JPH03284818A - Solid electrolytic capacitor and manufacture thereof - Google Patents

Solid electrolytic capacitor and manufacture thereof

Info

Publication number
JPH03284818A
JPH03284818A JP8690590A JP8690590A JPH03284818A JP H03284818 A JPH03284818 A JP H03284818A JP 8690590 A JP8690590 A JP 8690590A JP 8690590 A JP8690590 A JP 8690590A JP H03284818 A JPH03284818 A JP H03284818A
Authority
JP
Japan
Prior art keywords
anode
layer
cathode
bodies
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8690590A
Other languages
Japanese (ja)
Other versions
JP2895907B2 (en
Inventor
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP8690590A priority Critical patent/JP2895907B2/en
Publication of JPH03284818A publication Critical patent/JPH03284818A/en
Application granted granted Critical
Publication of JP2895907B2 publication Critical patent/JP2895907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damage during a manufacturing process even in an electrolytic layer having sufficient rigidity and mechanically fragile strength by successively forming a dielectric layer, the electrolytic layer and a conductive layer into a recessed section and arranging anode bodies, in which oxide film layers are formed in one part or the whole of outer surfaces, on both surfaces of cathode bodies. CONSTITUTION:Mechanically fragile electrolytic layers 3 are formed into recessed sections 6 formed to one parts of an anode body 1 together with conductive layers 4, and surrounded by relative projecting sections 7. The anode bodies 1 are disposed on both surfaces of a beltlike cathode body 5. Consequently, the electrolytic layers 3 are interrupted from the outside by the anode bodies 1, and the electrolytic layers 3 need not be hermetically sealed from the outside air. Oxide film layers as a rigid insulator are formed onto surfaces except surfaces in the recessed sections 6 of the anode bodies 1, and the mechanical strength of the anode bodies 1 is increased, thus inhibiting the damage of the electrolytic layers 3 even in a manufacturing process and a mounting process to a printed board. The outer surfaces of the anode bodies 1 need not be insulated, and the cathode bodies 5 as cathode terminals and anode terminals 2 can be fast stuck along the outer surfaces of the anode bodies 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体電解コンデンサに関し、特に有機導電
性化合物を利用したチップ形の固体電解コンデンサの改
良にかかる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to solid electrolytic capacitors, and particularly to improvements in chip-type solid electrolytic capacitors using organic conductive compounds.

〔従来の技術〕[Conventional technology]

近年の電子機器の小型化、プリント基板への実装の効率
化等の要請から電子部品のチ・ンプ化が進められている
。これに伴い、電解コンデンサのチップ化の要請も高ま
り、各種の提案がなされている。
BACKGROUND OF THE INVENTION In recent years, electronic components have been made smaller due to demands for smaller electronic devices and more efficient mounting on printed circuit boards. Along with this, the demand for chip-based electrolytic capacitors has increased, and various proposals have been made.

ところが、電解コンデンサ、特に電解質として電解液を
使用した電解コンデンサの場合、電解液を一定の収納空
間に密閉しておくことが必要である。−船釣にこのよう
な密閉は、弾性ゴムからなる封口体をコンデンサ素子を
収納した有底筒状の外装ケースの開口部に装着して行わ
れている。
However, in the case of an electrolytic capacitor, particularly an electrolytic capacitor that uses an electrolytic solution as an electrolyte, it is necessary to seal the electrolytic solution in a certain storage space. - In boat fishing, such sealing is performed by attaching a sealing body made of elastic rubber to the opening of a bottomed cylindrical exterior case that houses a capacitor element.

このような密閉構造を有する電解コンデンサを小型化す
る場合、この密閉構造を同時に小型化する必要があるが
、充分な密閉度を保持するためには、封口体を装着する
一定の空間、および密封手段を設けることが不可欠であ
り、電解コンデンサの小型化を困難にしている。そのた
め、電解コンデンサ本体の小型化を前提とするチップ形
の電解コンデンサについては、各種の提案がなされてい
るものの、例えばプリント基板からの高さ寸法を10I
11ないし4閣程度とすることが限界であり、セラミッ
クコンデンサの外形寸法と同等の1mmないし3m程度
のチップ形電解コンデンサを実現することは極めて困難
であった。
When miniaturizing an electrolytic capacitor with such a sealed structure, it is necessary to simultaneously downsize this sealed structure, but in order to maintain a sufficient degree of sealing, it is necessary to have a certain space for installing the sealing body, and to It is essential to provide a means, which makes it difficult to miniaturize electrolytic capacitors. For this reason, various proposals have been made for chip-type electrolytic capacitors that are based on the premise of reducing the size of the electrolytic capacitor body.
The limit is about 11 to 4 capacitors, and it has been extremely difficult to realize a chip-type electrolytic capacitor with an external dimension of about 1 mm to 3 m, which is equivalent to the external dimensions of a ceramic capacitor.

一方、電解液を使用しない固体電解コンデンサは、−船
釣に、表面に酸化皮膜層が形成されたタンタル等からな
る陽極体に、例えば二酸化マンガン等からなる固体電解
質層を形成し、更にカーボンペーストおよび銀ペースト
等からなる導電層を形成した構成からなる。
On the other hand, solid electrolytic capacitors that do not use electrolyte are made by forming a solid electrolyte layer made of manganese dioxide, etc. on an anode body made of tantalum or the like with an oxide film layer formed on the surface, and then carbon paste. and a conductive layer made of silver paste or the like.

このような固体電解コンデンサは、電解質が固体である
ため小型化が比較的容易であり、チップ化が可能である
Since the electrolyte of such a solid electrolytic capacitor is solid, it is relatively easy to downsize and can be made into a chip.

しかしながら、従来の固体電解コンデンサでは静電容量
範囲が0.1〜10μF程度に限られてしまう。またそ
のインピーダンス特性は、電解液を使用した電解コンデ
ンサよりは優れるものの、セラミックコンデンサ等と比
較すると未だ充分ではなく、また陽極体にタンタルを使
用した場合はコスト高となってしまう。
However, the capacitance range of conventional solid electrolytic capacitors is limited to about 0.1 to 10 μF. In addition, although its impedance characteristics are superior to electrolytic capacitors using electrolyte, they are still insufficient compared to ceramic capacitors and the like, and if tantalum is used for the anode body, the cost will be high.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、近年テトラシアノキノジメタン(TCNQ)
 、ポリピロール等の有機導電性化合物を固体電解コン
デンサに応用したものが提案されている。例えば、ポリ
ピロールを利用した固体電解コンデンサとしては、特開
昭63−158829号、特開昭63−173313号
、特開平1−228122号、特開平1−232712
号、特開平1−231605号、特開平1−24351
0号、特開平1−260809号、特開平1−2681
11号等が挙げられる。
By the way, in recent years tetracyanoquinodimethane (TCNQ)
, solid electrolytic capacitors using organic conductive compounds such as polypyrrole have been proposed. For example, solid electrolytic capacitors using polypyrrole are disclosed in Japanese Patent Application Laid-open Nos. 158829-1982, 173313-1983, 228122-1992, and 232712-1999.
No., JP-A No. 1-231605, JP-A No. 1-24351
No. 0, JP-A No. 1-260809, JP-A No. 1-2681
No. 11 etc. are mentioned.

これらの固体電解コンデンサは、従来の金属酸化物半導
体からなる固体電解質と比較して、電導度が高いことか
ら、特に高周波のインピーダンス特性に優れるとともに
、液体を電解コンデンサ本体に密封する必要がないこと
から小型化が容易である。
These solid electrolytic capacitors have higher conductivity than conventional solid electrolytes made of metal oxide semiconductors, so they have particularly excellent impedance characteristics at high frequencies, and there is no need to seal liquid inside the electrolytic capacitor body. Therefore, miniaturization is easy.

しかし、TCNQ錯体は化学的安定性に欠けるきらいが
あり、特に耐熱性に劣る。そのため、アルミニウムから
なる陽極体の表面に、TCNQ錯体からなる電解質層を
形成した固体電解コンデンサの場合、通常260°C前
後に上昇する半田付は温度により電解質層が変成してし
まうことがあり、チップ化には不向きであった。
However, TCNQ complexes tend to lack chemical stability, and are particularly poor in heat resistance. Therefore, in the case of a solid electrolytic capacitor in which an electrolyte layer made of a TCNQ complex is formed on the surface of an anode body made of aluminum, the electrolyte layer may be denatured due to the temperature during soldering, which is normally heated to around 260°C. It was unsuitable for chipping.

ポリピロールは高い電導度が得られ、これを電解質とし
て用いた固体電解コンデンサは、電解質がポリマー化し
ているため耐熱性にも優れることから、チップ化に最適
と言われている。
Polypyrrole has high conductivity, and solid electrolytic capacitors using polypyrrole as the electrolyte are said to be ideal for chipping because the electrolyte is polymerized and has excellent heat resistance.

このポリピロールは、ピロールの化学重合、電解重合あ
るいは気相重合等によって陽極体表面に生成されている
。ところが、このポリピロール自体の機械的強度は弱く
、製造工程中において陽極体にかかる機械的なストレス
により電解質層が破損してしまうことがあった。
This polypyrrole is produced on the surface of the anode body by chemical polymerization, electrolytic polymerization, gas phase polymerization, etc. of pyrrole. However, the mechanical strength of this polypyrrole itself is weak, and the electrolyte layer may be damaged due to mechanical stress applied to the anode body during the manufacturing process.

また、ポリピロールは水分により特性が変動してしまう
。そのため、耐湿性を向上させた外装構造が必要となる
Furthermore, the properties of polypyrrole vary depending on moisture. Therefore, an exterior structure with improved moisture resistance is required.

このような要請は、従来の固体電解コンデンサのように
、強固なブロック状の陽極体にポリピロール層を形成す
るとともに、外装を厚めの外装樹脂で被覆することによ
って満たすことはできる。
Such a requirement can be met by forming a polypyrrole layer on a strong block-shaped anode body and covering the exterior with a thick exterior resin, as in conventional solid electrolytic capacitors.

しかしながら、部品全体の小型化を阻害してしまうこと
になり、前記のように、セラミックコンデンサと同程度
の外形寸法とすることは困難であった。
However, this hinders miniaturization of the entire component, and as mentioned above, it has been difficult to make the external dimensions comparable to those of the ceramic capacitor.

この発明の目的は、チップ形の電子部品として充分な剛
性を有し、機械的強度が脆弱な電解質層であっても製造
工程中に破損することのない、信顛性の高い固体電解コ
ンデンサを提供することにある。
The purpose of this invention is to provide a highly reliable solid electrolytic capacitor that has sufficient rigidity as a chip-shaped electronic component and will not be damaged during the manufacturing process even if the electrolyte layer has weak mechanical strength. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、固体電解コンデンサにおいて、誘電体層、
電解質層および導電層が順次性成された凹部を備えると
ともに、外表面の一部もしくは全部に酸化皮膜層が形成
された陽極体を帯状の陰極体の雨面に配置したことを特
徴としている。
This invention provides a solid electrolytic capacitor including a dielectric layer,
It is characterized by having a concave portion in which an electrolyte layer and a conductive layer are sequentially formed, and an anode body having an oxide film layer formed on part or all of its outer surface is placed on the rain surface of a strip-shaped cathode body.

そして、その製造方法として、弁作用金属からなる平板
状の陽極体に、選択的な凹部を設けるとともに、この凹
部を含む外表面の一部もしくは全部に化成処理を施して
酸化皮膜層を形成したのち、凹部に電解質層および導電
層を順次生成したことを特徴としている。
As a manufacturing method, selective recesses are provided in a flat anode body made of a valve metal, and a part or all of the outer surface including the recesses is subjected to a chemical conversion treatment to form an oxide film layer. It is characterized in that an electrolyte layer and a conductive layer are subsequently formed in the recess.

〔作 用〕[For production]

図面に示すように、この発明では、機械的に脆弱な電解
質層3、例えばポリピロール層は、導電層4とともに陽
極体1の一部に形成した凹部6に形成され、相対的な凸
部7に囲繞されることになる。そして、この陽極体1を
帯状の陰極体5の雨面に配置している。そのため、電解
質N3は、電解質層3が生成されている陽極体1によっ
て外部から遮断されることになり、電解質層3自体を外
気から密閉する必要がなくなる。また、陰極体5の雨面
に陽極体1を配置することで、電解質層3と陰極体5と
の電気的な接続を行うことができるので、接続構造が簡
略となるとともに、陰極体5をそのまま外部接続用の端
子とすることができる。
As shown in the drawings, in the present invention, a mechanically fragile electrolyte layer 3, such as a polypyrrole layer, is formed together with a conductive layer 4 in a recess 6 formed in a part of an anode body 1, and is formed in a relative protrusion 7. It will be surrounded. The anode body 1 is placed on the rain surface of the strip-shaped cathode body 5. Therefore, the electrolyte N3 is blocked from the outside by the anode body 1 on which the electrolyte layer 3 is formed, and there is no need to seal the electrolyte layer 3 itself from the outside air. Furthermore, by placing the anode body 1 on the rain surface of the cathode body 5, it is possible to electrically connect the electrolyte layer 3 and the cathode body 5, which simplifies the connection structure and allows the cathode body 5 to It can be used as a terminal for external connection as it is.

また、固体電解コンデンサの外表面となる陽極体1の表
面、すなわち陽極体1の凹部6内の表面以外の表面に、
硬質の絶縁体である酸化皮膜層が形成されており、陽極
体1自体の機械的強度が向上するので、製造工程および
プリン)l板への実装工程においても、移送ノズル等の
押圧による電解質層3の破損を抑制することができるよ
うになるほか、陽極体1の外表面を絶縁する必要がなく
なり、陰極端子となる陰極体5および陽極端子2を陽極
体1の外表面に沿って密着させることができるようにな
る。
Further, on the surface of the anode body 1 which is the outer surface of the solid electrolytic capacitor, that is, on the surface other than the surface inside the recess 6 of the anode body 1,
An oxide film layer, which is a hard insulator, is formed, and the mechanical strength of the anode body 1 itself is improved. Therefore, during the manufacturing process and the mounting process on the printed circuit board, the electrolyte layer can be easily removed by pressure from a transfer nozzle, etc. In addition to being able to suppress damage to the anode body 1, there is no need to insulate the outer surface of the anode body 1, and the cathode body 5, which becomes the cathode terminal, and the anode terminal 2 are brought into close contact along the outer surface of the anode body 1. You will be able to do this.

また、アルミニウムからなる陽極体1は外部に露出して
いるものの、この外表面に酸化皮膜層を形成した場合に
は、陽極体1を絶縁する必要がなくなる。
Further, although the anode body 1 made of aluminum is exposed to the outside, if an oxide film layer is formed on the outer surface of the anode body 1, there is no need to insulate the anode body 1.

〔実施例〕〔Example〕

次いでこの発明の実施例を図面にしたがい説明する。 Next, embodiments of the invention will be described with reference to the drawings.

第1図は、この発明の実施例による製造工程を説明する
部分断面斜視図、第2図はこの発明の実施例により形成
された固体電解コンデンサの概念構造を示した部分断面
図、第3図は実施例による固体電解コンデンサを示す斜
視図である。
FIG. 1 is a partial cross-sectional perspective view illustrating the manufacturing process according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view showing the conceptual structure of a solid electrolytic capacitor formed according to an embodiment of the present invention, and FIG. 1 is a perspective view showing a solid electrolytic capacitor according to an example.

帯状に形成された陽極体1は、アルミニウム等の弁作用
金属からなり、第1図(a)に示したように、その一部
に深さ約100μmの選択的な凹部6が一定間隔に形成
されている。この凹部6は、プレス加工、切削加工等に
よる機械的加工もしくは化学エツチング加工等による化
学的処理のいずれの手段を用いて形成してもよい。そし
てこの凹部6内の表面積を拡大するため、エツチング処
理、例えば電解エツチング処理を施してその表面を粗面
化する。
The anode body 1 formed in a band shape is made of a valve metal such as aluminum, and as shown in FIG. 1(a), selective recesses 6 with a depth of about 100 μm are formed at regular intervals in a part of the anode body 1. has been done. The recess 6 may be formed by mechanical processing such as pressing or cutting, or chemical processing such as chemical etching. In order to enlarge the surface area within this recess 6, etching treatment, for example electrolytic etching treatment, is performed to roughen the surface.

次いで陽極体1の凹部6を含む外表面、すなわち陽極体
1の表面9a、裏面9bに化成処理を施して陽極体1の
表面9a、裏面9bに酸化皮膜層を形成する。この酸化
皮膜層は、アルミニウムからなる陽極体1の表層が酸化
した酸化アルミニウムからなり、絶縁性を示すとともに
アルミニウムと比較して硬質となる。
Next, the outer surface of the anode body 1 including the recess 6, that is, the front surface 9a and the back surface 9b of the anode body 1, is subjected to a chemical conversion treatment to form an oxide film layer on the front surface 9a and the back surface 9b of the anode body 1. This oxide film layer is made of aluminum oxide obtained by oxidizing the surface layer of the anode body 1 made of aluminum, and exhibits insulating properties and is harder than aluminum.

なお、この酸化皮膜層は、陽極体1の凹部6内において
は誘電体層となる。また、化成処理は通常実施されてい
る条件にしたがって行う。例えば、ホウ酸5%程度の水
溶液にアンモニアを加え、6〜7pl+に調整したもの
に陽極体1を浸漬するとともに、直流電圧を印加して化
成処理を施した。
Note that this oxide film layer becomes a dielectric layer within the recess 6 of the anode body 1. Further, the chemical conversion treatment is carried out according to the conditions commonly used. For example, the anode body 1 was immersed in an aqueous solution of about 5% boric acid with ammonia added thereto and adjusted to 6 to 7 pl+, and a direct current voltage was applied to perform the chemical conversion treatment.

更に、化成処理を施した陽極体1を酸化剤を含有するビ
ロール溶液中に浸漬し、凹部6に化学重合によるピロー
ル薄膜を形成し、次いでピロールを溶解した電解重合用
の電解液中に浸漬するとともに電圧を印加して、第2図
に示したような厚さ数μmないし数十μmのポリピロー
ル層からなる電解質層3を生成する。
Further, the anode body 1 subjected to the chemical conversion treatment is immersed in a pyrrole solution containing an oxidizing agent to form a pyrrole thin film by chemical polymerization in the recesses 6, and then immersed in an electrolytic solution for electrolytic polymerization in which pyrrole is dissolved. At the same time, a voltage is applied to form an electrolyte layer 3 consisting of a polypyrrole layer having a thickness of several μm to several tens of μm as shown in FIG.

次いで、電解質層3の表面に導電層4をスクリーン印刷
する(第1図(b))。その結果、第2図に示したよう
に、陽極体1の凹部6には、電解質層3および導電層4
が順次生成されることになる。
Next, a conductive layer 4 is screen printed on the surface of the electrolyte layer 3 (FIG. 1(b)). As a result, as shown in FIG. 2, the electrolyte layer 3 and the conductive layer 4
will be generated sequentially.

この導電層4は、カーボンペーストおよび銀ペーストか
らなる多層構造、もしくは導電性の良好な金属粉を含有
する導電性接着剤からなる単層構造の何れでもよい。
This conductive layer 4 may have either a multilayer structure made of carbon paste and silver paste, or a single layer structure made of a conductive adhesive containing metal powder with good conductivity.

そして、この陽極体1を、第1図(b)に示したように
、陽極体10幅手方向の切断線Y、 、Y、ならびに長
手方向の切断線X、において切断し、第1図(C)に示
したような、単体の陽極体1aを得る。
Then, as shown in FIG. 1(b), this anode body 1 is cut along cutting lines Y, , Y in the width direction of the anode body 10, and cutting lines X in the longitudinal direction. A single anode body 1a as shown in C) is obtained.

なお必要に応じて、例えば陽極体lのほぼ中央部付近の
切断線Xiで陽極体1を切断し、より小型の固体電解コ
ンデンサを得ることもできる。
If necessary, it is also possible to obtain a smaller solid electrolytic capacitor by cutting the anode body 1, for example, along the cutting line Xi near the approximate center of the anode body 1.

陰極体5は、第3図に示すように、帯状のアルミニウム
もしくはその合金からなる。この陰極体5の雨面に、複
数の陽極体1a、1bを、その導電層4が互いに対面す
るように配置して接合する。また、陰極体5が導出され
た端面と対向する端面には、陽極引き出し用の陽極端子
2を超音波溶接、レーザ溶接等の手段で接続する。更に
、陰極体5の導出部分には耐熱性の合成樹脂からなる封
止部8を形成して、第3図に示したような固体電解コン
デンサを得る。封止部8は、耐熱性の弾性ゴムを挟み込
んで形成してもよい。
As shown in FIG. 3, the cathode body 5 is made of a strip-shaped aluminum or an alloy thereof. A plurality of anode bodies 1a and 1b are arranged and bonded to the rain surface of this cathode body 5 so that their conductive layers 4 face each other. Further, an anode terminal 2 for drawing out the anode is connected to the end face opposite to the end face from which the cathode body 5 is led out by ultrasonic welding, laser welding, or the like. Further, a sealing portion 8 made of heat-resistant synthetic resin is formed on the lead-out portion of the cathode body 5 to obtain a solid electrolytic capacitor as shown in FIG. The sealing portion 8 may be formed by sandwiching heat-resistant elastic rubber.

なお、図示しないが、陽極体1a、1bの裏面9bは絶
縁性の酸化アルミニウムからなるため、陽極体1a、1
bに接続した陽極端子2および陰極体5の先端を陽極体
1a、1bの側面に沿って折り曲げて密着させてもよい
Although not shown, since the back surfaces 9b of the anode bodies 1a, 1b are made of insulating aluminum oxide, the anode bodies 1a, 1b
The tips of the anode terminal 2 and the cathode body 5 connected to the anode bodies 1a and 1b may be bent along the side surfaces of the anode bodies 1a and 1b to bring them into close contact.

以上のような製造方法により得られた固体電解コンデン
サでは、第2図に示したように、電解質層3が陰極体5
の雨面に配置され、導電層4を介して、挟み込むように
陰極体5と接続されるので、電解質層3と陰極体5との
電気的な接続構造が簡略になる。
In the solid electrolytic capacitor obtained by the above manufacturing method, as shown in FIG.
Since the electrolyte layer 3 and the cathode body 5 are placed on the rain surface and connected to the cathode body 5 via the conductive layer 4 in a sandwiching manner, the electrical connection structure between the electrolyte layer 3 and the cathode body 5 is simplified.

また、電解質層3は、裏面9bに硬質の酸化アルミニウ
ムからなる酸化皮膜層が形成された陽極体1a、1bに
よって外部から遮断されることになり、外部からの機械
的ストレスに対しても強固になる。
In addition, the electrolyte layer 3 is shielded from the outside by the anode bodies 1a and 1b, which have an oxide film layer made of hard aluminum oxide formed on the back surface 9b, and is thus strongly resistant to mechanical stress from the outside. Become.

なお、この実施例において、陰極体5および陽極端子2
は、半田付は可能な銅等の金属からなるものを使用した
が、アルミニウムと銅等の半田付は可能な金属とのクラ
ツド材を用いてもよい。
In addition, in this embodiment, the cathode body 5 and the anode terminal 2
Although a material made of a metal such as copper that can be soldered is used in the above, a cladding material of aluminum and a metal that can be soldered such as copper may also be used.

また、陽極体1の表面に形成する酸化皮膜層は、帯状の
陽極体1を所望箇所で切断したのちに化成処理を施して
形成してもよい。この場合、陽極体1の切断端面にも酸
化皮膜層が形成されることになり、陽極体1の機械的強
度および絶縁がより強固なものとなる。
Further, the oxide film layer formed on the surface of the anode body 1 may be formed by cutting the band-shaped anode body 1 at a desired location and then performing a chemical conversion treatment. In this case, an oxide film layer is also formed on the cut end surface of the anode body 1, and the mechanical strength and insulation of the anode body 1 become stronger.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明は、固体電解コンデンサにおいて
、誘電体層、電解質層および導電層が順次生成された凹
部を備えるとともに、外表面の一部もしくは全部に酸化
皮膜層が形成された陽極体を帯状の陰極体の雨面に配置
したことを特徴としているので、固体電解コンデンサの
外表面に配置されることになる陽極体が酸化皮膜層によ
り強固なものとなる。そのため、固体電解コンデンサ自
体の機械的強度が向上し、内部の電解質層を外部の機械
的ストレスから保護することが容易となる。
As described above, the present invention provides a solid electrolytic capacitor that includes a concave portion in which a dielectric layer, an electrolyte layer, and a conductive layer are sequentially formed, and an anode body that has an oxide film layer formed on part or all of the outer surface. Since it is characterized in that it is placed on the rain surface of the strip-shaped cathode body, the anode body that will be placed on the outer surface of the solid electrolytic capacitor is made stronger by the oxide film layer. Therefore, the mechanical strength of the solid electrolytic capacitor itself is improved, and the internal electrolyte layer can be easily protected from external mechanical stress.

また、雨面に陽極体が配置される陰極体は、そのまま外
部接続用の陰極端子となる。そのため、陰極体を陽極体
の外表面に沿って折り曲げた場合、陰極体と陽極体とを
絶縁する必要があるが、陽極体の裏面、すなわち固体電
解コンデンサの外表面を絶縁体である酸化皮膜層で覆っ
た場合、陰極端子である陰極体と陽極体とを絶縁する必
要がなくなるとともに、プリント基板の配線パターンと
の絶縁を同時に実現することができる。
Further, the cathode body with the anode body disposed on the rain surface directly serves as a cathode terminal for external connection. Therefore, when the cathode body is bent along the outer surface of the anode body, it is necessary to insulate the cathode body and anode body. When covered with a layer, there is no need to insulate the cathode body and the anode body, which are cathode terminals, and insulation from the wiring pattern of the printed circuit board can be achieved at the same time.

また、この固体電解コンデンサの製造方法として、弁作
用金属からなる平板状の陽極体に、選択的な凹部を設け
るとともに、この凹部を含む外表面の一部もしくは全部
に化成処理を施して酸化皮膜層を形成したのち、凹部に
電解質層および導電層を順次生成したことを特徴として
いるので、陽極体の凹部に誘電体となる酸化皮膜層を形
成する通常の工程において、同時に陽極体の表面に酸化
皮膜層を形成することができ、製造方法を変更すること
なく、前記のような一部に酸化皮膜層が形成された固体
電解コンデンサを製造することができる。
In addition, as a manufacturing method for this solid electrolytic capacitor, selective recesses are provided in a flat anode body made of a valve metal, and a part or all of the outer surface including the recesses is chemically treated to form an oxide film. It is characterized in that after forming a layer, an electrolyte layer and a conductive layer are sequentially formed in the recessed part, so that in the normal process of forming an oxide film layer to serve as a dielectric in the recessed part of the anode body, at the same time, an electrolyte layer and a conductive layer are formed on the surface of the anode body. An oxide film layer can be formed, and a solid electrolytic capacitor in which an oxide film layer is partially formed as described above can be manufactured without changing the manufacturing method.

また、陽極体の凹部に電解質層および導電層を形成する
工程においては、既に陽極体の表面の一部に硬質の酸化
皮膜層が形成されているので、これらの工程中において
、陽極体に機械的なストレスがかかった場合でも、脆弱
な電解質層を破損する等のおそれがなくなり、信頼性の
高い固体電解コンデンサを得ることができる。
In addition, in the process of forming an electrolyte layer and a conductive layer in the recesses of the anode body, a hard oxide film layer has already been formed on a part of the surface of the anode body, so during these processes, the anode body is mechanically Even when stress is applied, there is no fear that the fragile electrolyte layer will be damaged, and a highly reliable solid electrolytic capacitor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による製造工程を説明する部
分断面斜視図、第2図はこの発明の実施例により形成さ
れた固体電解コンデンサの概念構造を示した部分断面図
である。第3図は実施例による固体電解コンデンサを示
す斜視図である。 l・・・陽極体、 2・・・陽極端子、3・・・電解質
層、4・・・導電層、 5・・・陰極体、 6・・・凹部、 7・・・凸部、  訃・・封止部。
FIG. 1 is a partial cross-sectional perspective view illustrating the manufacturing process according to an embodiment of the present invention, and FIG. 2 is a partial cross-sectional view showing the conceptual structure of a solid electrolytic capacitor formed according to an embodiment of the present invention. FIG. 3 is a perspective view showing a solid electrolytic capacitor according to an embodiment. 1... Anode body, 2... Anode terminal, 3... Electrolyte layer, 4... Conductive layer, 5... Cathode body, 6... Concave part, 7... Convex part, butt.・Sealing part.

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体層、電解質層および導電層が順次生成され
た凹部を備えるとともに、外表面の一部もしくは全部に
酸化皮膜層が形成された陽極体を帯状の陰極体の雨面に
配置したことを特徴とする固体電解コンデンサ。
(1) An anode body having a concave portion in which a dielectric layer, an electrolyte layer, and a conductive layer are sequentially formed, and an oxide film layer formed on part or all of the outer surface is placed on the rain surface of a strip-shaped cathode body. A solid electrolytic capacitor characterized by:
(2)弁作用金属からなる平板状の陽極体に、選択的な
凹部を設けるとともに、この凹部を含む外表面の一部も
しくは全部に化成処理を施して酸化皮膜層を形成したの
ち、凹部に電解質層および導電層を順次生成したことを
特徴とする固体電解コンデンサの製造方法。
(2) Selective recesses are provided in a flat plate-shaped anode body made of a valve metal, and a part or all of the outer surface including the recesses is subjected to chemical conversion treatment to form an oxide film layer, and then the recesses are A method for manufacturing a solid electrolytic capacitor, characterized in that an electrolyte layer and a conductive layer are sequentially formed.
JP8690590A 1990-03-30 1990-03-30 Solid electrolytic capacitor and method of manufacturing the same Expired - Fee Related JP2895907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8690590A JP2895907B2 (en) 1990-03-30 1990-03-30 Solid electrolytic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8690590A JP2895907B2 (en) 1990-03-30 1990-03-30 Solid electrolytic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03284818A true JPH03284818A (en) 1991-12-16
JP2895907B2 JP2895907B2 (en) 1999-05-31

Family

ID=13899858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8690590A Expired - Fee Related JP2895907B2 (en) 1990-03-30 1990-03-30 Solid electrolytic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2895907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087288A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor and production method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087288A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp Solid electrolytic capacitor and production method of the same

Also Published As

Publication number Publication date
JP2895907B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
JP4056531B2 (en) Surface mount type chip capacitor and manufacturing method thereof
US20090116173A1 (en) Solid electrolytic capacitor
JP2001307955A (en) Solid electrolytic capacitor
KR100220609B1 (en) Solid electrolytic capacitor and a method of producing the same
JP2002299161A (en) Composite electronic component
JP2950587B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03284818A (en) Solid electrolytic capacitor and manufacture thereof
JP2902714B2 (en) Method for manufacturing solid electrolytic capacitor
JP2902715B2 (en) Method for manufacturing solid electrolytic capacitor
JP2958040B2 (en) Method for manufacturing solid electrolytic capacitor
JP2950586B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03284821A (en) Solid electrolytic capacitor
JPH04284617A (en) Manufacture of solid electrolytic capacitor
JPH03291910A (en) Solid-state electrolytic capacitor
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
JPH08752Y2 (en) Solid electrolytic capacitor
JP2972304B2 (en) Solid electrolytic capacitors
JP2955312B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0693421B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03200312A (en) Solid electrolytic capacitor
JPH04276613A (en) Fabrication of solid electrolytic capacitor
JPH03297121A (en) Manufacture of solid electrolytic capacitor
JPH0521291A (en) Solid electrolytic capacitor
JP2996314B2 (en) Solid electrolytic capacitors
JPH03297122A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees