JPH03285146A - Method and apparatus for evaluating superconductor thin film - Google Patents

Method and apparatus for evaluating superconductor thin film

Info

Publication number
JPH03285146A
JPH03285146A JP2295302A JP29530290A JPH03285146A JP H03285146 A JPH03285146 A JP H03285146A JP 2295302 A JP2295302 A JP 2295302A JP 29530290 A JP29530290 A JP 29530290A JP H03285146 A JPH03285146 A JP H03285146A
Authority
JP
Japan
Prior art keywords
crystal
light
reflected light
thin film
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295302A
Other languages
Japanese (ja)
Inventor
Tomoji Nakamura
友二 中村
Masaru Ihara
賢 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPH03285146A publication Critical patent/JPH03285146A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals

Abstract

PURPOSE:To simply and rapidly evaluate a superconductor membrane in a non- destructive manner by irradiating the necessary region of a superconductor crystal with polarized light and detecting the intensity of the reflected light of a polarized component crossing irradiated light at a right angle from a grain to be aimed at. CONSTITUTION:The polarized light from a light source 11 is applied to the necessary region of a superconductor membrane 4 to be evaluated through a polarizer 12, a half mirror 13 and a lens 14. Subsequently, the reflected light from the irradiated region is guided to a detector 15 through the lens 14 and the mirror 13 and only the reflected light of a polarized component crossing the irradiated light at a right angle is guided to a high sensitivity camera 17 through a lens 16 and the intensity thereof is detected. The membrane 4 is rotated around the axis vertical to the surface of a rotary type sample table 21 being a single crystal plate in such a state that the setting conditions of the irradiated light and reflected light are fixed. By this method, the difference between the angle allowing the main axis of the substrate crystal to coincide with the polarized direction of the irradiated light and the angle minimizing the detected intensity of the reflected light is calculated to evaluate the crystal azimuth relation between the membrane 4 and the substrate single crystal.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、超伝導体薄膜の評価方法および評価装置に関
し、 多結晶超伝導体薄膜の結晶粒の個別方位、方位別結晶粒
寸法分布および結晶粒方位分布、および−厚内の結晶方
位のずれを簡便、迅速に、非破壊で求める評価方法およ
びその実施のだとの評価装置を提供することを目的とし
、 本発明による個別結晶粒の評価方法は、単結晶基板上に
形成された多結晶超伝導体薄膜の膜面に偏光を照射し、
着目する結晶粒からの、照射光偏光方向と直交する偏光
成分の反射光強度を測定し、上記薄膜をその面内で回転
させ、上記反射光強度が最大になる位置を基準として、
上記反射光強度が最小になる位置までの回転角度と、基
板単結晶の既知の主軸方向と上記照射光の偏光方向が一
致する回転角度との差を求めることにより、上記着目す
る結晶粒と上記基板単結晶との結晶方位関係を評価する
ように構成し、 本発明による方位別結晶粒寸法分布および結晶粒方位分
布の評価方法は、多結晶超伝導体薄膜の膜面に偏光を照
射し、着目する膜面領域からの、照射光偏光方向と直交
する偏光成分の反射光像を観測し、反射光像内の個別の
結晶粒像の明るさの違いにより個別結晶粒を級分けし、
明るさの等価な結晶粒の面積および密度を計測し、上記
薄膜をその面内で回転させ、複数の回転位置において上
記反射光像観測、上記結晶粒級分け、および上記面積・
密度計測を行うことにより、薄膜面内における方位別結
晶粒寸法の分布および結晶粒方位の分布を評価するよう
に構成し、 これらの評価方法を実施するための本発明による評価装
置は、測定対象物に偏光を照射し且つ測定対象物からの
反射光強度を測定する偏光照射および反射光強度測定部
と、測定対象物を保持し且つ回転させる保持および回転
部と、上記保持および回転部の回転を制御し、且つその
回転角度に対応した、上記偏光照射および反射光強度測
定部からのデータを画像処理する制御および画像処理部
とを有するように構成し、 本発明による膜厚内の結晶方位のずれを領域毎に評価す
る方法は、単結晶基板上に形成された多結晶超伝導薄膜
の表面に偏光を照射し、着目する膜面領域からの、照射
光偏光方向と直交する偏光成分の反射光像を観測し、反
射光像内の個別の結晶粒像の明るさの違いにより個別結
晶粒を級分けし、次に単結晶基板の下面から偏光を照射
して前記単結晶基板とその上の超伝導薄膜を透過させ、
照射光偏光方向と直交する偏光成分の透過光像を観測し
、透過光像内の個別の結晶粒像の明るさの違いにより個
別結晶粒を級分けし、反射光像と透過光像とを比較する
ことにより、結晶軸方位のずれた結晶粒が上下に積み重
なった領域を評価するように構成し、 本発明による膜厚内の結晶方位のずれを結晶粒毎に評価
する方法は、単結晶基板上に形成された多結晶超伝導薄
膜の表面に偏光を照射し、着目する結晶粒からの、照射
光偏光方向と直交する偏光成分の反射光強度を測定し、
上記薄膜をその面内で回転させて上記結晶粒の反射光強
度が最小となる位置に薄膜を固定し、次に単結晶基板の
下面から偏光を照射して前記単結晶基板とその上の超伝
導薄膜を透過させ、照射光偏光方向と直交する偏光成分
の透過光強度を上記の着目する結晶粒について測定し、
結晶粒内に現れる不均一な透過光強度分布を検出するこ
とにより、着目する結晶粒と基板の間の結晶軸方位のず
れた結晶粒の有無を評価するように構成し、 これらの評価方法を実施するための本発明による評価装
置は、測定対象物の表面側と裏面側から偏光を照射する
偏光照射部(1)と、測定対象物からの反射光強度と透
過光強度を測定する反射光および透過光強度測定部(2
)と、測定物を保持し且つ回転させる保持および回転部
(3)と、上記偏光照射部(1)と反射光および透過光
強度測定部(2)を制御し且つ反射光および透過光強度
測定部(2)からのデータを画像処理する画像処理部(
4)とを有するように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a superconductor thin film evaluation method and evaluation device, and includes methods for evaluating individual orientations of crystal grains in a polycrystalline superconductor thin film, crystal grain size distribution by orientation, and crystal grain orientation. The purpose of the present invention is to provide an evaluation method for simply, quickly, and non-destructively determining the distribution and deviation of crystal orientation within the thickness, and an evaluation device for its implementation. , irradiate polarized light onto the surface of a polycrystalline superconductor thin film formed on a single crystal substrate,
Measure the reflected light intensity of the polarized light component orthogonal to the polarization direction of the irradiated light from the crystal grain of interest, rotate the thin film within its plane, and use the position where the reflected light intensity is maximum as a reference.
By determining the difference between the rotation angle to the position where the intensity of the reflected light is the minimum and the rotation angle at which the known principal axis direction of the substrate single crystal and the polarization direction of the irradiation light match, the crystal grain of interest and the above The method of evaluating crystal grain size distribution by orientation and crystal grain orientation distribution according to the present invention, which is configured to evaluate the crystal orientation relationship with the substrate single crystal, irradiates the film surface of a polycrystalline superconductor thin film with polarized light, Observe the reflected light image of the polarized light component orthogonal to the polarization direction of the irradiated light from the film surface area of interest, classify the individual crystal grains based on the difference in brightness of the individual crystal grain images in the reflected light image,
The area and density of crystal grains with equivalent brightness were measured, the thin film was rotated within its plane, the reflected light image was observed at multiple rotational positions, the crystal grains were classified, and the area and density were measured.
The evaluation apparatus according to the present invention is configured to evaluate the distribution of crystal grain size by orientation and the distribution of crystal grain orientation in the plane of a thin film by performing density measurement, and the evaluation apparatus according to the present invention for implementing these evaluation methods is a polarized light irradiation and reflected light intensity measuring section that irradiates an object with polarized light and measures the intensity of reflected light from the object to be measured; a holding and rotating section that holds and rotates the object to be measured; and a rotation of the holding and rotating section. and a control and image processing unit that performs image processing on data from the polarized light irradiation and reflected light intensity measurement unit corresponding to the rotation angle thereof, and the crystal orientation within the film thickness according to the present invention The method of evaluating the deviation in each region is to irradiate the surface of a polycrystalline superconducting thin film formed on a single crystal substrate with polarized light, and to evaluate the polarization component perpendicular to the polarization direction of the irradiated light from the film surface region of interest. The reflected light image is observed, the individual crystal grains are classified based on the difference in brightness of the individual crystal grain images in the reflected light image, and then polarized light is irradiated from the bottom surface of the single crystal substrate to separate the single crystal substrate and its Transmits through the superconducting thin film above,
The transmitted light image of the polarized light component perpendicular to the polarization direction of the irradiated light is observed, the individual crystal grains are classified based on the difference in brightness of the individual crystal grain images in the transmitted light image, and the reflected light image and the transmitted light image are separated. The method of evaluating the crystal orientation deviation within the film thickness for each crystal grain according to the present invention is configured to evaluate regions in which crystal grains with misaligned crystal axis orientations are stacked vertically. The surface of a polycrystalline superconducting thin film formed on a substrate is irradiated with polarized light, and the reflected light intensity of the polarized light component orthogonal to the polarization direction of the irradiated light from the crystal grains of interest is measured.
The thin film is rotated within its plane to fix the thin film at a position where the intensity of reflected light from the crystal grains is minimum, and then polarized light is irradiated from the bottom surface of the single crystal substrate to cover the single crystal substrate and the superstructure above it. Transmit the conductive thin film and measure the intensity of the transmitted light of the polarized component perpendicular to the polarization direction of the irradiated light for the crystal grain of interest,
By detecting the uneven transmitted light intensity distribution that appears within the crystal grains, the present invention is configured to evaluate the presence or absence of crystal grains with misaligned crystal axes between the target crystal grain and the substrate. The evaluation device according to the present invention for implementation includes a polarized light irradiation unit (1) that irradiates polarized light from the front side and back side of a measurement target, and a reflected light unit that measures the intensity of reflected light and transmitted light from the measurement target. and transmitted light intensity measuring section (2
), a holding and rotating part (3) that holds and rotates the object to be measured, and a part that controls the polarized light irradiation part (1) and the reflected light and transmitted light intensity measuring part (2) and measures the reflected light and transmitted light intensity. An image processing section (2) that performs image processing on the data from section (2)
4).

〔産業上の利用分野〕[Industrial application field]

本発明は、超伝導体薄膜の評価方法および評価装置に関
する。
The present invention relates to a method and apparatus for evaluating superconductor thin films.

近年、開発研究が進められている酸化物高温超伝導物質
〔例えば、ビスマス−ストロンチウムカルシウム−銅−
酸素(Bi −3r −Ca−Cu −0)系やイツト
リウム−バリウム−銅−酸素(Y−Ba−Cu−〇)系
〕は、従来用いられていた超伝導物質〔ニオブ(Nb)
 、窒化ニオブ(NbN) 、ニオブ3ゲルマニウム(
Nb3Ge)など〕に比べて、臨界温度(Tc)が液体
窒素温度(77K)以上にもなるほど高いとの特徴を有
する。このために、超伝導状態にするための冷却に高価
な液体ヘリウムを用いなくてもすみ、取扱いが容易にな
り、より実用に適した超伝導物質として、新たな超伝導
素子の材料、従来の半導体素子の配線材料などに適用で
きる。
In recent years, research and development of oxide high-temperature superconducting materials has been progressing [e.g. bismuth-strontium-calcium-copper-
Oxygen (Bi-3r-Ca-Cu-0) system and yttrium-barium-copper-oxygen (Y-Ba-Cu-〇) system] are different from conventionally used superconducting materials [niobium (Nb)
, niobium nitride (NbN), niobium trigermanium (
Nb3Ge), etc.], the critical temperature (Tc) is so high that it exceeds the liquid nitrogen temperature (77K). This eliminates the need to use expensive liquid helium for cooling to achieve a superconducting state, making it easier to handle and making it a more practical superconducting material. It can be applied to wiring materials for semiconductor devices, etc.

このような用途に用いるためには高品質で特性の良い、
とりわけ臨界電流密度の高い酸化物超伝導体の薄膜を作
製する必要があり、様々な成長、製膜法が開発されてい
る。しかしながら、現在得られている超伝導薄膜は多結
晶構造であるため、臨界電流密度は結晶そのものの品質
と、結晶グレイン間の境界との両方の特性に左右されて
いる。
For use in such applications, high quality and good properties are required.
In particular, there is a need to produce thin films of oxide superconductors with high critical current densities, and various growth and film-forming methods have been developed. However, since currently available superconducting thin films have a polycrystalline structure, the critical current density depends on both the quality of the crystal itself and the characteristics of the boundaries between crystal grains.

そのために、作製された酸化物超伝導薄膜内に含まれる
、結晶粒(以下「グレイン」と呼称)の大きさ、その結
晶方位、グレイン間の方位関係、基板結晶の方位との関
係、およびそれらの薄膜面内の統計的な分布を簡便に、
かつ効率よく評価する方法の開発が要望されている。
To this end, we investigated the size of crystal grains (hereinafter referred to as "grains") contained in the fabricated oxide superconducting thin film, their crystal orientation, the orientation relationship between grains, the relationship with the substrate crystal orientation, and Easily calculate the statistical distribution within the thin film plane of
There is a need for the development of an efficient evaluation method.

〔従来の技術〕[Conventional technology]

従来、多結晶酸化物超伝導体薄膜内に含まれる、グレイ
ンの大きさ、その結晶方位、グレイン間の方位関係、お
よび基板結晶の方位との関係を評価するのに、透過電子
顕微鏡を用いていた。この方法は、作製された超伝導薄
膜を電子線が十分に透遇する厚さまで薄片化し、微小領
域に電子線を照射し、そこを透過する電子線の回折図形
から、結晶の構造および方位の決定を、基板結晶の領域
を含めた薄片試料を観測することにより超伝導薄膜結晶
と基板結晶の方位関係の決定を行うものである。
Conventionally, transmission electron microscopy has been used to evaluate the size of grains contained in polycrystalline oxide superconductor thin films, their crystal orientations, the orientation relationships between grains, and their relationships with the substrate crystal orientation. Ta. This method involves thinning the fabricated superconducting thin film to a thickness that allows sufficient penetration of the electron beam, irradiating the microscopic area with the electron beam, and determining the structure and orientation of the crystal from the diffraction pattern of the electron beam that passes through the area. The orientation relationship between the superconducting thin film crystal and the substrate crystal is determined by observing a thin sample including the region of the substrate crystal.

しかしながら、透過電子顕微鏡観察に適した厚さに試料
を薄片化する際に多大な労力を必要とする。さらに、こ
の方法で一時に方位を決定できる範囲は最大数−程度で
あるため、数107−以上の大きなグレイン径を有する
超伝導薄膜〔例えば、化学気相蒸着(CV[l)法では
グレイン径が100p以上〕の評価には適さなかった。
However, it requires a great deal of effort to thin the sample to a thickness suitable for transmission electron microscopy. Furthermore, since the range in which the orientation can be determined at one time by this method is at most about a few, it is important to note that superconducting thin films with large grain diameters of several 107 or more [for example, in chemical vapor deposition (CV[l] method, the grain diameter 100p or more] was not suitable for evaluation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

多結晶超伝導体薄膜の結晶粒の個別方位、方位別結晶粒
寸法分布および結晶粒方位分布、および膜厚内の結晶方
位のずれを簡便、迅速に、非破壊で求める評価方法およ
びその実施のための評価装置を提供することを目的とす
る。
An evaluation method for simply, quickly, and non-destructively determining the individual orientation of crystal grains in a polycrystalline superconductor thin film, the grain size distribution and grain orientation distribution by orientation, and the deviation of crystal orientation within the film thickness, and its implementation. The purpose is to provide an evaluation device for

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するた於に、本発明による個別結晶粒の
評価方法(以下「第1発明」と呼称する)は、単結晶基
板上に形成された多結晶超伝導体薄膜の膜面に偏光を照
射し、着目する結晶粒からの、照射光偏光方向と直交す
る偏光成分の反射光強度を測定し、上記薄膜をその面内
で回転させ、上記反射光強度が最大になる位置を基準と
して、上記反射光強度が最小になる位置までの回転角度
と、基板単結晶の既知の主軸方向と上記照射光の偏光方
向が一致する回転角度との差を求めることにより、上記
着目する結晶粒と上記基板単結晶との結晶方位関係を評
価することを特徴とし、本発明による方位別結晶粒寸法
分布および結晶粒方位分布の評価方法(以下「第2発明
」と呼称する)は、多結晶超伝導体薄膜の膜面に偏光を
照射し、着目する膜面領域からの、照射光偏光方向と直
交する偏光成分の反射光像を観測し、反射光像内の個別
の結晶粒像の明るさの違いにより個別結晶粒を級分けし
、明るさの等価な結晶粒の面積および密度を計測し、上
記薄膜をその面内で回転させ、複数の回転位置において
上記反射光像観測、上記結晶粒級分け、および上記面積
・密度計測を行うことにより、薄膜面内における方位別
結晶粒寸法の分布および結晶粒方位の分布を評価するこ
とを特徴とする。
In order to achieve the above object, the method for evaluating individual crystal grains according to the present invention (hereinafter referred to as the "first invention") uses polarized light on the film plane of a polycrystalline superconductor thin film formed on a single crystal substrate. , measure the intensity of the reflected light of the polarized component perpendicular to the polarization direction of the irradiated light from the crystal grain of interest, rotate the thin film within its plane, and set the position where the intensity of the reflected light is maximum as a reference. By determining the difference between the rotation angle to the position where the reflected light intensity is minimum and the rotation angle at which the known principal axis direction of the substrate single crystal and the polarization direction of the irradiation light match, the crystal grain of interest and The method for evaluating crystal grain size distribution by orientation and crystal grain orientation distribution according to the present invention (hereinafter referred to as "second invention") is characterized by evaluating the crystal orientation relationship with the substrate single crystal. The film surface of the conductor thin film is irradiated with polarized light, and the reflected light image of the polarized light component orthogonal to the irradiated light polarization direction from the film surface area of interest is observed, and the brightness of individual crystal grain images in the reflected light image is determined. The individual crystal grains are classified according to the difference in brightness, the area and density of the crystal grains with equivalent brightness are measured, the thin film is rotated within its plane, the reflected light image is observed at multiple rotational positions, and the crystal grains are measured. It is characterized by evaluating the distribution of crystal grain size by orientation and the distribution of crystal grain orientation in the plane of the thin film by performing the classification and the area/density measurement described above.

上記第1および第2発明を実施するための本発明による
評価装置(以下「第3発明」と呼称する)は、測定対象
物に偏光を照射し且つ測定対象物からの反射光強度を測
定する偏光照射および反射光強度測定部と、測定対象物
を保持し且つ回転させる保持および回転部と、上記保持
および回転部の回転を制御し、且つその回転角度に対応
した、上記偏光照射および反射光強度測定部からのデー
タを画像処理する制御および画像処理部とを有すること
を特徴とする。
The evaluation device according to the present invention for carrying out the above first and second inventions (hereinafter referred to as the "third invention") irradiates a measurement object with polarized light and measures the intensity of reflected light from the measurement object. a polarized light irradiation and reflected light intensity measuring section; a holding and rotating section that holds and rotates the object to be measured; and a polarized light irradiating and reflected light that controls the rotation of the holding and rotating section and corresponds to the rotation angle thereof. It is characterized by having a control unit and an image processing unit that perform image processing on data from the intensity measurement unit.

本発明による膜厚内の結晶方位のずれを領域毎に評価す
る方法(以下「第4発明」と呼称する)は、単結晶基板
上に形成された多結晶超伝導薄膜の表面に偏光を照射し
、着目する膜面領域からの、照射光偏光方向と直交する
偏光成分の反射光像を観測し、反射光像内の個別の結晶
粒像の明るさの違いにより個別結晶粒を級分けし、次に
単結晶基板の下面から偏光を照射して前記単結晶基板と
その上の超伝導薄膜を透過させ、照射光偏光方向と直交
する偏光成分の透過光像を観測し、透過光像内の個別の
結晶粒像の明るさの違いにより個別結晶粒を級分けし、
反射光像と透過光像とを比較することにより、結晶軸方
位のずれた結晶粒が上下に積み重なった領域を評価する
ことを特徴とし、本発明による膜厚内の結晶方位のずれ
を結晶粒毎に評価する方法(以下r第5発明、・と呼称
する)は、単結晶基板上に形成された多結晶超伝導薄膜
の表面に偏光を照射し、着目する結晶粒からの、照射光
偏光方向と直交する偏光成分の反射光強度を測定し、上
記薄膜をその面内で回転させて上記結晶粒の反射光強度
が最小となる位置に薄膜を固定し、次に単結晶基板の下
面から偏光を照射して前記単結晶基板とその上の超伝導
薄膜を透過させ、照射光偏光方向と直交する偏光成分の
透過光強度を上記の着目する結晶粒について測定し、結
晶粒内に現れる不均一な透過光強度分布を検出すること
により、着目する結晶粒がと基板の間の結晶軸方位のず
れた結晶粒の有無を評価することを特徴とし、 上記第4および第5発明を実施するたtの本発明による
評価装置(以下「第6発明」と呼称する)は、測定対象
物の表面側と裏面側から偏光を照射する偏光照射部と、
測定対象物からの反射光強度と透過光強度を測定する反
射光および透過光強度測定部と、測定物を保持し且つ回
転させる保持および回転部と、上記偏光照射部と反射光
および透過光強度測定部を制御し且つ反射光および透過
光強度測定部からのデータを画像処理する画像処理部と
を有することを特徴とする。
The method of evaluating the crystal orientation deviation within the film thickness for each region according to the present invention (hereinafter referred to as the "fourth invention") is to irradiate the surface of a polycrystalline superconducting thin film formed on a single crystal substrate with polarized light. Then, the reflected light image of the polarized light component perpendicular to the polarization direction of the irradiated light from the film surface area of interest is observed, and the individual crystal grains are classified based on the difference in brightness of the individual crystal grain images in the reflected light image. Next, polarized light is irradiated from the bottom surface of the single crystal substrate and transmitted through the single crystal substrate and the superconducting thin film thereon, and a transmitted light image of the polarized light component perpendicular to the polarization direction of the irradiated light is observed. The individual crystal grains are classified based on the difference in brightness of the individual crystal grain images,
By comparing the reflected light image and the transmitted light image, the area where crystal grains with shifted crystal axis orientations are stacked up and down can be evaluated. The method for evaluating each case (hereinafter referred to as the fifth invention) is to irradiate polarized light onto the surface of a polycrystalline superconducting thin film formed on a single crystal substrate, and to evaluate the polarized light from the crystal grains of interest. The reflected light intensity of the polarized light component perpendicular to the direction is measured, the thin film is rotated within its plane, the thin film is fixed at the position where the reflected light intensity of the crystal grains is minimum, and then the thin film is measured from the bottom surface of the single crystal substrate. Polarized light is irradiated and transmitted through the single crystal substrate and the superconducting thin film thereon, and the intensity of the transmitted light of the polarized component perpendicular to the direction of polarization of the irradiated light is measured for the crystal grains of interest to determine the defects appearing within the crystal grains. The fourth and fifth inventions are carried out by detecting a uniform transmitted light intensity distribution to evaluate the presence or absence of a crystal grain whose crystal axis direction is shifted between the crystal grain of interest and the substrate. The evaluation device according to the present invention (hereinafter referred to as the "sixth invention") includes a polarized light irradiation section that irradiates polarized light from the front side and the back side of the object to be measured;
a reflected light and transmitted light intensity measurement section that measures the reflected light intensity and transmitted light intensity from the measurement object; a holding and rotation section that holds and rotates the measurement object; and the polarized light irradiation section and the reflected light and transmitted light intensity. It is characterized by having an image processing section that controls the measurement section and performs image processing on data from the reflected light and transmitted light intensity measurement section.

〔作 用〕[For production]

第1発明に係る超伝導体薄膜の評価法は、基板結晶上に
成長した酸化物超伝導体薄膜の表面に偏光した光を照射
し、照射光と直交する偏光成分の反射光の強度を検出す
ると、超伝導体結晶のa軸またはb軸の方向と偏光の方
向が一致する時にもっとも上述の反射光強度が弱くなる
、という知見に基づいてなされたものである。
The method for evaluating a superconductor thin film according to the first invention irradiates the surface of an oxide superconductor thin film grown on a substrate crystal with polarized light, and detects the intensity of reflected light of a polarized component perpendicular to the irradiated light. This was done based on the knowledge that the above-mentioned reflected light intensity is the weakest when the direction of polarization matches the a-axis or b-axis direction of the superconductor crystal.

その手順は次のとおりである。The steps are as follows.

■ 超伝導体結晶の必要な領域に偏光した光を照射し、
着目するグレインから、照射光と直交する偏光成分の反
射光の強度を検出する。
■ Irradiates polarized light to the required areas of the superconductor crystal,
From the grain of interest, the intensity of reflected light of a polarization component orthogonal to the irradiated light is detected.

■ 照射光、反射光の設定条件を固定したままの状態で
、基板結晶表面に垂直な軸を中心として、超伝導体結晶
を回転させ、基板結晶の主軸が照射光の偏光方向と一致
する角度θ1と、検出される反射光強度が最小になる角
度θ2を求める。
■ While the setting conditions of the irradiated light and reflected light remain fixed, rotate the superconductor crystal around an axis perpendicular to the substrate crystal surface, and measure the angle at which the principal axis of the substrate crystal coincides with the polarization direction of the irradiated light. θ1 and an angle θ2 at which the detected reflected light intensity is minimized are determined.

■ 上述の角度θ1と02の差から、光を照射したグレ
インの結晶方位と基板結晶の方位との角度のずれを求め
る。
(2) From the difference between the above-mentioned angles θ1 and θ2, the angular deviation between the crystal orientation of the grain irradiated with light and the orientation of the substrate crystal is determined.

したがって、第1発明に係る超伝導薄膜の評価方法によ
れば、酸化物高温超伝導体薄膜内に存在する多結晶グレ
インの結晶方位と基板結晶の結晶方位との関係を簡便か
つ定量的に測定することができる。
Therefore, according to the method for evaluating a superconducting thin film according to the first invention, the relationship between the crystal orientation of the polycrystalline grains present in the oxide high temperature superconductor thin film and the crystal orientation of the substrate crystal can be easily and quantitatively measured. can do.

第2発明に係る超伝導薄膜の評価法は、超伝導体結晶表
面の必要な領域に偏光した光を照射し、照射光と直交す
る偏光成分の該領域からの反射光の像を観測すると、結
晶方位の異なった領域ごとに明るさの異なった結晶グレ
インの像が得られる、という知見に基づいてなされたも
のである。
The method for evaluating a superconducting thin film according to the second invention is to irradiate polarized light onto a required region on the surface of a superconductor crystal, and observe an image of reflected light from the region with a polarized light component orthogonal to the irradiated light. This was done based on the knowledge that images of crystal grains with different brightness can be obtained in regions with different crystal orientations.

その手順は次のとおりである。The steps are as follows.

■ 超伝導体結晶の必要な領域に偏光した光を照射し、
照射光と直交する偏光成分の、該領域からの反射光の像
をテレビカメラ等で観測し、画像入力する。
■ Irradiates polarized light to the required areas of the superconductor crystal,
The image of the reflected light from the area, which is a polarized light component orthogonal to the irradiated light, is observed with a television camera or the like, and the image is input.

■ 得られた反射光の像の画像データを、着目するグレ
インと同じ明るさの領域と、それ以外の明るさの領域と
に2値化する。
(2) Binarize the image data of the obtained reflected light image into an area with the same brightness as the grain of interest and an area with other brightness.

■ 2値化した画像データの粒子解析を行い、その面積
および全面積に占める割合を求める。
■ Perform particle analysis on the binarized image data and calculate its area and proportion to the total area.

したがって、第2発明に係る超伝導薄膜の評価方法によ
れば、酸化物高温超伝導体薄膜内に存在する多結晶グレ
インの大きさと結晶方位の面内分布を、数ミリの範囲に
渡って簡便かつ統計的に測定することができる。
Therefore, according to the method for evaluating a superconducting thin film according to the second invention, the size and in-plane distribution of the crystal orientation of polycrystalline grains present in an oxide high-temperature superconductor thin film can be easily and easily measured over a range of several millimeters. and can be measured statistically.

第3発明による超伝導体薄膜の評価装置は、偏光照射お
よび反射光強度測定部で測定対象物に偏光を照射し且つ
測定対象物からの反射光強度を測定し、保持および回転
部で測定対象物を保持し且つ回転させ、制御および画像
処理部で保持および回転部の回転を制御し、且つその回
転角度に対応した、上記偏光照射および反射光強度測定
部からのデータを画像処理することにより、必要に応じ
て第1発明および/または第2発明の評価方法を実施す
ることができる。
The superconductor thin film evaluation device according to the third invention irradiates the object to be measured with polarized light in the polarized light irradiation and reflected light intensity measurement section and measures the intensity of reflected light from the object to be measured, and the holding and rotating section irradiates the object to be measured with polarized light. By holding and rotating the object, controlling the rotation of the holding and rotating section in the control and image processing section, and image processing the data from the polarized light irradiation and reflected light intensity measuring section corresponding to the rotation angle. , the evaluation method of the first invention and/or the second invention can be implemented as necessary.

以上の第1、第2、第3発明は薄膜表面からの反射光を
用いて評価するので、薄膜結晶の厚さが500Å以上の
多結晶薄膜内部に結晶軸方位のずれたグレインが上下に
積み重なっている場合、表面側のグレインだけが敏感に
像に現れるため、膜厚内部で方位のずれたグレインを識
別することが困難である。
Since the first, second, and third inventions described above evaluate using reflected light from the thin film surface, grains with misaligned crystal axes are stacked up and down inside a polycrystalline thin film with a thickness of 500 Å or more. In this case, only the grains on the surface side appear sensitively in the image, making it difficult to identify grains that are misoriented within the film thickness.

超伝導薄膜の厚さが500人程度量上の場合については
、反射光に加えて透過光をも用いる第4発明および第5
発明の評価方法およびこれらを実施するための第6発明
の評価装置が適している。
When the thickness of the superconducting thin film is about 500 mm or more, the fourth invention and the fifth invention use transmitted light in addition to reflected light.
The evaluation method of the invention and the evaluation device of the sixth invention for implementing these are suitable.

第4発明に係る超伝導薄膜の評価方法は、基板結晶上に
成長した多結晶超伝導薄膜の表面に偏光した光を照射す
ると表面から光の浸入深さの半分程度の深さまでの結晶
粒方位を反映した像が得られ、−刃車結晶基板の下面か
ら偏光を照射して前記単結晶基板とその上の超伝導薄膜
を透過させ、照射光偏光方向と直交する偏光成分の透過
光像を観測した場合は、薄膜の表面から基板との界面ま
での全体の結晶粒方位を反映した像が得られるため、反
射光の像と透過光の像とを比較した場合、結晶軸方位の
ずれた結晶粒が上下に積み重なった領域で反射光像と透
過光像に差異が見られるという知見に基づいてなされた
ものである。
A method for evaluating a superconducting thin film according to the fourth aspect of the present invention is that when the surface of a polycrystalline superconducting thin film grown on a substrate crystal is irradiated with polarized light, the crystal grain orientation is determined from the surface to a depth of approximately half the penetration depth of the light. - A polarized light is irradiated from the lower surface of the blade wheel crystal substrate and transmitted through the single crystal substrate and the superconducting thin film thereon, and a transmitted light image of the polarized light component perpendicular to the polarization direction of the irradiated light is obtained. When observed, an image is obtained that reflects the entire crystal grain orientation from the surface of the thin film to the interface with the substrate, so when comparing the image of reflected light and the image of transmitted light, it is possible to see that the crystal axis orientation has shifted. This was done based on the knowledge that there is a difference between reflected light images and transmitted light images in regions where crystal grains are stacked one above the other.

その手順は次のとおりである。The steps are as follows.

■ 超伝導体結晶の必要な領域に偏光した光を照射し、
照射光の偏光方向と直交する偏光成分の該領域からの反
射光の像をテレビカメラ等で観測し、画像入力する。
■ Irradiates polarized light to the required areas of the superconductor crystal,
An image of the reflected light from the region having a polarization component perpendicular to the polarization direction of the irradiated light is observed with a television camera or the like, and the image is input.

■ 得られた反射光像の画像データを、各グレインの明
るさに応じて組分けする。最も暗いグレインを明るさの
0レベル、最も明るいグレインを明るさN−1(N=2
r′、nはアナログ−ディジタル(AD)変換器の機能
に依存する。例えばn=8ビツトのAD変換器を用いれ
ばN =256. )のレベルに対応させる。
(2) The image data of the obtained reflected light image is divided into groups according to the brightness of each grain. The darkest grain is the brightness level 0, and the brightest grain is the brightness level N-1 (N=2
r', n depends on the functionality of the analog-to-digital (AD) converter. For example, if an AD converter with n=8 bits is used, N=256. ).

■ 基板結晶の下面から偏光を照射して前記基板結晶と
その上の超伝導薄膜を透過させ、反射光を測定した該領
域と同じ領域からの、照射光偏光方向と直交する偏光成
分の透過光の像をテレビカメラ等で観測し、画像入力す
る。
■ Polarized light is irradiated from the bottom surface of the substrate crystal, transmitted through the substrate crystal and the superconducting thin film thereon, and the reflected light is measured. Transmitted light of a polarized light component perpendicular to the polarization direction of the irradiated light from the same region. Observe the image with a television camera, etc., and input the image.

■ ■で得られた画像データを■と同じ手法で組分けし
、■で組分けした画像データとで画像間の減算を行い、
得られた画像データの中で両者の差が有意な大きさに達
した領域を識別する。
■ The image data obtained in ■ is grouped using the same method as in ■, and subtraction is performed between the images with the image data grouped in ■.
A region in which the difference between the two has reached a significant size is identified in the obtained image data.

したがって、第4発明に係る超伝導薄膜の評価方法によ
れば、グレインを多数含む領域内において、表面近傍で
識別されるグレインと基板との間に存在する結晶軸方位
のずれたグレインの有無を簡便に評価することができる
Therefore, according to the method for evaluating a superconducting thin film according to the fourth aspect of the invention, the presence or absence of grains with misaligned crystal axes existing between the grains identified near the surface and the substrate is determined in a region containing a large number of grains. It can be easily evaluated.

第5発明に係る超伝導薄膜の評価法は、基板結晶上に成
長した多結晶超伝導薄膜の表面に偏光した光を照射し、
着目するグレインからの照射光と直交する偏光成分の反
射光強度が最小となる位置に薄膜を固定して、前記単結
晶基板の下側から偏光を照射し、照射光偏光方向と直交
する偏光成分の透過光像を観測した場合に、表面側で認
識されるグレインと結晶粒方位の異なり、基板結晶と表
面側グレインの間に存在するグレインを最も感度良く識
別できるという知見に基づいてなされたものである。
A method for evaluating a superconducting thin film according to the fifth invention irradiates the surface of a polycrystalline superconducting thin film grown on a substrate crystal with polarized light,
The thin film is fixed at a position where the reflected light intensity of the polarized light component perpendicular to the irradiated light from the grain of interest is minimized, and polarized light is irradiated from the bottom side of the single crystal substrate, and the polarized light component perpendicular to the irradiated light polarization direction is fixed. This was based on the knowledge that when observing the transmitted light image of a substrate, the grains recognized on the surface side differ from the crystal grain orientation, and the grains existing between the substrate crystal and the grains on the surface side can be identified with the highest sensitivity. It is.

その手順は次のとおりである。The steps are as follows.

■ 超伝導体結晶薄膜の表面に偏光を照射し、着目する
グレインの、照射光の偏光方向と直交する偏光成分の反
射光強度を測定する。
(2) Irradiate the surface of the superconductor crystal thin film with polarized light and measure the reflected light intensity of the polarized light component perpendicular to the polarization direction of the irradiated light of the grain of interest.

■ 照射光、反射光の設定条件を固定したままの状態で
、基板結晶表面に垂直な軸を中心として、超伝導体結晶
を回転させ上記反射光強度が最小となる位置に試料を固
定し、着目するグレインを含む領域で反射光像を記録す
る。
■ While the setting conditions of the irradiation light and reflected light remain fixed, the superconductor crystal is rotated around an axis perpendicular to the substrate crystal surface and the sample is fixed at the position where the intensity of the reflected light is minimized. A reflected light image is recorded in a region containing the grain of interest.

■ 基板結晶の下面から偏光を照射して前記基板結晶と
その上の超伝導薄膜を透過させ、照射光偏光方向と直交
する偏光成分の透過光像を上記の着目するグレインにつ
いて記録し、■の反射光像と比較した透過光像の明るさ
の不均一な場所を検8する。
(2) Polarized light is irradiated from the bottom surface of the substrate crystal and transmitted through the substrate crystal and the superconducting thin film thereon, and a transmitted light image of the polarized light component orthogonal to the polarization direction of the irradiated light is recorded for the grain of interest, and A location where the brightness of the transmitted light image is uneven compared with the reflected light image is detected.

したがって、本発明に係わる超伝導薄膜の評価方法によ
れば、超伝導体薄膜の表面側で認識されるグレインと結
晶軸方位が異なり、基板結晶と表面側グレインの間に存
在するグレインを最も感度良く、簡便に評価することが
できる。
Therefore, according to the method for evaluating a superconducting thin film according to the present invention, the grains recognized on the surface side of the superconducting thin film have different crystal axis orientations, and the grains existing between the substrate crystal and the grains on the surface side are most sensitive. Good and easy to evaluate.

第5発明に係る超伝導薄膜の評価方法の応用として、そ
の実施後に、方位の異なる内部のグレインの明暗分布に
着目して試料を微小角回転させ、着目するグレインが最
も暗くなる角度を求めると、表面側グレインと内部のグ
レインの方位のずれを計測できる。
As an application of the method for evaluating superconducting thin films according to the fifth invention, after carrying out the method, the sample is rotated by a small angle, focusing on the brightness distribution of internal grains with different orientations, and the angle at which the grains of interest become the darkest is determined. , it is possible to measure the misalignment between the surface grains and the internal grains.

その手順は次のとおりである。The steps are as follows.

■ 第5発明に係る超伝導体結晶薄膜の評価法により、
超伝導体薄膜の表面側で認識されるグレインと結晶軸方
位が異なり、基板結晶と表面側グレインの間に存在する
グレインを検出する。
■ By the method for evaluating superconductor crystal thin films according to the fifth invention,
The grains recognized on the surface side of the superconductor thin film have different crystal axis orientations, and the grains existing between the substrate crystal and the grains on the surface side are detected.

■ 照射光、反射光の設定条件を固定したままの状態で
、基板結晶表面に垂直な軸を中心として、超伝導体結晶
を士数度回転させ、着目するグレインの反射光強度が最
小となる回転角度を計測する。
■ While the setting conditions of the irradiated light and reflected light remain fixed, the superconductor crystal is rotated several degrees around the axis perpendicular to the substrate crystal surface until the reflected light intensity of the grain of interest is minimized. Measure the rotation angle.

第6本発明による超伝導薄膜の評価装置は、偏光照射部
で測定対象物の表面側と裏面側から偏光を照射し、反射
光および透過光強度測定部で測定対象物からの反射光強
度と透過光強度の測定および反射光像、透過光像の観察
を行い、保持および回転部で測定物を保持し且つ回転さ
せ、制御および画像処理部で上記偏光照射部と反射光お
よび透過光強度測定部を制御し且つ反射光および透過光
強度測定部からのデータを画像処理することにより、必
要に応じて第4発明および/または第5発明の評価方法
を実施することができる。
In the superconducting thin film evaluation device according to the sixth aspect of the present invention, the polarized light irradiation section irradiates polarized light from the front and back sides of the object to be measured, and the reflected light and transmitted light intensity measurement section measures the intensity of reflected light from the object to be measured. The transmitted light intensity is measured and the reflected light image and transmitted light image are observed.The holding and rotating section holds and rotates the object to be measured, and the control and image processing section measures the intensity of the reflected light and transmitted light with the polarized light irradiation section. The evaluation method of the fourth invention and/or the fifth invention can be implemented as necessary by controlling the parts and performing image processing on the data from the reflected light and transmitted light intensity measuring parts.

以下、添付図面を参照して、本発明の実施例により本発
明の詳細な説明する。
Hereinafter, the present invention will be described in detail by way of embodiments with reference to the accompanying drawings.

〔実施例1〕 第1図に、本発明の超伝導体薄膜の評価装置の構成例を
示す。同図の装置は基本的に3つの構成部である偏光照
射および反射光強度計測部1と、試料保持および回転部
2と、制御および画像処理部3とからなる。照射・計測
部1は、ハロゲンランプまたは超高圧水銀ランプ等の光
源11と、偏光プリズム、偏光フィルタあるいは反射屈
折偏光器等を用いた偏光子12および検光子15、レン
ズ14゜16、ミラー13、SITあるいはCCDを用
いた高感度カメラ17、カメラ制御装置18、およびモ
ニタテレビ19とからなる。保持・回転部2は、回転式
試料台21、回転用ステップモータ22、およびステッ
プモータ用電源23からなる。そして、制御および画像
処理部3は反射像の中から必要なグレインを抽出し、回
転角度に対応したその反射光強度データを処理して、強
度が最小値の角度を求めるためのもの、および画像入力
した反射光の像を、詳しくは後述するように所望のグレ
インと同じ明るさの領域とそれ以外の領域に2値化し、
その粒子解析を行うためのものである。
[Example 1] FIG. 1 shows a configuration example of a superconductor thin film evaluation apparatus of the present invention. The apparatus shown in the figure basically consists of three components: a polarized light irradiation and reflected light intensity measurement section 1, a sample holding and rotation section 2, and a control and image processing section 3. The irradiation/measurement unit 1 includes a light source 11 such as a halogen lamp or an ultra-high pressure mercury lamp, a polarizer 12 using a polarizing prism, a polarizing filter, a catadioptric polarizer, etc., an analyzer 15, a lens 14° 16, a mirror 13, It consists of a high-sensitivity camera 17 using SIT or CCD, a camera control device 18, and a monitor television 19. The holding/rotating unit 2 includes a rotating sample stage 21, a rotating step motor 22, and a step motor power source 23. Then, the control and image processing unit 3 extracts the necessary grains from the reflected image, processes the reflected light intensity data corresponding to the rotation angle, and calculates the angle at which the intensity is the minimum value, and the image The image of the input reflected light is binarized into an area with the same brightness as the desired grain and an area other than the desired grain, as will be described in detail later.
This is to perform particle analysis.

第1図に示す装置の動作を説明する。The operation of the apparatus shown in FIG. 1 will be explained.

評価すべき超伝導体薄膜4の必要な領域に、偏光子12
、ハーフミラ−13、およびレンズ14を介して、光源
11から偏光した光を照射する。次いで、必要な領域か
ら反射された光をレンズ14、ミラー13を介して検光
子15に導き、照射光の偏光と直交する偏光成分の反射
光だけをレンズ16を介してテレビカメラ17に導く。
A polarizer 12 is placed in the necessary area of the superconductor thin film 4 to be evaluated.
, a half mirror 13 , and a lens 14 , polarized light is irradiated from the light source 11 . Next, the light reflected from the required area is guided to the analyzer 15 via the lens 14 and the mirror 13, and only the reflected light with a polarization component orthogonal to the polarization of the irradiated light is guided to the television camera 17 via the lens 16.

制御ふよび画像処理装置3は、第1発明においてはテレ
ビカメラ17で検出される画像データの一部の、試料回
転にともなう強度変化をリアルタイムで計測し、第2発
明においては得られる画像データ全体の画像処理を行う
In the first invention, the control and image processing device 3 measures in real time the intensity change of a part of the image data detected by the television camera 17 as the sample rotates, and in the second invention, it measures the entire image data obtained. performs image processing.

〔実施例2〕 実施例1の装置を用いた、第1発明による超伝導薄膜の
評価方法の一実施例を説明する。
[Example 2] An example of the method for evaluating a superconducting thin film according to the first invention using the apparatus of Example 1 will be described.

第1発明に係る超伝導体薄膜の評価法は、反射光強度が
最小になる回転角度と、基板結晶に主軸方向と照射光の
偏光方向が一致する回転角度との差を求めることにより
、該超伝導薄膜の多結晶ダレインの結晶方位と基板結晶
の結晶方位との関係を評価するものである。
The method for evaluating a superconductor thin film according to the first invention is to determine the difference between the rotation angle at which the reflected light intensity is minimized and the rotation angle at which the principal axis direction of the substrate crystal coincides with the polarization direction of the irradiated light. This study evaluates the relationship between the crystal orientation of polycrystalline dalein in a superconducting thin film and the crystal orientation of the substrate crystal.

以下、Bi −5r−Ca −Cu −0系超伝導体薄
膜に第1の発明を適用した例について説明する。基板に
は、酸化マグネシウム(MgO)、イツトリウム安定化
ジルコニア(YSZ) 、マグネシアスピネル(MgA
 f 20.)、チタン酸ストo ンf ラム(TiS
r03)などを用いることができる。
An example in which the first invention is applied to a Bi-5r-Ca-Cu-0 based superconductor thin film will be described below. The substrate is made of magnesium oxide (MgO), yttrium stabilized zirconia (YSZ), magnesia spinel (MgA
f20. ), titanate stone (TiS
r03) etc. can be used.

基板上に超伝導体薄膜を堆積させる方法としては、スパ
ッタ法、蒸着法、分子線エピタキシ(MBE>法、化学
気相エピタキシ(CV[l)法などを用いることができ
る。
As a method for depositing a superconductor thin film on a substrate, a sputtering method, a vapor deposition method, a molecular beam epitaxy (MBE) method, a chemical vapor phase epitaxy (CV[l) method, or the like can be used.

1例として、ハロゲン化合物をソース材料に用いた常圧
法ハライド系CVD法により、臨界温度が80にめBi
 −3r−Ca−Cu −0系超伝導体薄膜をMg[l
基板上に形成したものについて説明する。
As an example, Bi
-3r-Ca-Cu -0 based superconductor thin film with Mg[l
What is formed on the substrate will be explained.

成長条件の異なる2種類の試料1と試料2について、基
板結晶表面に垂直な軸を中心として超伝導体薄膜を回転
させた角度と、薄膜結晶内の適当なグレイン内からの反
射強度との関係を、それぞれ第2図と第3図に示す。試
料の回転角度は、基板結晶の<100 >方位を基準(
0°)に設定しである。
Relationship between the angle at which the superconductor thin film is rotated about the axis perpendicular to the substrate crystal surface and the reflection intensity from within appropriate grains within the thin film crystal for two types of sample 1 and sample 2 with different growth conditions. are shown in Figures 2 and 3, respectively. The rotation angle of the sample is based on the <100> orientation of the substrate crystal (
0°).

第2図は、試料1において隣合う3つのグレインA、B
、Cの反射強度の変化を示したもので、回転角度がそれ
ぞれ一10° 、15° 、45°のとき反射強度が最
小値を示す。したがって、これらのグレインA・B、C
のa−b軸と基板結晶の主軸とは、それぞれ−10° 
、15° 、45°ずれており、グレインA−B、B−
C,C−A間の方位のずれはそれぞれ25° 、30°
 、35゛であることがわかる。
Figure 2 shows three adjacent grains A and B in sample 1.
, C shows the change in the reflection intensity of the rotation angles of -10°, 15°, and 45°, respectively, and the reflection intensity shows the minimum value. Therefore, these grains A, B, C
The a-b axis of and the main axis of the substrate crystal are each -10°
, 15°, 45° shifted, grains A-B, B-
The misalignment between C and C-A is 25° and 30°, respectively.
, 35゛.

第3図は、試料2において隣合う2つのグレインD、E
の反射強度の変化を示したもので、回転角度がそれぞれ
Ooと45°のとき反射強度が最小となる。したがって
グレインDのa−b軸が基板結晶の<100 >軸と、
グレインEのa−b軸が基板結晶の<110 >軸と一
致していることがわかる。
Figure 3 shows two adjacent grains D and E in sample 2.
The figure shows the change in the reflection intensity of , and the reflection intensity is minimum when the rotation angle is Oo and 45°, respectively. Therefore, the a-b axis of grain D is the <100> axis of the substrate crystal,
It can be seen that the a-b axis of grain E coincides with the <110> axis of the substrate crystal.

これらのことから、第1の発明を適用する場合、基板結
晶の<100 >方位を、試料を回転させる際の基準(
0°)に基板結晶の<100 >方位を用いれば、基板
結晶方位と超伝導薄膜のグレインの方位とのずれを直接
求めることができることがわかる。
From these facts, when applying the first invention, the <100> orientation of the substrate crystal is set as the reference (
It can be seen that by using the <100> orientation of the substrate crystal at 0°), it is possible to directly determine the deviation between the substrate crystal orientation and the grain orientation of the superconducting thin film.

〔実施例3〕 実施例1の装置を用いた、第2の発明により超伝導薄膜
の評価方法の一実施例を説明する。
[Example 3] An example of a method for evaluating a superconducting thin film according to the second invention using the apparatus of Example 1 will be described.

第2発明に係る超伝導体薄膜の評価法は、反射像内に含
まれる結晶グレインの明るさの違いから方位の異なる結
晶グレインの識別を行い、明るさの等価なグレインの面
積および密度を計測することにより、該超伝導薄膜の多
結晶グレインの大きさと結晶方位の面内分布を統計的に
評価するものである。
The method for evaluating a superconductor thin film according to the second invention identifies crystal grains with different orientations based on differences in the brightness of crystal grains included in a reflected image, and measures the area and density of grains with equivalent brightness. By doing so, the in-plane distribution of the polycrystalline grain size and crystal orientation of the superconducting thin film is statistically evaluated.

以下、Bi −3r −Ca −Cu −0系超伝導体
薄膜に第1の発明を適用した例について説明する。基板
には、酸化マグネシウム(MgO) 、イツトリウム安
定化ジルコニア(YSZ) 、マグネシアスピネル(M
gA j! 204)、チタン酸ストロンチウム(T+
5rOs)などを用いることができる。
An example in which the first invention is applied to a Bi-3r-Ca-Cu-0 based superconductor thin film will be described below. The substrate includes magnesium oxide (MgO), yttrium stabilized zirconia (YSZ), and magnesia spinel (MgO).
gA j! 204), strontium titanate (T+
5rOs), etc. can be used.

基板上へ超伝導体薄膜を堆積させる方法としては、スパ
ッタ法、蒸着法、分子線エピタキシ(MBE)法、化学
気相エピタキシ(CVD)法などを用いることができる
As a method for depositing a superconductor thin film on a substrate, a sputtering method, a vapor deposition method, a molecular beam epitaxy (MBE) method, a chemical vapor phase epitaxy (CVD) method, etc. can be used.

1例として、ハロゲン化合物をソース材料に用いた常圧
法ハライド系CVD法により、臨界温度が80にのBi
 −5r −Ca −Cu −0系超伝導体薄膜をMg
O基板上に形成したものについて説明する。
As an example, a Bi
-5r -Ca -Cu -0 based superconductor thin film with Mg
What is formed on the O substrate will be explained.

例えば、照射光の偏光方向が基板結晶の<IQO>方向
と一致した配置で、試料1の反射像(第4図(a))を
観察した場合について説明する。まずこれを、高感度カ
メラ17を用いてデータ処理装置3に記録し、次に画像
計測を行ってヒストグラムを求於る。結果を第4図(b
)に示す。横軸は明るさ、縦軸はその明るさの領域が占
める割合を示す。
For example, a case will be described in which a reflected image of the sample 1 (FIG. 4(a)) is observed in an arrangement where the polarization direction of the irradiated light matches the <IQO> direction of the substrate crystal. First, this is recorded in the data processing device 3 using the high-sensitivity camera 17, and then image measurement is performed to obtain a histogram. The results are shown in Figure 4 (b
). The horizontal axis shows the brightness, and the vertical axis shows the proportion occupied by the area of that brightness.

第4図(b)の中には大別して、明るさの異なる3種類
の領域が存在することがわかる。次に着目する明るさの
領域とそれ以外の領域とに2値化する。2値化したデー
タを画像データに戻すことにより、着目した明るさのグ
レインが認識できる。
It can be seen that there are roughly three types of areas with different brightness in FIG. 4(b). Next, the brightness area of interest and other areas are binarized. By converting the binarized data back into image data, the grain of the brightness of interest can be recognized.

第4図(b)の明るさ1に対応する領域は第4図(C)
の明るい領域に対応する。本試料の場合、a−b面方向
が種々の方向を向いており、グレインの平均の面積は約
0.02mm’である。第4図(C)で示されたグレイ
ンは、a−b軸方位が基板結晶の<100 >方向から
約45°回転しており、視野全体に占する割合が約58
%あることなどがわかる。
The area corresponding to brightness 1 in Fig. 4(b) is shown in Fig. 4(C).
corresponds to the bright area of In the case of this sample, the a-b plane directions are oriented in various directions, and the average area of the grains is about 0.02 mm'. In the grain shown in FIG. 4(C), the a-b axis orientation is rotated by approximately 45 degrees from the <100> direction of the substrate crystal, and the proportion of the entire field of view is approximately 58 degrees.
You can see that there is a percentage.

第5図(a>および(b)は、照射光に偏光方向が基板
結晶の<100 >方向と一致した配置(a)と、それ
を45°回転させた配置(b)で得られた前記試料2の
反射像である。同図の視野内においては、超伝導体薄膜
のa−b軸の方向が基板結晶の<100 >方向と一致
する領域が視野内の約15%、<100 >方向と一致
する領域が約80%、それ以外の方向が約5%であるこ
とがわかった。
Figures 5 (a) and (b) show the configuration obtained in (a) where the polarization direction of the irradiated light coincides with the <100> direction of the substrate crystal, and (b) where it is rotated by 45°. This is a reflected image of sample 2. In the field of view in the same figure, the region where the direction of the a-b axis of the superconductor thin film coincides with the <100> direction of the substrate crystal is approximately 15% of the field of view, and the region in which the direction of the a-b axis of the superconductor thin film coincides with the <100> direction is approximately 15% of the field of view. It was found that about 80% of the area coincides with the direction, and about 5% of the area coincides with the other directions.

〔実施例4〕 第6図に、第6発明に従った超伝導体薄膜の評価装置の
構成例を示す。同図の装置は基本的に4つの構成部であ
る偏光照射部101と、反射光および透過光強度測定部
102と、保持および回転部103と、制御および画像
処理部104からなる。偏光照射部101は、ハロゲン
ランプまたは超高圧水銀ランプ等の光源111 、11
4と、偏光プリズム、偏光フィルタあるいは反射屈折偏
光器等を用いた偏光子112.115およびミラー11
3.116からなる。
[Embodiment 4] FIG. 6 shows a configuration example of a superconductor thin film evaluation apparatus according to the sixth invention. The apparatus shown in the figure basically consists of four components: a polarized light irradiation section 101, a reflected light and transmitted light intensity measurement section 102, a holding and rotation section 103, and a control and image processing section 104. The polarized light irradiation unit 101 includes light sources 111 , 11 such as a halogen lamp or an ultra-high pressure mercury lamp.
4, a polarizer 112, 115 using a polarizing prism, a polarizing filter, a catadioptric polarizer, etc., and a mirror 11.
Consists of 3.116.

反射光および透過光強度測定部102は、検光子122
、レンズ121.123 、S I TあるいはCCD
を用いた高感度カメラ124とからなる。保持および回
転部103は、回転式試料台131、回転用ステップモ
ータとその電源132からなる。そして、制御および画
像処理8104の制御・画像処理装置141は、試料を
回転させながら反射光強度を測定して試料停止位置を決
定し、反射光像と透過光像の観察を切り替えるための制
御を行い、反射光像と透過光像の画像処理を行うための
ものである。
The reflected light and transmitted light intensity measurement unit 102 includes an analyzer 122
, lens 121.123 , SIT or CCD
It consists of a high-sensitivity camera 124 using The holding and rotating section 103 includes a rotating sample stage 131, a rotating step motor, and its power source 132. The control and image processing device 141 of the control and image processing 8104 determines the sample stop position by measuring the reflected light intensity while rotating the sample, and performs control to switch between observing the reflected light image and the transmitted light image. This is for performing image processing of reflected light images and transmitted light images.

この一連の操作はモニタテレビ142を見ながら行なう
This series of operations is performed while watching the monitor television 142.

第6図に示す装置の動作を説明する。The operation of the apparatus shown in FIG. 6 will be explained.

評価すべき超伝導体薄膜105の必要な領域に、反射光
による測定の場合、偏光子112、ハーフミラ−113
、およびレンズ121を介して、光源111から偏光し
た光を照射し、透過光による測定の場合、偏光子115
、ミラー116を介して、光源114から偏光した光を
照射する。次いで必要な領域から反射または透過された
光をレンズ12L ミラー113を介して検光子122
に導き、照射光の偏光と直交する偏光成分の反射光だけ
をレンズ123を介してテレビカメラ117に導く。制
御・画像処理装置141は、第4発明においてはテレビ
カメラ124で得られる画像データの画像処理を行い、
第5発明においてはテレビカメラ124で検aされる画
像データの一部の、試料回転にともなう強度変化をリア
ルタイムで計測する。
In the case of measurement using reflected light, a polarizer 112 and a half mirror 113 are placed in necessary areas of the superconductor thin film 105 to be evaluated.
, and a lens 121, irradiate polarized light from the light source 111, and in the case of measurement using transmitted light, a polarizer 115
, polarized light from the light source 114 is irradiated via the mirror 116 . Next, the light reflected or transmitted from the required area is passed through the lens 12L and mirror 113 to the analyzer 122.
Only the reflected light of the polarization component orthogonal to the polarization of the irradiated light is guided to the television camera 117 via the lens 123. In the fourth invention, the control/image processing device 141 performs image processing of image data obtained by the television camera 124,
In the fifth aspect of the invention, intensity changes in part of the image data inspected by the television camera 124 as the sample rotates are measured in real time.

〔実施例5〕 実施例4の装置を用いた、第5発明による超伝導薄膜の
評価方法の一実施例を説明する。
[Example 5] An example of a superconducting thin film evaluation method according to the fifth invention using the apparatus of Example 4 will be described.

以下、Bi −3r −Ca−Cu −0系超伝導体薄
膜に本発明を適用した例について説明する。基板には、
酸化マグネシウム(MgOLイツトリウム安定化ジルニ
ーニア(YSX) 、?グネシアスピネル(MgA l
 204>、チタン酸ストロンチウム(TiSrO5)
などを用いることができる。
Hereinafter, an example in which the present invention is applied to a Bi-3r-Ca-Cu-0 based superconductor thin film will be described. On the board,
Magnesium oxide (MgOL Yttrium stabilized Zirninia (YSX), ?gnesia spinel (MgAl
204>, Strontium titanate (TiSrO5)
etc. can be used.

基板上へ超伝導体薄膜を堆積させる方法としては、スパ
ッタ法、蒸着法、分子線エピタキシ(MBE)法、化学
気相エピタキシ(CVD)法などが用いられている。
Sputtering methods, vapor deposition methods, molecular beam epitaxy (MBE) methods, chemical vapor phase epitaxy (CVD) methods, and the like are used as methods for depositing superconductor thin films on substrates.

本実施例として、ハロゲン化合物をソース材料に用いた
常圧法ハライド系CVD法により、臨界温度が80に□
Bi −5r−Ca−Cu−0系超伝導体薄膜をMgO
基板上に形成したものについて説明する。
In this example, the critical temperature was set to 80°C by an atmospheric pressure halide CVD method using a halogen compound as a source material.
Bi-5r-Ca-Cu-0 based superconductor thin film with MgO
What is formed on the substrate will be explained.

成長条件は、以下のごとくである。The growth conditions are as follows.

■ BiCI! 3温度:150〜170℃■ CuB
r 2温度:340〜380℃■ CaI2温度ニア5
0〜800℃ ■ Srl、温度ニア60〜820℃ ■ 基板温度ニア50〜820℃ ■ Heキャリアガス流量:20〜501/分■ 0□
ガスのHeに対する濃度:2〜8%■ H2CのHeに
対する濃度:  100〜1000ppl?+■ 成長
速度:3〜30人/分 上記成長方法で得られた薄膜の透過光像の観察例を第7
図に、同じ場所の反射光像の観察例を第8図に示す。ど
ちらも回転角θ−〇°で観察している。例えば第7図と
第8図の〈印aで示したグレインに着目すると、第7図
と第8図の絶対的な明るさは異なるが、相対的には最も
明るい。また、グレイン内での明るさの分布に両者の違
いはない。
■ BiCI! 3 Temperature: 150-170℃■ CuB
r2 temperature: 340-380℃■ CaI2 temperature near 5
0 to 800℃ ■ Srl, temperature near 60 to 820℃ ■ Substrate temperature near 50 to 820℃ ■ He carrier gas flow rate: 20 to 501/min ■ 0□
Concentration of gas to He: 2 to 8% ■ Concentration of H2C to He: 100 to 1000 ppl? +■ Growth rate: 3 to 30 people/min The observation example of the transmitted light image of the thin film obtained by the above growth method is shown in the seventh example.
FIG. 8 shows an example of observing a reflected light image at the same location. Both were observed at a rotation angle of θ−〇°. For example, if we focus on the grains marked a in FIGS. 7 and 8, the absolute brightness in FIGS. 7 and 8 is different, but they are relatively the brightest. Furthermore, there is no difference between the two in the brightness distribution within the grain.

一方く印すに着目すると、反射光像(第8図)では最も
暗いが、透過光像(第7図)では明るさの異なるグレイ
ンが検出できる。これはbの領域の表面側のa軸が、M
gO基板の<100 >軸と方位がそろっているのに対
し、内部に結晶方位のずれたグレインが存在することを
示している。
On the other hand, if we pay attention to the marks, we can detect grains that are the darkest in the reflected light image (FIG. 8), but have different brightness in the transmitted light image (FIG. 7). This means that the a-axis on the surface side of region b is M
This shows that although the orientation is aligned with the <100> axis of the gO substrate, there are grains with misaligned crystal orientations inside.

次に、第9図は上記と同じ領域を回転角θ=45゜て観
察した透過光像である。グレインの明暗の分布が第3図
の反射光像と反転しているのは、第9図の明暗に寄与し
ているグレインのほとんどが表面側に存在するためであ
る。第9図すの領域には内部に方位のずれたグレインが
存在するが、表面側のグレインが明るくなるため、内部
の暗いグレインは検出できない。したがって最も感度良
く方位のずれた領域を検出するには第5の発明が有効で
あることがわかる。
Next, FIG. 9 is a transmitted light image of the same area as above observed at a rotation angle θ=45°. The reason why the distribution of brightness and darkness of the grains is reversed from that of the reflected light image in FIG. 3 is that most of the grains contributing to the brightness and darkness in FIG. 9 are present on the surface side. In the region shown in FIG. 9, there are grains whose orientations are shifted inside, but since the grains on the surface side become brighter, the dark grains inside cannot be detected. Therefore, it can be seen that the fifth aspect of the invention is effective in detecting the area with the most sensitive orientation.

第10図と第11図は、第5発明の応用例を示すたtの
透過光像の観察例である。反射光像観察の配置で試料を
回転させ、視野全体が最も暗くなる位置(θ=0°)を
求めた後、透過光像を観察する配置にして、試料を微小
角回転させた。第1O図はθ=−7°、第11図はθ=
10°での観察結果である。例えば印c、dの領域に着
目する。領域Cは第11図で暗く、第10図で明るくな
っているが、領域dはCと逆の明暗を示している。これ
はdの領域のa軸方位が基板結晶と一7゛ずれているた
め、第10図で最も暗くなり、逆にCの領域は+10゛
ずれているため第11図で最も暗くなるためである。
FIGS. 10 and 11 are examples of observation of transmitted light images of t, showing an application example of the fifth invention. The sample was rotated in a configuration for observing a reflected light image to determine the position where the entire field of view was darkest (θ=0°), and then the sample was rotated by a small angle in a configuration for observing a transmitted light image. Figure 1O is θ=-7°, Figure 11 is θ=
These are the observation results at 10°. For example, focus on areas marked c and d. Area C is dark in FIG. 11 and bright in FIG. 10, but area d shows the opposite brightness and darkness. This is because the a-axis direction of the region d is shifted by 17 degrees from the substrate crystal, so it is the darkest in Figure 10, and conversely, the region C is shifted +10 degrees, so it is the darkest in Figure 11. be.

このように内部の結晶方位のずれを調べるのに第5の発
明が有効であることがわかる。
Thus, it can be seen that the fifth invention is effective for investigating internal crystal orientation deviations.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、酸化物高温超伝
導体薄膜内に存在する結晶グレインのそれぞれのa軸ま
たはb軸の方向と基板結晶の主軸方向との関係を短時間
にかつ定量的に測定することができ、酸化物高温超伝導
体薄膜内に存在する多結晶グレインの大きさと結晶方位
の面内分布を、数ミリの範囲に渡って簡便かつ非破壊で
統計的に測定することができる。
As explained above, according to the present invention, the relationship between the a-axis or b-axis direction of each crystal grain existing in an oxide high temperature superconductor thin film and the main axis direction of the substrate crystal can be determined in a short time and quantitatively. It can be used to easily and non-destructively measure the in-plane distribution of the size and crystal orientation of polycrystalline grains present in oxide high-temperature superconductor thin films over a range of several millimeters. be able to.

また、反射光に加えて透過光を用いることにより、酸化
物高温超伝導体薄膜内に存在する結晶グレインのうち、
表面側のグレインと方位が異なり、表面側のグレインと
基板結晶の中間に分布するグレインを簡便かつ非破壊、
高感度で測定することができる。
In addition, by using transmitted light in addition to reflected light, it was possible to detect crystal grains present in the oxide high temperature superconductor thin film.
It is easy and non-destructive to remove grains that have different orientation from the grains on the surface side and are distributed between the grains on the surface side and the substrate crystal.
Can be measured with high sensitivity.

【図面の簡単な説明】 第1図は、本発明の評価方法を行うための装置の例を示
す装置構成図、 第2図および第3図は、本発明に従って個別の結晶粒に
ついて単結晶基板との方位関係を評価した結果を回転角
度との関係で示すグラフ、第4図(a)、 (b) 、
および(C)は、本発明に従って結晶粒の寸法および方
位を画像観察した例を示す(a)金属組織写真、(b)
グラフ、および(C)金属組織写真、 第5図(a)および(b)は、本発明に従って結晶粒の
寸法および方位を画像観察した例を示す金属組織写真、 第6図は本発明の評価方法を行うための装置の例を示す
装置構成図、 第7図〜11図は本発明に従って結晶粒を観察した例を
示す金属組織写真である。 1・・・偏光照射および反射光強度測定部、2・・・保
持および回転部、 3・・・制御および画像処理装置、 4・・・評価すべき超伝導薄膜、 11・・・光源、      12・・・偏光子、13
・・・ミラー      14.16・・・レンズ、1
5・・・検光子、     17・・・高感度カメラ、
18・・・カメラ制御装置、 19・・・モニタテレビ
、21・・・回転式試料台、 22・・・回転用ステップモータ、 23・・・ステップモータ用電源、 101・・・偏光照射部、 102・・・反射光および透過光強度測定部、103・
・・保持および回転部、 104・・・制御および画像処理部、 105・・・評価すべき超伝導薄膜、 111・114・・・光源、   112 、115・
・・偏光子、113 、116・・・ミラー   12
1  、123・・・レンズ、122・・・検光子、 
    124・・・高感度カメラ、119・・・モニ
タテレビ、  131・・・回転式試料台、132・・
・回転用ステップモータとその電源、141・・・制御
・画像処理装置、 142・・・モニタテレビ。 第 1 図 第 図 相対的な明るさ (b) 第 図 320− 第 図 1 (O) (b) 第 回 321− ”、O(> 1.、l − 第 図 第 図 00すrY’1 第10図 第 11図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an apparatus configuration diagram showing an example of an apparatus for carrying out the evaluation method of the present invention. FIGS. Graphs showing the results of evaluating the azimuth relationship with the rotation angle, Figure 4 (a), (b),
and (C) are (a) metallographic photographs showing examples of image observation of crystal grain dimensions and orientations according to the present invention; (b)
Graphs and (C) Metal structure photographs. Figures 5 (a) and (b) are metal structure photographs showing examples of image observation of crystal grain dimensions and orientations according to the present invention. Figure 6 is evaluation of the present invention. An apparatus configuration diagram showing an example of an apparatus for carrying out the method, and FIGS. 7 to 11 are metallographic photographs showing examples in which crystal grains were observed according to the present invention. DESCRIPTION OF SYMBOLS 1... Polarized light irradiation and reflected light intensity measurement unit, 2... Holding and rotation unit, 3... Control and image processing device, 4... Superconducting thin film to be evaluated, 11... Light source, 12 ...Polarizer, 13
...Mirror 14.16...Lens, 1
5... Analyzer, 17... High sensitivity camera,
18... Camera control device, 19... Monitor television, 21... Rotating sample stage, 22... Step motor for rotation, 23... Power supply for step motor, 101... Polarized light irradiation unit, 102...Reflected light and transmitted light intensity measurement unit, 103.
...Holding and rotating section, 104... Control and image processing section, 105... Superconducting thin film to be evaluated, 111, 114... Light source, 112, 115.
...Polarizer, 113, 116...Mirror 12
1, 123...lens, 122...analyzer,
124...High sensitivity camera, 119...Monitor TV, 131...Rotating sample stage, 132...
- Rotating step motor and its power source, 141... control/image processing device, 142... monitor television. Figure 1 Relative brightness (b) Figure 320- Figure 1 (O) (b) 321-'', O(> 1., l- Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1、単結晶基板上に形成された多結晶超伝導体薄膜の膜
面に偏光を照射し、着目する結晶粒からの、照射光偏光
方向と直交する偏光成分の反射光強度を測定し、上記薄
膜をその面内で回転させ、上記反射光強度が最大になる
位置を基準として、上記反射光強度が最小になる位置ま
での回転角度と、基板単結晶の既知の主軸方向と上記照
射光の偏光方向が一致する回転角度との差を求めること
により、上記着目する結晶粒と上記基板単結晶との結晶
方位関係を評価することを特徴とする超伝導体薄膜の評
価方法。 2、多結晶超伝導体薄膜の膜面に偏光を照射し、着目す
る膜面領域からの、照射光偏光方向と直交する偏光成分
の反射光像を観測し、反射光像内の個別の結晶粒像の明
るさの違いにより個別結晶粒を級分けし、明るさの等価
な結晶粒の面積および密度を計測し、上記薄膜をその面
内で回転させ、複数の回転位置において上記反射光像観
測、上記結晶粒級分け、および上記面積・密度計測を行
うことにより、薄膜面内における方位別結晶粒寸法の分
布および結晶粒方位の分布を評価することを特徴とする
超伝導体薄膜の評価方法。 3、請求項1または2に記載の評価方法を実施するため
の評価装置であって、測定対象物に偏光を照射し且つ測
定対象物からの反射光強度を測定する偏光照射および反
射光強度測定部(1)と、測定対象物を保持し且つ回転
させる保持および回転部(2)と、上記保持および回転
部(2)の回転を制御し、且つその回転角度に対応した
、上記偏光照射および反射光強度測定部(1)からのデ
ータを画像処理する制御および画像処理部(3)とを有
することを特徴とする超伝導体薄膜の評価装置。 4、単結晶基板上に形成された多結晶超伝導薄膜の表面
に偏光を照射し、着目する膜面領域からの、照射光偏光
方向と直交する偏光成分の反射光像を観測し、反射光像
内の個別の結晶粒像の明るさの違いにより個別結晶粒を
級分けし、次に単結晶基板の下面から偏光を照射して前
記単結晶基板とその上の超伝導薄膜を透過させ、照射光
偏光方向と直交する偏光成分の透過光像を観測し、透過
光像内の個別の結晶粒像の明るさの違いにより個別結晶
粒を級分けし、反射光像と透過光像とを比較することに
より、結晶軸方位のずれた結晶粒が上下に積み重なった
領域を評価することを特徴とする超伝導薄膜の評価方法
。 5、単結晶基板上に形成された多結晶超伝導薄膜の表面
に偏光を照射し、着目する結晶粒からの、照射光偏光方
向と直交する偏光成分の反射光強度を測定し、上記薄膜
をその面内で回転させて上記結晶粒の反射光強度が最小
となる位置に薄膜を固定し、次に単結晶基板の下面から
偏光を照射して前記単結晶基板とその上の超伝導薄膜を
透過させ、照射光偏光方向と直交する偏光成分の透過光
強度を上記の着目する結晶粒について測定し、結晶粒内
に現れる不均一な透過光強度分布を検出することにより
、着目する結晶粒と基板の間の結晶軸方位のずれた結晶
粒の有無を評価することを特徴とする超伝導薄膜の評価
方法。 6、請求項5に記載の評価方法において、着目する表面
の結晶粒と基板の間に挟まれた、結晶軸方位のずれた結
晶粒の有無を評価した後に、引き続きその不均一な透過
光強度分布の結晶粒に着目して試料を正および負の方向
に微小角回転させ、回転前の明るさに比べて部分的にさ
らに暗くなる領域を検出し、その回転角より結晶軸方位
のずれた角度を求めることを特徴とする超伝導薄膜の評
価方法。 7、請求項4、請求項5および請求項6に記載の評価方
法を実施するための評価装置であって、測定対象物の表
面側と裏面側から偏光を照射する偏光照射部(1)と、
測定対象物からの反射光強度と透過光強度を測定する反
射光および透過光強度測定部(2)と、測定物を保持し
且つ回転させる保持および回転部(3)と、上記偏光照
射部(1)と反射光および透過光強度測定部(2)を制
御し且つ反射光および透過光強度測定部(2)からのデ
ータを画像処理する画像処理部(4)とを有することを
特徴とする超伝導体薄膜の評価装置。
[Claims] 1. Polarized light is irradiated onto the film surface of a polycrystalline superconductor thin film formed on a single crystal substrate, and reflected light of a polarized light component perpendicular to the polarization direction of the irradiated light is reflected from the crystal grains of interest. Measure the intensity, rotate the thin film within its plane, and calculate the rotation angle from the position where the reflected light intensity is maximum to the position where the reflected light intensity is minimum and the known principal axis of the substrate single crystal. Evaluation of a superconductor thin film, characterized in that the crystal orientation relationship between the crystal grain of interest and the substrate single crystal is evaluated by determining the difference between the direction and the rotation angle at which the polarization direction of the irradiated light matches. Method. 2. Irradiate the film surface of the polycrystalline superconductor thin film with polarized light, observe the reflected light image of the polarized light component orthogonal to the polarization direction of the irradiated light from the film surface region of interest, and identify individual crystals in the reflected light image. Individual crystal grains are classified according to differences in the brightness of the grain images, the area and density of crystal grains with equivalent brightness are measured, the thin film is rotated within its plane, and the reflected light image is measured at multiple rotational positions. Evaluation of a superconductor thin film characterized by evaluating the distribution of crystal grain size by orientation and the distribution of crystal grain orientation in the plane of the thin film by performing observation, the above-mentioned crystal grain classification, and the above-mentioned area/density measurement. Method. 3. An evaluation device for carrying out the evaluation method according to claim 1 or 2, comprising polarized light irradiation and reflected light intensity measurement for irradiating a measurement object with polarized light and measuring the intensity of reflected light from the measurement object. part (1), a holding and rotating part (2) that holds and rotates the object to be measured, and a holding and rotating part (2) that controls the rotation of the holding and rotating part (2) and that corresponds to the rotation angle of the polarized light irradiation and A superconductor thin film evaluation device characterized by having a control and an image processing section (3) for image processing data from a reflected light intensity measuring section (1). 4. Irradiate the surface of a polycrystalline superconducting thin film formed on a single crystal substrate with polarized light, observe the reflected light image of the polarized light component perpendicular to the polarization direction of the irradiated light from the film surface area of interest, and calculate the reflected light. The individual crystal grains are classified according to the difference in brightness of the individual crystal grain images in the image, and then polarized light is irradiated from the bottom surface of the single crystal substrate and transmitted through the single crystal substrate and the superconducting thin film thereon, The transmitted light image of the polarized light component perpendicular to the polarization direction of the irradiated light is observed, the individual crystal grains are classified based on the difference in brightness of the individual crystal grain images in the transmitted light image, and the reflected light image and the transmitted light image are separated. A method for evaluating superconducting thin films characterized by comparing regions in which crystal grains with misaligned crystal axes are stacked one above the other. 5. The surface of a polycrystalline superconducting thin film formed on a single-crystal substrate is irradiated with polarized light, and the reflected light intensity of the polarized light component orthogonal to the polarization direction of the irradiated light from the crystal grains of interest is measured. The thin film is rotated within that plane to fix the thin film at a position where the intensity of reflected light from the crystal grains is minimum, and then polarized light is irradiated from the bottom surface of the single crystal substrate to separate the single crystal substrate and the superconducting thin film thereon. The transmitted light intensity of the polarized light component perpendicular to the polarization direction of the irradiated light is measured for the crystal grain of interest, and by detecting the uneven transmitted light intensity distribution that appears within the crystal grain, it is possible to identify the crystal grain of interest. A method for evaluating superconducting thin films characterized by evaluating the presence or absence of crystal grains with misaligned crystal axes between substrates. 6. In the evaluation method according to claim 5, after evaluating the presence or absence of crystal grains with shifted crystal axis orientations that are sandwiched between the crystal grains on the surface of interest and the substrate, the uneven transmitted light intensity is subsequently evaluated. Focusing on the crystal grains in the distribution, the sample is rotated by a small angle in the positive and negative directions, and areas that are partially darker than the brightness before rotation are detected, and the deviation of the crystal axis direction is detected based on the rotation angle. A method for evaluating superconducting thin films characterized by determining the angle. 7. An evaluation device for carrying out the evaluation method according to claims 4, 5, and 6, comprising: a polarized light irradiation section (1) that irradiates polarized light from the front side and the back side of a measurement object; ,
A reflected light and transmitted light intensity measurement unit (2) that measures the reflected light intensity and transmitted light intensity from the measurement object, a holding and rotation unit (3) that holds and rotates the measurement object, and the polarized light irradiation unit ( 1) and an image processing section (4) that controls the reflected light and transmitted light intensity measurement section (2) and performs image processing on data from the reflected light and transmitted light intensity measurement section (2). Evaluation device for superconductor thin films.
JP2295302A 1990-03-20 1990-11-02 Method and apparatus for evaluating superconductor thin film Pending JPH03285146A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-68021 1990-03-20
JP6802190 1990-03-20

Publications (1)

Publication Number Publication Date
JPH03285146A true JPH03285146A (en) 1991-12-16

Family

ID=13361744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295302A Pending JPH03285146A (en) 1990-03-20 1990-11-02 Method and apparatus for evaluating superconductor thin film

Country Status (1)

Country Link
JP (1) JPH03285146A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524565A (en) * 2012-08-02 2015-08-24 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for analyzing the crystal structure of polycrystalline semiconductor materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015524565A (en) * 2012-08-02 2015-08-24 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク Method for analyzing the crystal structure of polycrystalline semiconductor materials

Similar Documents

Publication Publication Date Title
JP2702281B2 (en) Automatic optical inspection method and apparatus
TW522447B (en) Method and apparatus for embedded substrate and system status monitoring
US7822260B2 (en) Edge inspection
TW511214B (en) Method and apparatus to provide embedded substrate process monitoring through consolidation of multiple process inspection techniques
US4958373A (en) Defect-recognition processing apparatus
US20120007978A1 (en) Method and Apparatus For Examining A Semiconductor Wafer
JP4638864B2 (en) Sample surface defect inspection system
JPWO2007052688A1 (en) Method and apparatus for measuring orientation distribution of microcrystalline grains
US8570513B2 (en) Ellipsometric investigation and analysis of textured samples
US20090103094A1 (en) Ellipsometric investigation and analysis of textured samples
JPH03285146A (en) Method and apparatus for evaluating superconductor thin film
US7776152B2 (en) Method for continuous, in situ evaluation of entire wafers for macroscopic features during epitaxial growth
Inaba et al. Various pole figure measurement techniques with SmartLab, assisting thin film characterization
Browning et al. Cell-by-cell mapping of carrier concentrations in high-temperature superconductors
Farooq et al. Using EBSD and TEM‐Kikuchi patterns to study local crystallography at the domain boundaries of lead zirconate titanate
JPH04102049A (en) Method for estimating superconductive thin film and manufacture of superconductive device
Tanooka et al. Color-imaging ellipsometer: high-speed characterization of in-plane distribution of film thickness at nano-scale
JP7183508B2 (en) 3 Spectral optical module and optical device using it
JP2000065756A (en) Surface inspection apparatus
JPH1048159A (en) Method and apparatus for analyzing structure
US4719120A (en) Detection of oxygen in thin films
JP2601227B2 (en) Ellipsometric end point detection method by ellipsometry
KR20020020211A (en) Crack Inspect Method and Crack Inspect Apparatus
JP6940302B2 (en) Defect inspection equipment and defect inspection method
JPH11145228A (en) Inspection of lamination defect and semiconductor wafer