in the drawings because it can be any conventionally known circuit as long as it converts the commercial power source into a high voltage/high frequency power source. This DC current is converted into a high frequency current using a frequency conversion circuit consisting of a diode and a capacitor, and then the voltage is boosted using a transformer.
また、上記放電反応電極体30は、誘電体31に比誘電
率が5〜10の円筒状のセラミックが使用され、該誘電
体31の外周面に放電電極32として導電線を螺旋状に
巻回しており、また、該誘電体31の中心空部に棒状の
相手側電極33を嵌入し、該放電電極32と相手側電極
33とを夫々電源回路20に連結している。Further, in the discharge reaction electrode body 30, a cylindrical ceramic having a dielectric constant of 5 to 10 is used as the dielectric body 31, and a conductive wire is spirally wound around the outer peripheral surface of the dielectric body 31 as a discharge electrode 32. Further, a rod-shaped mating electrode 33 is fitted into the central cavity of the dielectric 31, and the discharge electrode 32 and the mating electrode 33 are connected to the power supply circuit 20, respectively.
そして、上記電源回路20と放電反応電極体30とを、
横方向に並べて収納するというのは、両者が上下に重な
らないように配置することで、図では両者は略同じ高さ
に配しであるが、上下に放電反応電極体30の全部が重
ならないものであれば、両者の上下位置関係は特に問題
となるものではない。Then, the power supply circuit 20 and the discharge reaction electrode body 30 are connected to each other.
Storing them side by side means arranging them so that they do not overlap vertically. In the figure, they are arranged at approximately the same height, but all of the discharge reaction electrode bodies 30 do not overlap vertically. If it is, the vertical positional relationship between the two does not pose a particular problem.
なお、図中、1は電源コンセント、2はヒユーズ、3は
電源用スイッチ(図示例は、残留接点式の押しボタンス
イッチを使用)、4はtfiランプを示すもので、電源
コンセント1の一方側回路C1にヒユーズ2と電源用ス
イッチ3とを直列に連結したあと電源回路20の一方側
入力端に連結し、電源コンセント1の他方側回路を02
は直接電源回路20の他方側入力端に連結している。ま
た、ファン14と上記電源ランプ4とは第2図に示すご
とく上記−左側回路C1の電源用スイッチ3の出力側部
位と他方側回路をC2とに夫々並列に連結しである。In the figure, 1 is a power outlet, 2 is a fuse, 3 is a power switch (the illustrated example uses a residual contact type push button switch), and 4 is a TFI lamp, which is located on one side of the power outlet 1. After connecting the fuse 2 and the power switch 3 in series to the circuit C1, connect it to one side input terminal of the power supply circuit 20, and connect the other side circuit of the power outlet 1 to the 02
is directly connected to the other input terminal of the power supply circuit 20. Further, as shown in FIG. 2, the fan 14 and the power lamp 4 are connected in parallel to the output side portion of the power switch 3 of the left side circuit C1 and the other side circuit C2, respectively.
了発明の効果」
本発明は上記のごときであるので、原料気体が電反応電
極体30の放電界と接触する時間が短く、常に放電界に
は新たな原料気体が接触し効率的なオゾン発生装置を提
供することができるものである。Since the present invention is as described above, the time during which the raw material gas contacts the discharge field of the electric reaction electrode body 30 is short, and new raw material gas is always in contact with the discharge field, resulting in efficient ozone generation. The device can be provided.
特に本発明は、原料気体流入口11と吐き出し口13と
を対向方向に設定せずに、左右いずれかの一側面と上下
いずれか一面とに設けたため、原料気体が途中で流れ方
向を転換し、放電反応電極体30に沿って長時間放電界
中を原料気体が流れることが無く、また、放電反応電極
体30を円筒状になし、しかもこの円筒状の放電反応電
極体30を(長手方向が)水平方向に配したため、原料
気体流入口11より水平方向に流入した原料気体が、吐
き出し口13に向かって上昇流に変化する部位に該放電
反応電極体30が位置してより原料気体が放電界と接触
している時間を短くすることができるオゾン発生装置を
提供することができるものである。In particular, in the present invention, the raw material gas inlet 11 and the outlet 13 are not set in opposite directions, but are provided on one side of either the left or right side and one surface of the upper or lower side, so that the raw material gas changes its flow direction midway. , the raw material gas does not flow in the discharge field for a long time along the discharge reaction electrode body 30, and the discharge reaction electrode body 30 is made into a cylindrical shape, and this cylindrical discharge reaction electrode body 30 is However, since the discharge reaction electrode body 30 is arranged in a horizontal direction, the discharge reaction electrode body 30 is located at a portion where the raw material gas flowing horizontally from the raw material gas inlet 11 changes into an upward flow toward the outlet 13, so that the raw material gas is further It is possible to provide an ozone generator that can shorten the time of contact with a discharge field.
さらに、また本発明は、上記のごとき原料気体の流れに
よって、電源回路20にも常に新たな原料気体が接触し
て効率的な冷却作用を呈するため、電源回路20を同一
ケース体lO内に収納してもオゾン発生効率の低下を来
すことが少なくコンパクト化に大きく貢献できるオゾン
発生装置を提供することができるものである。Furthermore, in the present invention, due to the flow of the raw material gas as described above, new raw material gas always comes into contact with the power supply circuit 20, thereby exhibiting an efficient cooling effect. Accordingly, it is possible to provide an ozone generator that can greatly contribute to compactness without causing a decrease in ozone generation efficiency.
第1図は本発明オゾン発生装置の外観斜視図、第2図は
縦断面図、第3図は従来例装置の縦断面図である。
10〜ケ一ス体
12〜フイルター
14〜フアン
30〜放電反応電極体
32〜放電電極FIG. 1 is an external perspective view of the ozone generator of the present invention, FIG. 2 is a vertical cross-sectional view, and FIG. 3 is a vertical cross-sectional view of a conventional device. 10 - case body 12 - filter 14 - fan 30 - discharge reaction electrode body 32 - discharge electrode
Claims (1)
2を有した原料気体流入口11を、上下いずれか一面に
該ケース体10内の気体を外方に吐き出すファン14を
有した吐き出し口13を設け、 上記ケース体10内には、商用電源を高電圧・高周波電
源に変換する電源回路20と、水平方向に配した円筒状
の誘電体31の外周面に上記電源回路20に連結される
放電電極32を配設するとともに筒部内には上記電源回
路20に連結される相手側電極33を設けてなる放電反
応電極体30とを、横方向に並べて収納したことを特徴
とするオゾン発生装置。[Claims] A filter 1 is provided on either the left or right side of the case body 10.
2, and an outlet 13 having a fan 14 for discharging the gas inside the case body 10 to the outside is provided on either the upper or lower side. A power supply circuit 20 for converting into a high voltage/high frequency power supply, and a discharge electrode 32 connected to the power supply circuit 20 are arranged on the outer peripheral surface of a horizontally arranged cylindrical dielectric 31, and the power supply An ozone generator characterized in that a discharge reaction electrode body 30 provided with a counterpart electrode 33 connected to a circuit 20 is housed side by side in the horizontal direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083065A JPH03285802A (en) | 1990-03-30 | 1990-03-30 | Ozonizer |
KR1019900019241A KR920009691A (en) | 1990-03-30 | 1990-11-27 | Ozone generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2083065A JPH03285802A (en) | 1990-03-30 | 1990-03-30 | Ozonizer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03285802A true JPH03285802A (en) | 1991-12-17 |
Family
ID=13791782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2083065A Pending JPH03285802A (en) | 1990-03-30 | 1990-03-30 | Ozonizer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH03285802A (en) |
KR (1) | KR920009691A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061909A (en) * | 2019-12-12 | 2021-07-02 | 南京沃环科技实业有限公司 | Electrolytic ozone generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970062170A (en) * | 1995-12-29 | 1997-09-12 | 김준웅 | Polyester Favorite Composition |
-
1990
- 1990-03-30 JP JP2083065A patent/JPH03285802A/en active Pending
- 1990-11-27 KR KR1019900019241A patent/KR920009691A/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113061909A (en) * | 2019-12-12 | 2021-07-02 | 南京沃环科技实业有限公司 | Electrolytic ozone generator |
Also Published As
Publication number | Publication date |
---|---|
KR920009691A (en) | 1992-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7943098B2 (en) | Apparatus for generating ozone and/or O1 using a high energy plasma discharge | |
US5004587A (en) | Apparatus and method for ozone production | |
JPS61275107A (en) | Ozonator | |
US6730277B2 (en) | Ozone generator | |
PL368616A1 (en) | Method for producing ultrafine dispersion water of noble metal ultrafine particles | |
US6190622B1 (en) | Ozone generator | |
JPH03285802A (en) | Ozonizer | |
US20060073085A1 (en) | Anion generator | |
CA2333106C (en) | Lamp for generating high power ultraviolet radiation | |
US6544486B2 (en) | Ozone generator | |
RU2363653C1 (en) | Device for producing ozone using pulsed barrier discharge | |
RU2735850C1 (en) | Ozonizer | |
JPH10182109A (en) | Ozone generator | |
RU204212U1 (en) | OZONATOR-RECIRCULATOR | |
WO2019225033A1 (en) | Ozone gas generation system and ozone gas generation method | |
JPH10324504A (en) | Silent-discharge ozonizing method and device therewith | |
FR2237675A1 (en) | Gas flow electrical discharge treatment - with reactor electrodes connected through switching circuit to rectified AC from transformer | |
SU1763357A1 (en) | Cascade ozonizer | |
JPH034277Y2 (en) | ||
US5100630A (en) | Water powered magneto generator for the production of nitrogen and phosphorus fertilizer apparatus | |
CN216512867U (en) | Miniature quartz tube ozone generator | |
CN202808351U (en) | Ozonator | |
RU60509U1 (en) | OZONE PRODUCTION PLANT | |
Eliasson | Ozone Generation and Applications U. Kogelschatz | |
TWI548588B (en) | Ozone generating devices |