JPH0328464B2 - - Google Patents

Info

Publication number
JPH0328464B2
JPH0328464B2 JP2704283A JP2704283A JPH0328464B2 JP H0328464 B2 JPH0328464 B2 JP H0328464B2 JP 2704283 A JP2704283 A JP 2704283A JP 2704283 A JP2704283 A JP 2704283A JP H0328464 B2 JPH0328464 B2 JP H0328464B2
Authority
JP
Japan
Prior art keywords
organic
insulating paint
solvent
acid
electrically insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2704283A
Other languages
Japanese (ja)
Other versions
JPS59155477A (en
Inventor
Tasuku Tanaka
Koji Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOTOKU TORYO KK
Original Assignee
TOTOKU TORYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOTOKU TORYO KK filed Critical TOTOKU TORYO KK
Priority to JP2704283A priority Critical patent/JPS59155477A/en
Publication of JPS59155477A publication Critical patent/JPS59155477A/en
Publication of JPH0328464B2 publication Critical patent/JPH0328464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は電気絶瞁塗料及びその補造方法に関
し、特に、有機溶剀の䜿甚を䜎枛できる高濃床型
ポリ゚ステルアミド暹脂電気絶瞁塗料及びその補
造方法に関し、又非クレゟヌル系溶剀に溶解で
き、か぀高濃床化を達成できるポリ゚ステルアミ
ド暹脂電気絶瞁塗料及びその補造方法に関する。 埓来の電気絶瞁塗料以䞋単に絶瞁塗料ずい
うはポリ゚ステル暹脂、ポリ゚ステルむミド暹
脂等の皮膜圢成暹脂分をクレゟヌル・プノヌル
等のクレゟヌル系溶剀を䞻䜓ずする有機溶剀に溶
解させたものが䞻ずしお甚いられおきたが、これ
ら絶瞁塗料䞭の皮膜圢成暹脂分はたかだか20〜40
にずどたる。省資源や䜜業環境改善や公害防止
等の芋地からは残りの60〜80を占める有機溶剀
の䜿甚量を少なくするこずが望たれ、高濃床絶瞁
塗料の開発が芁望されおいた。 さらに、䞊蚘したクレゟヌル系溶剀は臭気や毒
性の点においお問題があり、クレゟヌル系溶剀を
䜿甚しない絶瞁塗料の開発が望たれおいた。 本発明者らは䞊蚘の芁請に察凊すべく鋭意怜蚎
を重ねた結果以䞋説明する本発明に到達したもの
であり、特に、個の氎酞基ず個のカルボキシ
ル基を有するク゚ン酞の特異な分子圢態を掻甚し
お、耐熱性絶瞁塗料ずしお良奜な特性を保持する
ばかりでなく、高濃床化を達成し、又非クレゟヌ
ル系溶剀にも可溶な絶瞁塗料を埗るこずに成功し
た。 すなわち本発明の絶瞁塗料は有機倚䟡カルボン
酞、有機倚䟡カルボン酞無氎物及び有機倚䟡カル
ボン酞䜎玚アルキル゚ステルよりなる矀から遞ば
れた有機倚䟡カルボン酞類ず有機倚䟡アルコヌル
ずク゚ン酞ず有機ゞアミンずを反応させるこずに
より埗られたポリ゚ステルアミド暹脂及び有機溶
剀から成るこずを特城ずしたものである。 本発明で䜿甚される有機倚䟡カルボン酞ずしお
は、䟋えばコハク酞、アゞピン酞、セバシン酞、
フタル酞、む゜フタル酞、テレフタル酞、トリメ
リツト酞、ブタントリカルボン酞、ヘミメリツト
酞、ピロメリツト酞、ベンゟプノンテトラトラ
カルボン酞、ナフタリンゞカルボン酞等があげら
れる。たた、これら各酞の無氎物及び䜎玚アルキ
ル゚ステルも本発明における有機倚䟡カルボン酞
類ずしお甚いるこずができる。これらの有機倚䟡
カルボン酞類は皮類を甚いおもよいし、皮以
䞊を適宜に䜵甚するこずも可胜である。 本発明に䜿甚される有機倚䟡アルコヌルずしお
は、䟋えば゚チレングリコヌル、プロピレングリ
コヌル、ゞ゚チレングリコヌル、ゞプロピレング
リコヌル、トリ゚チレングリコヌル、トリプロピ
レングリコヌル、ネオペンチレングリコヌル、ブ
タンゞオヌル、グリセリン、トリメチロヌルプロ
パン、トリス−ヒドロキシ゚チルむ゜シア
ヌレヌト、ペンタ゚リスリトヌル等があげられ
る。これらの有機倚䟡アルコヌルは皮類を甚い
おもよいし、皮以䞊を䜵甚しおもよい。 本発明に䜿甚されるク゚ン酞は前蚘の通り分子
䞭に個の氎酞基ず個のカルボキシル基を有す
るオキシトリカルボン酞であるが、通垞結晶氎
分子を有する分子量210の結晶䜓ずしお垂販され
るこずが倚い。本発明では結晶氎を含たないク゚
ン酞及び結晶氎を含むク゚ン酞のいずれも甚いる
こずができる。 本発明に䜿甚される有機ゞアミンずしおは、䟋
えばヘキサメチレンゞアミン、オクタメチレンゞ
アミン、メタプニレンゞアミン、パラプニレ
ンゞアミン、4′−ゞアミノゞプニルメタ
ン、4′−ゞアミノゞプニル゚ヌテル、
4′−ゞアミノゞプニルスルホン、4′−ゞア
ミノゞプニルプロパン、メタキシレンゞアミ
ン、パラキシレンゞアミン、−ゞアミノシ
クロヘキサン、2′−ゞアミノゞ゚チル゚ヌテ
ル、グアナミン等があげられる。これらの有機ゞ
アミンも皮類を甚いおもよいし、皮以䞊を適
宜に䜵甚しおもよい。 本発明に䜿甚される有機溶剀ずしおは非クレゟ
ヌル系溶剀を䜿甚するこずが奜たしい。本発明絶
瞁塗料は非クレゟヌル系溶剀に可溶である。圓該
クレゟヌル系溶剀の䟋ずしおは、゚チレングリコ
ヌルモノメチル゚ヌテル、゚チレングリコヌルモ
ノ゚チル゚ヌテル、゚チレングリコヌルモノブチ
ル゚ヌテル、プロピレングリコヌルモノ゚チル゚
ヌテル、プロピレングリコヌルモノブチル゚ヌテ
ル、ゞ゚チレングリコヌルモノメチル゚ヌテル、
ゞ゚チレングリコヌルモノ゚チル゚ヌテル、ゞ゚
チレングリコヌルモノブチル゚ヌテル、ゞプロピ
レングリコヌルモノブチル゚ヌテル、−メチル
メトキシブタノヌル、−トリメチル
−ペンタンゞオヌルモノむ゜ブチレヌト、
゚チレングリコヌルモノむ゜ブチル゚ヌテルなど
のグリコヌル゚ヌテル系溶剀、ベンゞルアルコヌ
ル、アセトンアルコヌル、ゞアセトンアルコヌル
などのアルコヌル系溶剀、及びむ゜ホロンなどが
あげられる。これらの内䞀般匏R1OCHR2−
CH2OoR1は䜎玚アルキル基、R2は氎玠又はメ
チル基、は〜の敎数で瀺されるグリコヌ
ル゚ヌテル系溶剀が特に奜適である。これらは
皮を甚いおもよいが、通垞皮以䞊を䜵甚する。
又、キシロヌルなどの芳銙族炭化氎玠系溶剀を濁
りを発生しない範囲で䜵甚しおもよい。 も぀ずも本発明においおは有機溶剀ずしおクレ
ゟヌル、プノヌル、キシレノヌル等のグレゟヌ
ル系溶剀を䜿甚しおもよい。これらクレゟヌル系
溶剀を䜿甚するずしおも本発明によれば有機溶剀
の䜿甚量を少なくするこずができ、高濃床の絶瞁
塗料を埗るこずができるからである。クレゟヌル
系溶剀は皮類を甚いおもよいが通垞皮以䞊の
混合溶剀が甚いられる。又この堎合にもキシロヌ
ルなどの芳銙族炭化氎玠系溶剀を濁りを発生しな
い範囲で䜵甚しおもよい。 本発明の電気絶瞁塗料には塗料皮膜の性胜向䞊
等の芳点から架橋剀を適宜添加するこずが奜たし
い。架橋剀の具䜓䟋ずしおは、䟋えばテトラブチ
ルチタネヌト、テトラむ゜プロピルチタネヌト、
テトラプニルチタネヌト、又はこれらの化合物
をトリ゚タノヌルアミン、アセト酢酞゚チル、ア
セチルアセトン等によ぀おキレヌト化した有機チ
タン化合物類があげられる。 本発明に係るポリ゚ステルアミド暹脂はその補
造法の劂䜕に特に制限されないが、奜たしくは有
機倚䟡カルボン酞、有機倚䟡カルボン酞無氎物及
び有機倚䟡カルボン酞䜎玚アルキル゚ステルより
なる矀から遞ばれた有機倚䟡カルボン酞類ず有機
倚䟡アルコヌルずを゚ステル化反応させおポリ゚
ステルポリオヌルずし、埗られたポリ゚ステルポ
リオヌルずク゚ン酞及び有機ゞアミンずを反応さ
せるのがよく、これにより、特に、高濃床化を達
成し、か぀非クレゟヌル系溶剀の絶瞁塗料ずしお
良奜な特性をも぀ものを埗るこずができる。 次に、本発明のポリ゚ステルアミド暹脂絶瞁塗
料の奜たしい補造方法の各工皋に぀いお詳述す
る。 たず、有機倚䟡カルボン酞類ず有機倚䟡アルコ
ヌルずを゚ステル化反応させる工皋で、有機倚䟡
カルボン酞成分ず有機倚䟡アルコヌル成分ずの配
合割合は有機倚䟡アルコヌル成分が過剰になるよ
うにしお反応させる。すなわち反応混合物の党氎
酞基数党カルボキシ基数の比が1.2〜2.5、奜た
しくは1.4〜2.0になるように䞡成分を配合する。
この比が小さすぎるず反応が十分進行しないうち
にゲル化する恐れがあり、倧きすぎるず未反応の
有機倚䟡アルコヌルが残圚しおくるのでいずれも
奜たしくない。この゚ステル化反応を行う際には
゚ステル亀換觊媒ないし重瞮合觊媒が甚いられ
る。䟋えば鉛、亜鉛、カドミりム、コバルト、マ
ンガン、マグネシりム等の酢酞塩のような有機酞
塩、鉛、アンチモン等の酞化物、テトラアルキル
チタネヌト等を䜿甚するこずができる。その䜿甚
量は有機倚䟡カルボン酞成分に察しお0.03〜0.2
重量、奜たしくは0.05〜0.15である。゚ステ
ル化反応は垞法により反応混合物を160〜200℃に
昇枩させ、所望の酞䟡ずなるたで反応させる方法
で行う。゚ステル化物の酞䟡が20〜100、奜たし
くは30〜50にな぀た時点で反応を停止させる。生
成ポリ゚ステルポリオヌルの酞䟡が20未満になる
ず最終ポリ゚ステルアミドの粘床が高くなり、た
た、酞䟡が100以䞊の堎合は分子量が小さすぎる
ために塗料皮膜の性胜が悪くなる。 以䞊のようにしお埗られたポリ゚ステルポリオ
ヌルに、次いでク゚ン酞及び有機ゞアミンを加え
お反応させポリ゚ステルアミドずする。ク゚ン酞
の配合割合は、ポリ゚ステルポリオヌルを埗るの
に甚いた有機倚䟡カルボン酞成分の合蚈モル数に
察しお〜50モル、奜たしくは10〜40モルで
ある。ク゚ン酞の配合割合が圓該範囲を逞脱する
ずク゚ン酞䜿甚の効果が充分発揮できず、たたク
゚ン酞の配合割合が少なすぎるず塗料皮膜の耐熱
性が向䞊しないし、䞀方ク゚ン酞の配合割合が倚
くなりすぎるず塗料皮膜が硬盎化するので奜たし
くない。 有機ゞアミンの䜿甚割合はク゚ン酞に察しお50
〜250モル、奜たしくは80〜200モルである。
有機ゞアミンの割合が少なすぎるず生成ポリ゚ス
テルアミドに未反応のカルボキシル基が倚く残り
塗料皮膜の性胜が䜎䞋する。たた、有機ゞアミン
の䜿甚割合が倚くなりすぎるず生成ポリ゚ステル
アミドの䞉次元化が進みすぎ、溶解性が悪くな
る。 ポリ゚ステルポリオヌルずク゚ン酞及び有機ゞ
アミンずの反応は、通垞、䞊蚘した゚ステル化反
応で埗られたポリ゚ステルポリオヌルの枩床が
150℃以䞋にな぀おから所定量のク゚ン酞ず有機
ゞアミンを加え、150〜220℃、奜たしくは180〜
200℃の枩床で数時間〜10数時間反応させ、酞䟡
が15〜100、奜たしくは20〜40ずな぀た時点で反
応を停止させる。䟋えば、150℃以䞋の枩床にな
぀たポリ゚ステルポリオヌルにク゚ン酞及び有機
ゞアミンを加え、150〜190℃たで〜時間をか
けお昇枩させ、この枩床で数時間保ち、所定の酞
䟡にな぀た時点で加熱を䞭止しお溶剀の䞀郚ない
し党郚を加えお反応を停止させる。生成したポリ
゚ステルアミドの酞䟡が15未満ではポリ゚ステル
アミドの分子が倧きくなりすぎおいるため塗料の
粘床が高くなる。たた、酞䟡が100を越えるずポ
リ゚ステルアミドが充分な倧きさの分子にたで成
長しおいないために塗料皮膜の絶瞁性胜等が悪く
なる。 最埌に80℃以䞋の枩床で所望により架橋剀を加
えるず目的の高濃床ポリ゚ステルアミド暹脂塗料
ずなる。架橋剀の添加量は暹脂分に察しお金属分
ずしお通垞0.2〜3.0重量である。架橋剀の添加
量が少なすぎるず、塗料皮膜の性胜が䞍十分ずな
り、倚すぎる堎合には塗料の経日粘床䞊昇が著し
くなり、か぀塗料皮膜が硬盎化するのでいずれも
奜たしくない。 以䞋に実斜䟋及び比范䟋をあげお本発明をさら
に詳述する。 実斜䟋  撹拌機、枩床蚈及び枬管付冷华噚を取り付けた
の四ツ口フラスコに、無氎トリメリツト酞
192モル、む゜フタル酞99.60.6モ
ル、アゞピン酞58.40.4モル、゚チレング
リコヌル124モル、−ブタンゞオヌ
ル72.10.8モル、グリセリン110.51.2モ
ル、キシロヌル反応溶剀30及び酢酞亜鉛
0.18を仕蟌み、撹拌しながら宀枩から150℃た
で時間で昇枩させた。150℃より留出が始た぀
た。150℃から180℃たで時間で昇枩させ、185
℃に時間保぀たずころ99が留出し酞䟡55.1の
淡黄色透明の暹脂が埗られた。加熱を䞭止し、生
成暹脂の枩床が140℃に降䞋したずきに無氎ク゚
ン酞76.80.4モルず4′−ゞアミノゞプ
ニルメタン118.80.6モルを加え、再び加熱
を開始し、190℃たで時間で昇枩し、この枩床
で1.5時間反応させた。氎が11留出し、酞䟡
23.6の赀耐色の暹脂が埗られた。加熱を止めハむ
゜ルブDB〔東邊化孊工業株匏䌚瀟補のゞ゚チレ
ングリコヌルモノブチル゚ヌテル〕200、゚チ
レングリコヌルモノメチル゚ヌテル225、キシ
ロヌル75を加え暹脂溶液ずした。次いで、枩床
が80℃以䞋に䞋぀た時TBT100〔日本曹達株匏䌚
瀟補のテトラブチルチタネヌトの商品名。チタン
分14〕22.5を゚チレングリコヌルモノ゚チル
゚ヌテル22.5に溶解したものを玄30分かけお
埐々に加える。添加終了埌曎に玄30分撹拌を続け
る。埗られた塗料は䞍揮発分200℃×時間
が59.6粘床30℃が28ポむズであ぀た。 実斜䟋における原料配合、合成条件及び塗料
物性の抂芁を衚に瀺す。 実斜䟋  実斜䟋におけるず同様な装眮を甚い無氎トリ
メリツト酞153.60.8モルむ゜フタル酞132.8
0.8モル、アゞピン酞58.40.4モル、゚
チレングリコヌル1552.5モル、−ブ
タンゞオヌル63.10.7モル、グリセリン55.3
0.6モル、キシロヌル反応溶剀30及び
酢酞亜鉛0.3を仕蟌み、撹拌しながら宀枩から
150℃たで時間で昇枩させた。150℃より留出が
始た぀た。150℃から185℃たで時間で昇枩させ
185℃に時間保぀たずころ、101が留出し、酞
䟡43の淡黄色透明の暹脂が埗られた。加熱を䞭止
し、生成暹脂の枩床が140℃に降䞋したずきにク
゚ン酞630.3モルず4′−ゞアミノゞフ
゚ニルメタン118.80.6モルを加え、再び加
熱を開始し、190℃たで時間で昇枩し、この枩
床で2.5時間反応させた。氎が12留出し、酞䟡
22.8の赀耐色の暹脂が埗られた。加熱を止め、ク
レゟヌル498、キシロヌル91を加え暹脂溶液
ずした。次いで、枩床が80℃以䞋に䞋぀たずき
に、TBT100の20をクレゟヌル20に溶解した
ものを玄30分かけお埐々に加えた。添加終了埌曎
に30分撹拌を続けた。埗られた塗料は䞍揮発分
200℃×時間が51.6、粘床30℃が29ポ
むズであ぀た。 実斜䟋ず同様に実斜䟋の原料配合、合成条
件及び塗料物性の抂芁を衚に瀺す。 実斜䟋 〜10 実斜䟋及びず同様の装眮及び手順により衚
の実斜䟋〜10欄に瀺す原材料及び合成条件を
甚いお塗料を調補した。埗られた塗料の物性も衚
に瀺した。 比范䟋 実斜䟋〜10におけるず同様の装眮により、ゞ
メチルテレフタレヌト430.8、゚チレングリコ
ヌル93、グリセリン76.8及び酢酞亜鉛0.4
を垞法に埓぀お反応させお埗られたポリ゚ステル
暹脂をクレゟヌルキシロヌルの混合溶
剀で垌釈し、TBT100の12を加えポリ゚ステル
暹脂塗料を調補した。この塗料の䞍揮発分は35
、粘床は28ポむズであ぀た。 䞊蚘の各実斜䟋〜10で埗られたポリ゚ステル
アミド暹脂塗料、及び、比范䟋で埗られたポリ゚
ステル暹脂塗料をそれぞれ䜿甚し炉長の竪炉
を甚いお、導䜓埄1.0mmの銅線䞊に䞊郚枩床470
℃、䞭郚枩床420℃、䞋郚枩床370℃、線速24
分でダむス法により回焌付けお絶瞁電線を補造
した。埗られた各絶瞁電線の性胜は衚に瀺す通
りであ぀た。
The present invention relates to an electrical insulating paint and a method for producing the same, and in particular to a highly concentrated polyesteramide resin electrical insulating paint that can reduce the use of organic solvents and a method for producing the same. The present invention relates to an achievable polyesteramide resin electrical insulation coating and a method for producing the same. Conventional electrical insulating paints (hereinafter simply referred to as insulating paints) are mainly made by dissolving film-forming resins such as polyester resins and polyesterimide resins in organic solvents mainly consisting of cresol solvents such as cresol and phenol. However, the film-forming resin content in these insulating paints is at most 20 to 40%.
Stay at %. From the viewpoints of resource conservation, work environment improvement, and pollution prevention, it is desirable to reduce the amount of organic solvents that make up the remaining 60 to 80%, and there has been a demand for the development of high-concentration insulating paints. Furthermore, the above-mentioned cresol solvents have problems in terms of odor and toxicity, and it has been desired to develop an insulating coating that does not use cresol solvents. The present inventors have conducted intensive studies to meet the above requirements, and as a result have arrived at the present invention, which will be described below. By utilizing the shape of the insulating paint, we succeeded in obtaining an insulating paint that not only maintains good properties as a heat-resistant insulating paint, but also achieves high concentration and is soluble in non-cresol solvents. That is, the insulating paint of the present invention contains organic polycarboxylic acids selected from the group consisting of organic polycarboxylic acids, organic polycarboxylic acid anhydrides, and organic polycarboxylic acid lower alkyl esters, an organic polyhydric alcohol, and citric acid. It is characterized by consisting of a polyesteramide resin obtained by reacting with an organic diamine and an organic solvent. Examples of the organic polycarboxylic acids used in the present invention include succinic acid, adipic acid, sebacic acid,
Examples include phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, butanetricarboxylic acid, hemimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, naphthalene dicarboxylic acid, and the like. Furthermore, anhydrides and lower alkyl esters of these acids can also be used as the organic polycarboxylic acids in the present invention. One type of these organic polycarboxylic acids may be used, or two or more types may be used in combination as appropriate. Examples of the organic polyhydric alcohol used in the present invention include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, neopentylene glycol, butanediol, glycerin, trimethylolpropane, tris( Examples include 2-hydroxyethyl) isocyanurate and pentaerythritol. One type of these organic polyhydric alcohols may be used, or two or more types may be used in combination. As mentioned above, the citric acid used in the present invention is an oxytricarboxylic acid having one hydroxyl group and three carboxyl groups in the molecule, but usually contains 1 hydroxyl group and 3 carboxyl groups in the molecule.
It is often commercially available as a crystal with a molecular weight of 210. In the present invention, both citric acid not containing water of crystallization and citric acid containing water of crystallization can be used. Examples of the organic diamine used in the present invention include hexamethylene diamine, octamethylene diamine, metaphenylene diamine, paraphenylene diamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,
Examples include 4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenylpropane, metaxylene diamine, paraxylene diamine, 1,4-diaminocyclohexane, 2,2'-diaminodiethyl ether, and guanamine. One type of these organic diamines may be used, or two or more types may be used in combination as appropriate. As the organic solvent used in the present invention, it is preferable to use a non-cresol solvent. The insulating coating of the present invention is soluble in non-cresol solvents. Examples of the cresol solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, diethylene glycol monomethyl ether,
Diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, 3-methylmethoxybutanol, 2,3,4-trimethyl 1,3-pentanediol monoisobutyrate,
Examples include glycol ether solvents such as ethylene glycol monoisobutyl ether, alcohol solvents such as benzyl alcohol, acetone alcohol, and diacetone alcohol, and isophorone. Among these, the general formula R 1 O (CHR 2 −
Glycol ether solvents represented by CH 2 O) o (R 1 is a lower alkyl group, R 2 is hydrogen or a methyl group, n is an integer of 1 to 3) are particularly suitable. These are 1
Seeds may be used, but two or more types are usually used in combination.
Further, an aromatic hydrocarbon solvent such as xylene may be used in combination as long as it does not cause turbidity. However, in the present invention, gresol solvents such as cresol, phenol, and xylenol may be used as the organic solvent. This is because even if these cresol solvents are used, the amount of organic solvent used can be reduced according to the present invention, and an insulating coating with high concentration can be obtained. Although one type of cresol solvent may be used, a mixed solvent of two or more types is usually used. Also in this case, an aromatic hydrocarbon solvent such as xylene may be used in combination within a range that does not cause turbidity. It is preferable to add a crosslinking agent to the electrically insulating paint of the present invention as appropriate from the viewpoint of improving the performance of the paint film. Specific examples of crosslinking agents include tetrabutyl titanate, tetraisopropyl titanate,
Examples include tetraphenyl titanate, or organic titanium compounds obtained by chelating these compounds with triethanolamine, ethyl acetoacetate, acetylacetone, or the like. The polyesteramide resin according to the present invention is not particularly limited in its production method, but is preferably selected from the group consisting of organic polycarboxylic acids, organic polycarboxylic acid anhydrides, and organic polycarboxylic acid lower alkyl esters. It is preferable to esterify an organic polycarboxylic acid and an organic polyhydric alcohol to obtain a polyester polyol, and then react the obtained polyester polyol with citric acid and an organic diamine, thereby achieving particularly high concentration. Moreover, it is possible to obtain a non-cresol solvent insulating coating with good properties. Next, each step of a preferred method for producing the polyesteramide resin insulation coating of the present invention will be described in detail. First, in the step of esterifying organic polycarboxylic acids and organic polyhydric alcohol, the blending ratio of the organic polycarboxylic acid component and the organic polyhydric alcohol component is adjusted so that the organic polyhydric alcohol component is in excess. Make it react. That is, both components are blended so that the ratio of total number of hydroxyl groups to total number of carboxy groups in the reaction mixture is 1.2 to 2.5, preferably 1.4 to 2.0.
If this ratio is too small, there is a risk of gelation before the reaction progresses sufficiently, and if it is too large, unreacted organic polyhydric alcohol will remain, which is not preferable. When carrying out this esterification reaction, a transesterification catalyst or a polycondensation catalyst is used. For example, organic acid salts such as acetates of lead, zinc, cadmium, cobalt, manganese, magnesium, etc., oxides of lead, antimony, etc., tetraalkyl titanates, etc. can be used. The amount used is 0.03 to 0.2 relative to the organic polycarboxylic acid component.
% by weight, preferably 0.05-0.15%. The esterification reaction is carried out in a conventional manner by raising the temperature of the reaction mixture to 160 to 200°C and reacting until the desired acid value is reached. The reaction is stopped when the acid value of the esterified product reaches 20 to 100, preferably 30 to 50. If the acid value of the produced polyester polyol is less than 20, the viscosity of the final polyester amide will be high, and if the acid value is 100 or more, the molecular weight will be too small and the performance of the paint film will be poor. Next, citric acid and an organic diamine are added to the polyester polyol obtained as described above and reacted to form a polyester amide. The blending ratio of citric acid is 5 to 50 mol%, preferably 10 to 40 mol%, based on the total number of moles of the organic polycarboxylic acid components used to obtain the polyester polyol. If the blending ratio of citric acid deviates from this range, the effect of using citric acid cannot be fully demonstrated, and if the blending ratio of citric acid is too small, the heat resistance of the paint film will not improve, while on the other hand, if the blending ratio of citric acid is too high, If it becomes too much, the paint film becomes hard, which is not preferable. The ratio of organic diamine used is 50% to citric acid.
~250 mol%, preferably 80-200 mol%.
If the proportion of organic diamine is too small, many unreacted carboxyl groups remain in the polyesteramide produced, resulting in a decrease in the performance of the paint film. Furthermore, if the proportion of organic diamine used is too large, the resulting polyesteramide will become too three-dimensional, resulting in poor solubility. The reaction of polyester polyol with citric acid and organic diamine is usually carried out when the temperature of the polyester polyol obtained in the above-mentioned esterification reaction is
After the temperature reaches 150℃ or below, add a predetermined amount of citric acid and organic diamine, and heat to 150-220℃, preferably 180-220℃.
The reaction is carried out at a temperature of 200° C. for several hours to several hours, and the reaction is stopped when the acid value reaches 15 to 100, preferably 20 to 40. For example, add citric acid and organic diamine to a polyester polyol that has reached a temperature of 150°C or less, raise the temperature to 150 to 190°C over 2 to 5 hours, and keep at this temperature for several hours until the specified acid value is reached. At that point, heating is stopped and some or all of the solvent is added to stop the reaction. If the acid value of the produced polyesteramide is less than 15, the molecule of the polyesteramide is too large and the viscosity of the paint becomes high. Furthermore, if the acid value exceeds 100, the insulation performance of the paint film deteriorates because the polyesteramide has not grown into molecules of sufficient size. Finally, if desired, a crosslinking agent is added at a temperature of 80°C or lower to obtain the desired high-concentration polyesteramide resin coating. The amount of the crosslinking agent added is usually 0.2 to 3.0% by weight based on the metal content relative to the resin content. If the amount of the crosslinking agent added is too small, the performance of the paint film will be insufficient, and if it is too large, the viscosity of the paint will increase markedly over time and the paint film will become hard, which are both undesirable. The present invention will be further explained in detail with reference to Examples and Comparative Examples below. Example 1 Trimellitic anhydride was added to a four-necked flask equipped with a stirrer, a thermometer, and a condenser with a measuring tube.
192g (1 mol), isophthalic acid 99.6g (0.6 mol), adipic acid 58.4g (0.4 mol), ethylene glycol 124g (2 mol), 1,4-butanediol 72.1g (0.8 mol), glycerin 110.5g (1.2 mol), xylol (reaction solvent) 30g and zinc acetate
0.18 g was charged, and the temperature was raised from room temperature to 150°C over 1 hour while stirring. Distillation started at 150℃. Raise the temperature from 150℃ to 180℃ in 3 hours to 185
When kept at ℃ for 2 hours, 99 g was distilled out to obtain a pale yellow transparent resin with an acid value of 55.1. Heating was stopped, and when the temperature of the resulting resin had fallen to 140°C, 76.8 g (0.4 mol) of anhydrous citric acid and 118.8 g (0.6 mol) of 4,4'-diaminodiphenylmethane were added, and heating was started again. The temperature was raised to 190°C over 2 hours, and the reaction was continued at this temperature for 1.5 hours. 11g of water distilled out, acid value
A reddish-brown resin of 23.6 was obtained. The heating was stopped, and 200 g of Hisolve DB (diethylene glycol monobutyl ether manufactured by Toho Chemical Industries, Ltd.), 225 g of ethylene glycol monomethyl ether, and 75 g of xylol were added to prepare a resin solution. Next, when the temperature drops to 80℃ or less, TBT100 [trade name of tetrabutyl titanate manufactured by Nippon Soda Co., Ltd.]. 22.5g of titanium (14%) dissolved in 22.5g of ethylene glycol monoethyl ether was gradually added over about 30 minutes. After the addition is complete, continue stirring for approximately 30 minutes. The obtained paint has a non-volatile content (200℃ x 2 hours)
The viscosity (at 30°C) was 59.6% and 28 poise. Table 1 shows an overview of the raw material formulation, synthesis conditions, and physical properties of the paint in Example 1. Example 2 Using an apparatus similar to that in Example 1, 153.6 g (0.8 mol) of trimellitic anhydride and 132.8 g (0.8 mol) of isophthalic acid were prepared.
g (0.8 mol), adipic acid 58.4 g (0.4 mol), ethylene glycol 155 g (2.5 mol), 1,4-butanediol 63.1 g (0.7 mol), glycerin 55.3
(0.6 mol), 30 g of xylol (reaction solvent), and 0.3 g of zinc acetate, and heated from room temperature while stirring.
The temperature was raised to 150°C in 1 hour. Distillation started at 150℃. Raise the temperature from 150℃ to 185℃ in 3 hours
When kept at 185° C. for 2 hours, 101 g was distilled out, yielding a pale yellow transparent resin with an acid value of 43. Heating was stopped, and when the temperature of the resulting resin had fallen to 140°C, 63 g (0.3 mol) of citric acid and 118.8 g (0.6 mol) of 4,4'-diaminodiphenylmethane were added, and heating was started again. The temperature was raised to .degree. C. over 2 hours, and the reaction was continued at this temperature for 2.5 hours. 12g of water distilled out, acid value
A reddish-brown resin of 22.8 was obtained. The heating was stopped, and 498 g of cresol and 91 g of xylene were added to prepare a resin solution. Next, when the temperature fell below 80°C, a solution of 20g of TBT100 dissolved in 20g of cresol was gradually added over about 30 minutes. After the addition was complete, stirring was continued for an additional 30 minutes. The resulting paint had a nonvolatile content (200°C x 2 hours) of 51.6% and a viscosity (30°C) of 29 poise. Similar to Example 1, Table 1 summarizes the raw material formulation, synthesis conditions, and paint physical properties of Example 2. Examples 3 to 10 Paints were prepared using the same equipment and procedure as in Examples 1 and 2, using the raw materials and synthesis conditions shown in the Examples 3 to 10 columns of Table 1. The physical properties of the obtained paint are also shown in Table 1. Comparative Example In the same apparatus as in Examples 1 to 10, 430.8 g of dimethyl terephthalate, 93 g of ethylene glycol, 76.8 g of glycerin and 0.4 g of zinc acetate were prepared.
A polyester resin obtained by reacting the following in a conventional manner was diluted with a mixed solvent of cresol/xylene=8/2, and 12 g of TBT100 was added to prepare a polyester resin paint. The non-volatile content of this paint is 35
%, and the viscosity was 28 poise. The polyester amide resin paints obtained in Examples 1 to 10 and the polyester resin paints obtained in Comparative Examples were coated on a copper wire with a conductor diameter of 1.0 mm using a 7 m long furnace. Upper temperature 470
℃, middle temperature 420℃, bottom temperature 370℃, linear speed 24m/
An insulated wire was manufactured by baking the wire seven times in minutes using the die method. The performance of each insulated wire obtained was as shown in Table 2.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 衚の結果から明らかなように、各実斜䟋〜
10で埗られた絶瞁電線の性胜は公知のポリ゚ステ
ル絶瞁電線ず范べおなんら遜色がなか぀た。すな
わち、本発明によれば非クレゟヌル系溶剀が䜿甚
でき、か぀、高濃床化された優れた絶瞁電線が埗
られ、その工業的䟡倀は倧である。
[Table] As is clear from the results in Table 2, each of Examples 1-
The performance of the insulated wire obtained in Example 10 was no inferior to that of a known polyester insulated wire. That is, according to the present invention, a non-cresol solvent can be used and an excellent insulated wire with a high concentration can be obtained, which has great industrial value.

Claims (1)

【特蚱請求の範囲】  有機倚䟡カルボン酞、有機倚䟡カルボン酞無
氎物及び有機倚䟡カルボン酞䜎玚アルキル゚ステ
ルよりなる矀から遞ばれた有機倚䟡カルボン酞類
ず有機倚䟡アルコヌルずク゚ン酞ず有機ゞアミン
ずを反応させるこずにより埗られたポリ゚ステル
アミド暹脂及び有機溶剀から成る電気絶瞁塗料。  有機溶剀が非クレゟヌル系溶剀であり、䞀般
匏R1OCHR2−CH2Oo䜆し、R1は䜎玚アル
キル基、R2は氎玠又はメチル基、は〜の
敎数で瀺されるグリコヌル゚ヌテル系溶剀を50
〜100含む非クレゟヌル系溶剀である、特蚱請
求の範囲第項蚘茉の電気絶瞁塗料。  グリコヌル゚ヌテル系溶剀ず䜵甚する堎合の
有機溶剀がアルコヌル系溶剀、む゜ホロン、及び
芳銙族炭化氎玠系溶剀よりなる矀から遞ばれた非
クレゟヌル系溶剀である、特蚱請求の範囲第項
蚘茉の電気絶瞁塗料。  ポリ゚ステルアミド暹脂ず有機溶剀ずから成
る暹脂溶液に架橋剀を添加しお成る、特蚱請求の
範囲第項蚘茉の電気絶瞁塗料。  ポリ゚ステルアミド暹脂の酞䟡が15〜100で
ある、特蚱請求の範囲第項蚘茉の電気絶瞁塗
料。  酞䟡が20〜40である、特蚱請求の範囲第項
蚘茉の電気絶瞁塗料。  有機倚䟡カルボン酞、有機倚䟡カルボン酞無
氎物及び有機倚䟡カルボン酞䜎玚アルキル゚ステ
ルよりなる矀から遞ばれた有機倚䟡カルボン酞類
ず有機倚䟡アルコヌルずを゚ステル化反応させお
ポリ゚ステルポリオヌルずし、埗られたポリ゚ス
テルポリオヌルずク゚ン酞及び有機ゞアミンずを
反応させおポリ゚ステルアミド暹脂ずし、圓該暹
脂を有機溶剀に溶解しお電気絶瞁塗料を埗るこず
を特城ずするポリ゚ステルアミド暹脂電気絶瞁塗
料の補造方法。  ポリ゚ステルポリオヌルの酞䟡が20〜100で
ある、特蚱請求の範囲第項蚘茉の電気絶瞁塗料
の補造方法。  ク゚ン酞をポリ゚ステルポリオヌルの酞成分
に察しお〜50モル䜿甚する、特蚱請求の範囲
第項蚘茉の電気絶瞁塗料の補造方法。  ポリ゚ステルアミド暹脂の酞䟡が15〜100
である、特蚱請求の範囲第項蚘茉の電気絶瞁塗
料の補造方法。  酞䟡が20〜40である、特蚱請求の範囲第
項蚘茉の電気絶瞁塗料の補造方法。  有機溶剀が非クレゟヌル系溶剀であり、䞀
般匏R1OCHR2−CH2Oo䜆し、R1は䜎玚ア
ルキル基、R2は氎玠又はメチル基、は〜
の敎数で瀺されるグリコヌル゚ヌテル系溶剀を
50〜100含む非クレゟヌル系溶剀である、特蚱
請求の範囲第項蚘茉の電気絶瞁塗料の補造方
法。  グリコヌル゚ヌテル系溶剀ず䜵甚する堎合
の有機溶剀がアルコヌル系溶剀、む゜ホロン、及
び芳銙族炭化氎玠系溶剀よりなる矀から遞ばれた
非クレゟヌル系溶剀である、特蚱請求の範囲第
項蚘茉の電気絶瞁塗料の補造方法。
[Scope of Claims] 1. Organic polycarboxylic acids selected from the group consisting of organic polycarboxylic acids, organic polycarboxylic acid anhydrides, and organic polycarboxylic acid lower alkyl esters, organic polyhydric alcohols, and citric acid. An electrical insulation paint consisting of a polyesteramide resin obtained by reacting with an organic diamine and an organic solvent. 2 The organic solvent is a non-cresol solvent, and has the general formula R 1 O (CHR 2 - CH 2 O) o H (where R 1 is a lower alkyl group, R 2 is a hydrogen or methyl group, and n is 1 to 3). 50 glycol ether solvents (integers)
The electrical insulation paint according to claim 1, which is a non-cresol solvent containing ~100%. 3. The electricity according to claim 2, wherein the organic solvent used in combination with the glycol ether solvent is a non-cresol solvent selected from the group consisting of alcohol solvents, isophorone, and aromatic hydrocarbon solvents. Insulating paint. 4. The electrically insulating paint according to claim 1, which is obtained by adding a crosslinking agent to a resin solution consisting of a polyesteramide resin and an organic solvent. 5. The electrically insulating paint according to claim 1, wherein the polyesteramide resin has an acid value of 15 to 100. 6. The electrically insulating paint according to claim 5, which has an acid value of 20 to 40. 7 An organic polycarboxylic acid selected from the group consisting of an organic polycarboxylic acid, an organic polycarboxylic acid anhydride, and an organic polycarboxylic acid lower alkyl ester is subjected to an esterification reaction with an organic polyhydric alcohol to obtain a polyester polyol. A method for producing a polyester amide resin electrical insulating paint, which comprises reacting the obtained polyester polyol with citric acid and an organic diamine to obtain a polyester amide resin, and dissolving the resin in an organic solvent to obtain an electrical insulating paint. . 8. The method for producing an electrically insulating paint according to claim 7, wherein the polyester polyol has an acid value of 20 to 100. 9. The method for producing an electrically insulating paint according to claim 7, wherein 5 to 50 mol% of citric acid is used based on the acid component of the polyester polyol. 10 The acid value of polyesteramide resin is 15 to 100
A method for producing an electrically insulating paint according to claim 7. 11 Claim 1 having an acid value of 20 to 40
A method for producing an electrically insulating paint according to item 0. 12 The organic solvent is a non-cresol solvent, and has the general formula R 1 O (CHR 2 - CH 2 O) o H (wherein R 1 is a lower alkyl group, R 2 is a hydrogen or methyl group, and n is 1 to 3
(an integer of )
The method for producing an electrically insulating paint according to claim 7, wherein the electrically insulating paint contains 50 to 100% of a non-cresol solvent. 13 Claim 1, wherein the organic solvent used in combination with the glycol ether solvent is a non-cresol solvent selected from the group consisting of alcohol solvents, isophorone, and aromatic hydrocarbon solvents.
2. A method for producing an electrically insulating paint according to item 2.
JP2704283A 1983-02-22 1983-02-22 Electrical insulating coating and its preparation Granted JPS59155477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2704283A JPS59155477A (en) 1983-02-22 1983-02-22 Electrical insulating coating and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2704283A JPS59155477A (en) 1983-02-22 1983-02-22 Electrical insulating coating and its preparation

Publications (2)

Publication Number Publication Date
JPS59155477A JPS59155477A (en) 1984-09-04
JPH0328464B2 true JPH0328464B2 (en) 1991-04-19

Family

ID=12210006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2704283A Granted JPS59155477A (en) 1983-02-22 1983-02-22 Electrical insulating coating and its preparation

Country Status (1)

Country Link
JP (1) JPS59155477A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9027793D0 (en) * 1990-12-21 1991-02-13 Ucb Sa Polyester-amides containing terminal carboxyl groups

Also Published As

Publication number Publication date
JPS59155477A (en) 1984-09-04

Similar Documents

Publication Publication Date Title
JPS5836018B2 (en) Manufacturing method of heat-resistant resin
US3975330A (en) Imide-modified polyester resin and wire enamel containing the imide-modified polyester resin
US4209438A (en) Electrical insulating coating composition
JPH0328464B2 (en)
US4018742A (en) Imide-ring containing polyester and wire enamel containing same
KR101666294B1 (en) The manufacturing method of polyesterimide polyol for polyurethane varnish of insulated wire
JP4440535B2 (en) Method for producing polyester insulating paint
US4186122A (en) Electrical insulating coatings
US4609702A (en) Ether modified polyesterimide resins
JPH02142853A (en) Resin composition having solderability and insulated wire prepared by using same
JPS6081221A (en) Resin composition having solderability
JP2963190B2 (en) Method for producing polyester imide and wire enamel
JPS6047313B2 (en) Manufacturing method for water-soluble polyesteramide resin paint
KR810001401B1 (en) Electrical insulating coating composition
JPS63189456A (en) Resin composition having solderability
JPS6220568A (en) Electrical insulating coating compound of polyurethane
JPH03156805A (en) Resin composition for electric insulation
JPH0333121A (en) Resin composition and insulated wire prepared by using same
JPS61270A (en) Electrical insulating polyurethane paint
JPS6392674A (en) Manufacture of electrical insulating coating material
JPH101599A (en) Polybutylene terephthalate
JPH064815B2 (en) Polyester resin composition for melt coating
JPS58174441A (en) Heat-resistant resin composition
JPS6235431B2 (en)
JPH08311319A (en) Resin composition for electric insulation and enameled wire