JPH03285078A - Chemical vapor deposition device - Google Patents

Chemical vapor deposition device

Info

Publication number
JPH03285078A
JPH03285078A JP8628390A JP8628390A JPH03285078A JP H03285078 A JPH03285078 A JP H03285078A JP 8628390 A JP8628390 A JP 8628390A JP 8628390 A JP8628390 A JP 8628390A JP H03285078 A JPH03285078 A JP H03285078A
Authority
JP
Japan
Prior art keywords
substrate
film
gas
lamp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8628390A
Other languages
Japanese (ja)
Inventor
Hidetaka Yabe
秀毅 矢部
Yasutsugu Matsui
松井 安次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8628390A priority Critical patent/JPH03285078A/en
Publication of JPH03285078A publication Critical patent/JPH03285078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the chemical vapor deposition device capable of forming a good-quality film without increasing O2 supply by controlling the heating means for a substrate while the film is formed and providing a control means for changing the substrate temp. between the two preset temps. several times. CONSTITUTION:The substrate 10 is heated to about 300 deg.C by a lit lamp 14, and O2 is supplied 19a to an O3 generator 18 to generate O3 which is supplied to a gas supply passage 7a. Meanwhile, gaseous N2 is introduced 19b into a reaction vessel 20 for tetraethoxysilane(TEOS), and the formed TEOS is supplied to a gas supply passage 7b. The gaseous O3 and TEOS are blown from a gas blowoff port 5, and a film is formed on the surface of the substrate 10 by a CVD reaction. The lamp 14 is then turned on and off at the time intervals of several to several ten sec while the film is formed, and the substrate is repeatedly heated to about 400 deg.C and cooled to about 300 deg.C. After the lapse of the specified time required to form the film, the supply of gaseous TEOS and O3 is stopped, and a silicon oxide film is formed on the substrate 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば半導体製造工程において、気相化学反
応を利用して半導体基板からなる基体に酸化膜等を形成
するための気相化学反応装置(以下、CVO装置と略記
)である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a gas phase chemical reaction for forming an oxide film or the like on a substrate made of a semiconductor substrate using a gas phase chemical reaction, for example in a semiconductor manufacturing process. (hereinafter abbreviated as CVO device).

[従来の技術] 半導体装置の製造工程において、例えば基体に酸化膜を
形成する場合は、常圧CVO装置が使用されている。
[Prior Art] In the manufacturing process of semiconductor devices, for example, when forming an oxide film on a substrate, an atmospheric pressure CVO apparatus is used.

このような常圧CvD装置は、例えば特開昭62−19
:1129号公報に示されている。第6図はこの常圧C
VD装置の断面図である。図において、(1)は搬入1
.−1(la)及び排出口(lb)を有し、密閉された
容器、(2)はこの容器(1)内に配され、排気IN(
:l)が開設された排気フード、(4)はこの排気フー
ド(2)内に装着され、細長いガス吹き出し口(5)か
ら縦方向に連続させてなる中空形状のガス通路(6)か
複数個形成されたガス吹き出しヘット、(7a) (7
b)はガス吹き出しヘッド(4)の内部に構成された2
系統のガス供給路で、それぞれ隣り合うガス通路(6)
に交互に連結されている。
Such an atmospheric pressure CvD device is disclosed in, for example, Japanese Patent Application Laid-Open No. 62-19
:1129. Figure 6 shows this normal pressure C.
It is a sectional view of a VD device. In the figure, (1) is loading 1
.. -1 (la) and a closed container having an exhaust port (lb), (2) is placed within this container (1) and has an exhaust IN (
: l) is an exhaust hood with an open exhaust hood, (4) is installed inside this exhaust hood (2), and has a plurality of hollow gas passages (6) connected vertically from the elongated gas outlet (5). Individually formed gas blowing head, (7a) (7
b) is configured inside the gas blowing head (4).
Adjacent gas passages (6) in the gas supply path of the system
are connected alternately.

(8)は1−記ガス吹き出しヘッド(4)と上記排気フ
ード(2)間に形成される排気路、(9)は上記ガス吹
き出しヘッド(4) と対向配置され、基体である基板
(10)を支持するための支持体であるターンデープル
、(11)はこのターンテーブル(IO)下に配置され
、ターンテーブル(IO)を介して上記基板(lO)加
熱するための加熱手段であるヒータ、(12)は搬入口
(la)より容器(1)内に搬入される基板(lO)を
収納し、また、排出口(1b)より容器(1)外に排出
される基板(10)が収納されるカセットである。
(8) is an exhaust path formed between the gas blowing head (4) described in 1- and the exhaust hood (2), and (9) is a substrate (10) which is disposed opposite to the gas blowing head (4) and is a base body. ), a turntable (11) is placed under the turntable (IO), and a heater (11) is a heating means for heating the substrate (lO) via the turntable (IO); (12) stores the substrate (lO) carried into the container (1) through the loading port (la), and also stores the substrate (10) which is discharged from the container (1) through the discharge port (1b). This is the cassette that will be used.

このように構成された常圧CVD装置においては、基板
(lO)が複数枚収容されたカセット(12)より、1
枚の基板(lO)が搬入口(1a)より適時搬入され、
ターンテーブル(9)上に移載される。基板(10)が
ターンテーブル(9)上に載せられると、ターンテーブ
ル(9)が回転し、基板(10)は、ターンテーブル(
9)下のヒータ(11)によって、全体にわたって均一
に加熱される。一方、ガス供給路(7a) (7b)に
は、所望原料ガスか送り込まれ、接続されているガス通
路(6)にそれぞれ供給され、ガス吹き出し口(5)よ
りターンテーブル(9)上の基板(lO)に向けてそれ
ぞれ吹き出される。この時、ガス吹き出し口(5)より
吹き出されたガスは、吹き出しヘット(4)の周辺に設
けられた排気路(8) に吸引されるように流れる。そ
して、ガス吹き出し口(5)より吹き出されたガスは、
加熱された基板(lO)上で気相化学反応を起こし膜が
形成される。このように気相化学反応によって、膜か形
成された基板(lO)は、ターンテーブル(9)上から
下ろされ、搬出口(Ib)より搬出され、空力セット(
12)に収納される。
In the atmospheric pressure CVD apparatus configured in this way, one
A board (lO) is carried in from the loading entrance (1a) in a timely manner,
It is transferred onto the turntable (9). When the substrate (10) is placed on the turntable (9), the turntable (9) rotates and the substrate (10) is placed on the turntable (9).
9) The lower heater (11) uniformly heats the entire area. On the other hand, a desired raw material gas is fed into the gas supply channels (7a) and (7b), and is supplied to the connected gas channels (6), respectively, and the substrate on the turntable (9) from the gas outlet (5). Each is blown out toward (lO). At this time, the gas blown out from the gas outlet (5) flows as if being sucked into an exhaust path (8) provided around the blowing head (4). The gas blown out from the gas outlet (5) is
A film is formed by causing a gas phase chemical reaction on the heated substrate (lO). The substrate (lO) on which a film has been formed by the gas-phase chemical reaction is lowered from the turntable (9), carried out from the carry-out port (Ib), and placed in the aerodynamic set (
12).

また近来、このようなCVD装置を用いた半導体の酸化
膜形成には、原料ガスとしてオゾン(03)と有機カス
を用いる常圧CVD法が、段差埋め込み性が良く、プラ
ズマダメージが無いなどという理由より、将来有望な方
法として注目されている。
In addition, in recent years, atmospheric pressure CVD methods using ozone (03) and organic scum as raw material gases have been used to form oxide films on semiconductors using such CVD equipment, due to the fact that they have good step filling properties and do not cause plasma damage. This method is attracting attention as a promising method for the future.

このような常圧CVD法は、上記に説明したCVD装置
における一方のガス供給路(7a)に、オゾン発生装置
で発生させたオゾンが供給され、他方のガス供給路(7
b)にはテトラエトキシシラン(Si (OC2H5)
4) (以下、TE01と略記)か供給される。そして
、ガス吹き出し0(5)の−個所おきにTEOSカスと
オゾンガスが交互に流れ出ることになり、それぞれのガ
スは、加熱された基板(10)表面で混合され、化学気
相反応を起こし、酸化膜が基板(lO)表面に形成され
る。
In such a normal pressure CVD method, ozone generated by an ozone generator is supplied to one gas supply path (7a) in the above-described CVD apparatus, and ozone is supplied to the other gas supply path (7a).
b) contains tetraethoxysilane (Si (OC2H5)
4) (hereinafter abbreviated as TE01) is supplied. Then, TEOS scum and ozone gas flow out alternately at every - point of gas blowout 0 (5), and each gas is mixed on the heated surface of the substrate (10) to cause a chemical vapor phase reaction and oxidize. A film is formed on the surface of the substrate (IO).

このように従来のCVD装置を用いて、上記説明した1
’EO5−オゾンガスで成膜する方法での成膜特性は、
第7図に示される。このとき、TE01−オゾンカス流
量は一定である。ここで示されるように、’rEO5−
オゾン系による酸化珪素膜の成膜速度は、基板(lO)
の温度が上昇するにつれて大きくなるが、約300℃を
ピーク値として低下する。つまり、約300℃以上の高
温では、基板(10)表面のオゾン分解か早く、気相化
学反応に必要とするオゾン量が不足するためである。一
方、酸化珪素膜の膜質は、011基の少ない膜はどS 
i−0ボンネツトワークがより完全に近いものとなり、
良質な膜であるか、基板(]0)の温度が約300℃で
形成された膜は、成膜速度は大きいものの、膜中に含ま
れる011基が多く良質な膜が得られない。従って、従
来のCVD装置を用いたTE01−オゾン系の成膜では
、基板(lO)の温度を400℃とし、分解するオゾン
に対するオゾンを補うため、オゾン発生器の容量を大き
くし、ガス吹き出し[iより吹き出すオゾン量を増大し
て成膜を行っていた。
In this way, using the conventional CVD apparatus, the above-mentioned 1
'The film formation characteristics of the film formation method using EO5-ozone gas are as follows.
It is shown in FIG. At this time, the TE01-ozone scum flow rate is constant. As shown here, 'rEO5-
The deposition rate of silicon oxide film using ozone system is
It increases as the temperature rises, but it decreases with a peak value of about 300°C. In other words, at high temperatures of about 300° C. or higher, ozone on the surface of the substrate (10) decomposes quickly and the amount of ozone required for the gas phase chemical reaction is insufficient. On the other hand, the film quality of the silicon oxide film is that the film with fewer 011 groups is
The i-0 bonnetwork is now more perfect,
Although a film of good quality or a film formed at a temperature of the substrate (]0 of about 300° C. has a high film formation rate, a high quality film cannot be obtained due to the large number of 011 groups contained in the film. Therefore, in forming a TE01-ozone film using a conventional CVD device, the temperature of the substrate (lO) is set at 400°C, and in order to compensate for the ozone that decomposes, the capacity of the ozone generator is increased, and the gas blowout [ Film formation was performed by increasing the amount of ozone blown out from i.

[発明が解決しようとする課題] しかしながら、上記説明したようなCVD装置では、成
膜速度を低下させず、良質の膜を得るためには、オゾン
発生器(18)の容量を大きくせねばならず、CVD装
置が大型化し、さらにオゾン供給量を増大させるために
、ランニングコストが上昇し、半導体のコストアシブに
つながるという課題かあった。
[Problems to be Solved by the Invention] However, in the CVD apparatus as described above, in order to obtain a high quality film without reducing the film formation rate, the capacity of the ozone generator (18) must be increased. First, as CVD equipment becomes larger and the amount of ozone supplied increases, running costs increase, which leads to cost savings for semiconductors.

本発明は、」−記説明した′:JAxを解決するために
なされたものて、オゾン供給量を増大させることなく、
良質な膜を高速で成1摸できる気相化学反応装置を得る
ことを目的とする。
The present invention has been made to solve the problem of JAx as described above, without increasing the amount of ozone supply.
The objective is to obtain a gas phase chemical reaction device that can form high-quality films at high speed.

[課題を解決するための手段] 本発明に係る気相化学反応装置は、基体の表面に膜を形
成するためのガスか供給される容器内及び」、(体を加
熱するだめの加熱手段とを有したものにおいて成膜中に
加熱手段を制御し、基体の温度なrめ設定された2温度
間を複数回往復させるためのル制御手段を設けたもので
ある。
[Means for Solving the Problems] The gas phase chemical reaction apparatus according to the present invention includes a container for supplying gas for forming a film on the surface of a substrate, and a heating means for heating the body. The heating means is provided with a control means for controlling the heating means during film formation and for reciprocating a plurality of times between two temperatures set to be equal to the temperature of the substrate.

[作用] このように構成された気相化学反応装置においては、制
御手段が加熱手段を制御し、成膜中の基体の温度を成膜
速度の大きい温度と膜特性の良好な湿度の2温度間を複
数回往復せしめる。
[Function] In the gas phase chemical reaction apparatus configured as described above, the control means controls the heating means and keeps the temperature of the substrate during film formation at two temperatures: the temperature at which the film formation rate is high and the humidity at which the film properties are good. Make the user go back and forth between the two locations multiple times.

[実施例] 以下、この発明の一実施例である常圧CVD装置につい
て説明する。また、ここではオゾンガス及びTEOSガ
スを原料とし、酸化珪素膜を形成する場合について説明
する。第1図は、この発明の一実施例の常圧CvD装置
の構成図で、図において、(13)は容器(1)内に基
体(lO)を釣り下げ、この基体(lO)の周辺部での
み支持する支持体、(14)は上記基体(10)を加熱
するための加熱手段である例えばハロゲン等のランプ、
(15)はこのランプ(14)からの光を基体(lO)
に照射するため、容器に設けられた透明な窓、(16)
は上記基体(lO)の温度が測定される温度センサ、(
17)は上記基体(lO)の温度を瞬時で2温度間で変
化できるために、上記ランプ(14)の大切あるいは光
量を制御するマイクロコンピュータからなる制御手段で
、この実施例では基体(10)の温度が測定される温度
センサ(16)と接続されて上記温度センサ(16)か
らの300℃を示す温度情報を得ると上記ランプ(14
)をオンさせるものである。(18)は一方が酸素流入
量が制御されるマスフロートコントローラ(19a)に
接続され、他方がガス供給路(7a)に接続されたオゾ
ン発生器、(20)は有機ソースである例えば高純度の
TE01が封入され、一方がTEOSガスを発生させる
ための窒素ガス流入量が制御されるマスフロートコント
ローラ(+9b)に接続され、他方がガス供給路に接続
されたTEO5反応容器である。
[Example] Hereinafter, an atmospheric pressure CVD apparatus which is an example of the present invention will be described. Further, here, a case will be described in which a silicon oxide film is formed using ozone gas and TEOS gas as raw materials. FIG. 1 is a block diagram of an atmospheric pressure CvD apparatus according to an embodiment of the present invention. In the figure, (13) indicates a substrate (lO) suspended in a container (1), (14) is a heating means for heating the substrate (10), such as a halogen lamp;
(15) converts the light from this lamp (14) into a substrate (lO)
(16) a transparent window provided in the container for illumination;
is a temperature sensor for measuring the temperature of the substrate (lO), (
17) is a control means consisting of a microcomputer that controls the light intensity of the lamp (14) so that the temperature of the substrate (lO) can be instantaneously changed between two temperatures. When the temperature information indicating 300° C. is obtained from the temperature sensor (16), the lamp (14)
) is turned on. (18) is an ozone generator connected on one side to a mass float controller (19a) where the oxygen inflow rate is controlled and on the other side connected to a gas supply path (7a), and (20) is an organic source, such as a high-purity source. One side is connected to a mass float controller (+9b) that controls the amount of nitrogen gas inflow for generating TEOS gas, and the other side is connected to a gas supply path.

このように構成された常圧CvD装置による酸化珪素膜
の成膜方法について、第2図(a)及び(b)°に基づ
いて説明する。第2図(a)及び(b)はこの常圧CV
D装置の作動を説明するための図である。まず、ランプ
(14)が点灯され、このランプ光によって基板(lO
)が加熱され始め、温度センサ(16)によって、基板
温度が観測されながら、基板温度が約300℃になるま
で加熱される。そして、基板温度が約300℃になると
、マスフロートコントローラ(19a)を介して、酸素
がオゾン発生器(18)に供給され、このオゾン発生器
(18)によって、オゾンガスが生成され、ガス供給路
(7a)に供給される。一方、TEO5反応容器(20
)には、マスフロートコントローラ(19b)を介して
、窒素ガスが送り込まれ、この窒素ガスによって反応容
器内の高純度のTE01がバブリングされ、TEOSガ
スが生成され、上記オゾンガスが供給されたガス供給路
(7a)とは異なるガス供給路(7b)に供給される。
A method for forming a silicon oxide film using the atmospheric pressure CvD apparatus configured as described above will be described with reference to FIGS. 2(a) and 2(b). Figure 2 (a) and (b) show this normal pressure CV.
It is a figure for explaining operation of D device. First, the lamp (14) is turned on, and the lamp light causes the substrate (lO
) begins to be heated, and the temperature sensor (16) monitors the substrate temperature until the substrate temperature reaches approximately 300°C. When the substrate temperature reaches approximately 300°C, oxygen is supplied to the ozone generator (18) via the mass float controller (19a), and ozone gas is generated by the ozone generator (18), and the gas supply path is (7a). On the other hand, TEO5 reaction vessel (20
) is fed with nitrogen gas via a mass float controller (19b), and this nitrogen gas bubbles high-purity TE01 in the reaction vessel to generate TEOS gas, and the gas supply to which the ozone gas is supplied The gas is supplied to a gas supply path (7b) different from the path (7a).

そして、オゾンガスとTEOSガスは、ガス吹き出し口
(5) まで別々に導かれ、ガス吹き出し口(5)より
ケ所毎にTEOSガスとオゾンガスが吹き出され、基板
表面にてCVO反応が起こり、成膜が開始される。そし
て、成膜が始まると、第2図(a)に示されるように、
成膜中にランプ(14)は、数秒〜数十秒間隔で、オン
及びオフが縁り返される。つまり、ランプ(14)が点
灯され、数秒〜数十秒間ランプ光が基板(10)に照射
されると、基板温度は急激に上昇し、約400℃まで達
する。その後、数秒〜数十秒間ランプ(14)が消灯さ
れると、基板温度は、ガス吹き出し口(5) より吹き
出された多量のガスによって、急速に冷却され、基板温
度は約300℃まで降下する。そして、再びランプ(1
4)が点灯され、基板温度は、 400tまで上昇する
こととなる。このようなランプ(14)の制御動作は、
成膜中縁り返される。そして、成膜に要する所定時間経
過後は、TEOSガス及びオゾンガスの供給が止められ
、基板への成膜は終rする。
Then, the ozone gas and TEOS gas are led separately to the gas outlet (5), and the TEOS gas and ozone gas are blown out from the gas outlet (5) at various locations, causing a CVO reaction on the substrate surface, and the film formation is completed. will be started. Then, when the film formation begins, as shown in FIG. 2(a),
During film formation, the lamp (14) is turned on and off at intervals of several seconds to several tens of seconds. That is, when the lamp (14) is turned on and the lamp light is irradiated onto the substrate (10) for several seconds to several tens of seconds, the substrate temperature rapidly rises and reaches about 400°C. After that, when the lamp (14) is turned off for a few seconds to several tens of seconds, the substrate temperature is rapidly cooled down by a large amount of gas blown out from the gas outlet (5), and the substrate temperature drops to about 300°C. . Then, the lamp (1
4) is lit, and the substrate temperature rises to 400t. The control operation of such a lamp (14) is as follows:
The edges are turned over during film formation. After a predetermined time required for film formation has elapsed, the supply of TEOS gas and ozone gas is stopped, and film formation on the substrate is completed.

このような加熱手段の制御手段について、更に詳細に説
明す、る。第7図に示されるように、基板温度が300
℃付近では、膜中のON基は多いものの、高速で成膜さ
れる。また、基板温度が400℃付近では、成膜速度は
遅いものの先に成膜した膜11の旧1基は減少させ、膜
質を向上させるとともに、成膜される膜は旧1基の少な
い5i−0ボンネツトワークが完全に近い良質の膜が成
膜される。よって、数秒〜数十秒間隔で、上記300℃
〜400℃間を変化させることによって、成膜の基板温
度が、:100℃の一定温度で成膜した膜と比較して良
質な膜質で、400℃の一定温度で成膜した場合に比較
すれば高速成膜が可能となる。従って、上記説明したよ
うに、 300℃〜400℃間を成膜中に何度も変化さ
せることによって、オゾン発生器(18)の容11tを
大きくして、オゾン供給量を多くせずとも、良質な11
qが高速で成膜できる。
The control means for such a heating means will be explained in more detail. As shown in FIG. 7, the substrate temperature is 300℃.
At temperatures around 0.degree. C., there are many ON groups in the film, but the film is formed at a high speed. In addition, when the substrate temperature is around 400°C, although the film formation rate is slow, the number of old films in the previously formed film 11 is reduced, improving the film quality, and the number of films formed is 5i-1 with fewer old films. A high quality film with nearly perfect zero bonnet work is formed. Therefore, at intervals of several seconds to several tens of seconds, the above 300°C
By varying the temperature between ~400℃ and 400℃, the substrate temperature during film formation can be improved. This enables high-speed film formation. Therefore, as explained above, by changing the temperature between 300°C and 400°C many times during film formation, the capacity 11t of the ozone generator (18) can be increased without increasing the ozone supply amount. Good quality 11
q can be formed at high speed.

第3図(a)はこの発明の他の実施例の構成図であって
、図において、(21)はマスフロートコントローラ(
19c)を介して、窒素を基板(10)の背面に吹き付
けるための冷却用窒素供給路、 (22)はモータ、(
23)はこのモータ(22)によって回転力が与えられ
、上記ランプ(14)からの光の基板(lO)への照耐
量を調整するチョッパ、(24)は上記モータ(21)
の大切、回転スピード等を制御する例えばマイクロコン
ピュータからなる制御部で、この実施例では窒素ガスの
大切を制御するためにマスフロートコントローラ(+9
c)  と、温度センサ(16)の信号より、ランプ(
14)の大切においても、制御部(24)で制御されて
おり、この制御部(24)と、上記モータ(22)及び
チョッパ(23)で基板(io)の温度を瞬時で2温度
間を変化させるための制御手段は構成される。第3図(
b)はこのチョッパ(23)の上面図であって、(25
)はこのチョッパ(23)に設けられ、ランプ(14)
からの光を透過させる全透過領域、(2δ)は上記チョ
ッパ(23)に設けられ、ランプ(14)からの光の一
部を遮る半透過領域、(27)は上記チョッパ(23)
に設けられ、ランプ(14)からの光を完全に遮る遮蔽
領域である。
FIG. 3(a) is a block diagram of another embodiment of the present invention, in which (21) is a mass float controller (
19c), a cooling nitrogen supply path for spraying nitrogen onto the back surface of the substrate (10); (22) is a motor; (22) is a motor;
23) is a chopper to which rotational force is applied by the motor (22) and adjusts the amount of light emitted from the lamp (14) to the substrate (lO); (24) is the motor (21);
For example, it is a control unit consisting of a microcomputer that controls the importance of nitrogen gas, rotation speed, etc. In this embodiment, a mass float controller (+9) is used to control the importance of nitrogen gas.
c) and the signal from the temperature sensor (16), the lamp (
14) is also controlled by a control unit (24), and this control unit (24), the motor (22) and the chopper (23) can instantly change the temperature of the substrate (IO) between two temperatures. A control means for making the change is configured. Figure 3 (
b) is a top view of this chopper (23), and (25
) is provided on this chopper (23), and a lamp (14)
A fully transparent area (2δ) that transmits light from the lamp (23) is a semi-transparent area that blocks part of the light from the lamp (14), and (27) is a semi-transparent area provided on the chopper (23).
This is a shielding area that completely blocks the light from the lamp (14).

このように構成されたチョッパ(23)が、成膜中にモ
ータ(22)により回転することによって、一定間隔で
ランプ(14)からの光が一部遮られたり、完全に遮ら
れることになる。したがって、基板(10)に照射され
る光量及び基板(10)の温度は、第2図(c)及び第
2図(d)に示されるようになる。この−周期かチョッ
パ(22)の半回転に相当する。つまり、上記実施例と
比較して、ランプ(14)の強度を大きくすることによ
って、チョッパ(23)の全透過領域(25)では、基
板(lO)に照射される光量は大きく、急峻に基板温度
を400℃とする。
By rotating the chopper (23) configured in this manner by the motor (22) during film formation, the light from the lamp (14) is partially or completely blocked at regular intervals. . Therefore, the amount of light irradiated onto the substrate (10) and the temperature of the substrate (10) are as shown in FIG. 2(c) and FIG. 2(d). This period corresponds to half a revolution of the chopper (22). That is, by increasing the intensity of the lamp (14) compared to the above embodiment, the amount of light irradiated onto the substrate (lO) is large in the total transmission region (25) of the chopper (23), and the substrate The temperature is set to 400°C.

その後、半透過領域〈26)となると、基板(10)に
照射される光量は小さくなり、基板温度を400℃以上
となるのを防ぎ、膜質の向上を図る。そして、その後チ
ョッパ(23)は遮蔽領域(27)となり、ランプ光は
完全に遮蔽され、基板(10)に光は照射されなくなり
、基板温度が急激に300℃に低下し、成膜速度が大き
くなる。このようにランプ光を制御することによって、
上記実施例と同様の効果か得られると共に、上記実施例
のようなランプ(14)のオン・オフは行われないので
、ランプ(14)の寿命は長くなる。また、この実施例
においては、基板(lO)の表面はガス吹き出し口(5
)より吹き出されたガスによって、冷却されているが、
基板(10)上にチョッパ(22)の遮蔽領域(27)
がきた時には、第3図(e)及び(f)に示されるよう
に、冷却用窒素供給路(2I)より基板(10)の背面
に窒素ガス等を流すことによって、基板温度はさらに急
速に冷却できる。
Thereafter, in the semi-transparent region <26), the amount of light irradiated onto the substrate (10) decreases, preventing the substrate temperature from exceeding 400° C. and improving the film quality. Then, the chopper (23) becomes a shielding area (27), the lamp light is completely shielded, the substrate (10) is no longer irradiated with light, the substrate temperature suddenly drops to 300°C, and the film formation rate increases. Become. By controlling the lamp light in this way,
The same effect as in the above embodiment can be obtained, and since the lamp (14) is not turned on and off as in the above embodiment, the life of the lamp (14) is extended. In addition, in this embodiment, the surface of the substrate (lO) is provided with a gas outlet (5).
) is cooled by the gas blown out,
Shielding area (27) of chopper (22) on substrate (10)
When this happens, as shown in Figure 3(e) and (f), by flowing nitrogen gas or the like from the cooling nitrogen supply path (2I) to the back side of the substrate (10), the substrate temperature can be further rapidly reduced. Can be cooled.

また上記実施例では、ランプ(14)光量は一定で、チ
ョッパ(23)によって、基板(10)に照射される量
を制御しているが、チョッパ(23)を設けずとも、ラ
ンプ(14)に流す電流を変化させ、ランプ(14)か
らの光量を変化させることによっても、上記実施例と同
様の効果が得られる。
Further, in the above embodiment, the amount of light from the lamp (14) is constant, and the amount of light irradiated onto the substrate (10) is controlled by the chopper (23). The same effect as in the above embodiment can also be obtained by changing the current flowing through the lamp (14) and changing the amount of light from the lamp (14).

また、上記実施例では基板(lO)への光照射は、時°
間によって制御していたが、基板(10)近辺に設けら
れた温度センサからの信号に基づいて、ランプ光の制御
を行うこともできる。
In addition, in the above embodiment, the light irradiation to the substrate (lO) is performed at various times.
Although the lamp light is controlled based on the temperature sensor provided near the substrate (10), the lamp light can also be controlled based on a signal from a temperature sensor provided near the substrate (10).

また、第4図はこの発明のさらに他の実施例を示すもの
であって、上記実施例と異なる点は、基板(lO)の加
熱手段がランプ(14)でなく、加熱手段として熱容量
の小さい電熱M (28)か基板(30)の背面に設け
られたことである。このように加熱手段に、熱容量の小
さい電熱線(2B)を用いることによっても、電熱線(
28)に電流を流すと熱容量が小ざいので、急激に温度
が上昇し、電流を止めると急激に温度か低下するので、
−ト記実施例のランプ(14)と同様の作用を示すこと
となり、上記実施例と同様の効果か得られる。
FIG. 4 shows still another embodiment of the present invention, which differs from the above embodiment in that the heating means for the substrate (lO) is not a lamp (14), but has a small heat capacity. The electric heating M (28) is provided on the back side of the substrate (30). By using the heating wire (2B) with a small heat capacity as the heating means, the heating wire (2B) can also be heated.
28) When a current is passed through it, the heat capacity is small, so the temperature rises rapidly, and when the current is stopped, the temperature drops suddenly.
- It exhibits the same effect as the lamp (14) of the embodiment described above, and the same effects as the above embodiment can be obtained.

以ヒ説明したこの発明の実施例においては、基板(10
)中の温度や成1漠を均一にするために、基板(10)
を自転成いは公転させるよう構成にしても良いことはH
うまでもない。
In the embodiment of the invention described hereafter, the substrate (10
) to make the temperature and formation uniform in the substrate (10).
It is possible to configure it so that it rotates or revolves.
It's no good.

なお、ト記実施例においては、成膜中には連続的にオゾ
ン発生器(18)からオゾンガスが、ガス供給路(7a
)を通してガス吹き出し口(5)より吹き出されていた
が、基板温度が400℃の時には、オゾンカスな止める
ことによって、 300℃の基板温度て成膜された膜中
より011基を除去でき、オゾン供給(ILが少なく、
上記実施例よりさらに良質の1摸が成膜できる。
In the above embodiment, ozone gas is continuously supplied from the ozone generator (18) to the gas supply path (7a) during film formation.
) was blown out from the gas outlet (5) through the substrate temperature, but when the substrate temperature was 400°C, by stopping the ozone scum, 011 groups could be removed from the film formed at the substrate temperature of 300°C, and the ozone supply (Low IL,
A film of even better quality than the above example can be formed.

また、上記実施例ではTEOSガスとオゾンガスを用い
た酸化珪素膜の成膜について説明したが、この発明はこ
れに限るものでなく他の成膜についても応用てきる。
Furthermore, although the above embodiment describes the formation of a silicon oxide film using TEOS gas and ozone gas, the present invention is not limited to this and can be applied to other film formations.

例えば、タングステンカルボニル(W(CO)a)ガス
からのタングステン(1)膜の成膜においても用いるこ
とができる。すなわち、この成膜は、第5図(a) (
b)に示されるように、基板温度が低いと、成膜速度は
遅く、かつ膜中のCOが抜けにくく、不純物が多いが、
非常に緻密で均一な膜が成膜される。また、基板温度が
高くなると、成膜速度は大きく、不純物も少なくなる。
For example, it can also be used in forming a tungsten (1) film from tungsten carbonyl (W(CO)a) gas. That is, this film formation is as shown in FIG. 5(a) (
As shown in b), when the substrate temperature is low, the film formation rate is slow, CO in the film is difficult to escape, and there are many impurities.
A very dense and uniform film is formed. Furthermore, as the substrate temperature increases, the film formation rate increases and the amount of impurities decreases.

しかし、基板温度が、高くなり過ぎると気相中で分解し
た成分が膜中に取り込まれることなり、かえって膜中の
酸素や炭素等の不純物は多くなる。従って、従来のCV
D装置では、不純物の最も少ない中間の温度(T2)を
用いて成膜が行われていたが、この基板温度で成膜が行
われた膜は、粗で凹凸を持つ。しかし上記説明したCV
D装置を用い、上記緻密な膜が成膜できる基板温度(T
1)と不純物の少ない膜が成膜できる基板温度(T2)
間を往復させることによって、緻密な膜成膜できる基板
温度で成膜された膜の不純物が、不純物の少ない温度に
上昇させることによって、膜中の不純物が離脱されるこ
とができるので、従来の膜より不純物が少なく緻密な膜
が成膜できる。
However, if the substrate temperature becomes too high, components decomposed in the gas phase will be incorporated into the film, and the amount of impurities such as oxygen and carbon in the film will increase. Therefore, conventional CV
In apparatus D, film formation was performed using an intermediate temperature (T2) with the least amount of impurities, but the film formed at this substrate temperature was rough and uneven. However, the CV explained above
Using D equipment, the substrate temperature (T
1) and the substrate temperature (T2) at which a film with few impurities can be formed.
By moving back and forth between the two, impurities in the film formed at a substrate temperature that allows formation of a dense film can be removed by raising the temperature to a temperature where there are fewer impurities. A dense film with fewer impurities than a film can be formed.

[発明の効果〕 この発明の気相化学反応装置は1以上述べたように成膜
中に制御手段が加熱手段を制御して、基体の温度が予め
設定された2温度間を複数回往復させるものとしたので
、成膜中に基体の温度はこの2温度を往復し、この2つ
に基体温度で成膜される膜の特徴を生かしつつ、成膜さ
れることとなるため、良好な膜が成膜できるという効果
を有する。
[Effects of the Invention] As mentioned above, in the gas phase chemical reaction apparatus of the present invention, the control means controls the heating means during film formation to cause the temperature of the substrate to cycle back and forth between two preset temperatures a plurality of times. Therefore, during film formation, the temperature of the substrate goes back and forth between these two temperatures, and the film is formed while taking advantage of the characteristics of the film that is formed at these two temperatures, resulting in a good film. It has the effect of being able to form a film.

【図面の簡単な説明】[Brief explanation of drawings]

′dIJ1図はこの発明の一実施例の気相化学反応装置
を示す断面図、第2図はこの発明の気相化学反応装置の
制御方法を説明するための図、第3図(a)はこの発明
の他の実施例の気相化学反応装置を示す断面図、第3図
(b)は第3図(a)のチョッパを示す上面図、第4図
はこの発明の他の実施例の気相化学反応装置の一部断面
図、第5図(a) (b)はこの発明の他の実施例の基
体温度と膜特性の関係を説明するための図、第6図は従
来の気相化学反応装置を示す断面図、第7図は従来の気
相化学反応装置を用いた基板温度と膜特性の関係を説明
するための図である。 図において、(1)は容器、(7a) (7b)はカス
供給手段、(lO)は基体、(13)は支持体、(+4
) 、 (28)は加熱手段 (17) 、 (22)
 、 (2:l) 、 (24)は制御手段である。 なお、各図中同一符号は同−又は相当部分を示す。
Figure 'dIJ1 is a sectional view showing a gas phase chemical reaction apparatus according to an embodiment of the present invention, Figure 2 is a diagram for explaining a method of controlling the gas phase chemical reaction apparatus of this invention, and Figure 3 (a) is a cross-sectional view showing a gas phase chemical reaction apparatus according to an embodiment of the present invention. 3(b) is a top view showing the chopper of FIG. 3(a), and FIG. 4 is a sectional view showing a gas phase chemical reaction apparatus according to another embodiment of the present invention. 5(a) and 5(b) are diagrams for explaining the relationship between substrate temperature and film characteristics in another embodiment of the present invention, and FIG. 6 is a partial cross-sectional view of a gas phase chemical reaction apparatus. FIG. 7, a cross-sectional view showing a phase chemical reaction device, is a diagram for explaining the relationship between substrate temperature and film characteristics using a conventional gas phase chemical reaction device. In the figure, (1) is a container, (7a) (7b) is a waste supply means, (1O) is a substrate, (13) is a support, (+4
), (28) are heating means (17), (22)
, (2:l), (24) is a control means. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  基体の表面に膜を形成するためのガスが内部に供給さ
れる容器、この容器内に上記基体を支持する支持体、上
記基体を加熱するための加熱手段、成膜中に上記加熱手
段を制御し、上記基体の温度を、設定された2温度間を
複数回往復させるための制御手段を備えた気相化学反応
装置。
A container into which gas is supplied to form a film on the surface of the substrate, a support for supporting the substrate within the container, a heating means for heating the substrate, and controlling the heating means during film formation. and a gas phase chemical reaction apparatus comprising a control means for reciprocating the temperature of the substrate between two set temperatures a plurality of times.
JP8628390A 1990-03-30 1990-03-30 Chemical vapor deposition device Pending JPH03285078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8628390A JPH03285078A (en) 1990-03-30 1990-03-30 Chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8628390A JPH03285078A (en) 1990-03-30 1990-03-30 Chemical vapor deposition device

Publications (1)

Publication Number Publication Date
JPH03285078A true JPH03285078A (en) 1991-12-16

Family

ID=13882505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8628390A Pending JPH03285078A (en) 1990-03-30 1990-03-30 Chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPH03285078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214688A (en) * 2007-03-02 2008-09-18 Ulvac Japan Ltd Thermal cvd system and film deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214688A (en) * 2007-03-02 2008-09-18 Ulvac Japan Ltd Thermal cvd system and film deposition method

Similar Documents

Publication Publication Date Title
US6121579A (en) Heating apparatus, and processing apparatus
US5332442A (en) Surface processing apparatus
TWI647763B (en) Multi-zone control of the lamp inside the conical lamp head using a thermometer
JPH03224217A (en) Heat-treating device
JP2004508724A (en) Apparatus and method for cleaning a bell jar in a barrel epitaxial reactor
JPH03285078A (en) Chemical vapor deposition device
CN112466775A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
US6752624B2 (en) Soaking apparatus
JP3794243B2 (en) Oxidation processing method and apparatus
JP4516318B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2004332093A (en) Continuous chemical vapor deposition production apparatus
WO2008010949A2 (en) Method and apparatus for forming an oxide layer on semiconductors
JPH06224135A (en) Energy line heating device and controlling method therefor
JP3997379B2 (en) Lamp annealing equipment
TW202243068A (en) Workpiece processing apparatus with thermal processing systems
JPS6341028A (en) Forming device for oxide film
JP2000077346A (en) Heat treatment apparatus
KR20060006414A (en) Apparatus for temperature control of semiconductor process chamber
JPH0927468A (en) Wafer surface treating method and apparatus
JP2645360B2 (en) Vertical heat treatment apparatus and heat treatment method
JP2702697B2 (en) Processing device and processing method
JPH10321546A (en) Heat treatment furnace
JP2511845B2 (en) Processing equipment for vapor phase growth
JP2678462B2 (en) Semiconductor manufacturing equipment
JPH03126876A (en) Production device for silicon carbide film