JPH03284463A - Anti-skid controller - Google Patents

Anti-skid controller

Info

Publication number
JPH03284463A
JPH03284463A JP8604690A JP8604690A JPH03284463A JP H03284463 A JPH03284463 A JP H03284463A JP 8604690 A JP8604690 A JP 8604690A JP 8604690 A JP8604690 A JP 8604690A JP H03284463 A JPH03284463 A JP H03284463A
Authority
JP
Japan
Prior art keywords
wheel
vehicle speed
speed
acceleration
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8604690A
Other languages
Japanese (ja)
Other versions
JP2924065B2 (en
Inventor
Kazutaka Kuwana
桑名 一隆
Tsuyoshi Yoshida
強 吉田
Hiroyuki Ichikawa
博之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8604690A priority Critical patent/JP2924065B2/en
Publication of JPH03284463A publication Critical patent/JPH03284463A/en
Application granted granted Critical
Publication of JP2924065B2 publication Critical patent/JP2924065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To carry out appropriate anti-skid control according to various road conditions at the time of deceleration of a vehicle by constituting a road condition judging means so that either of reference value in a comparison means or vehicle acceleration may be compensated according to computed result of a vehicle speed variation ratio computing means. CONSTITUTION:There is provided a road condition judging means M4 which judges a driving road condition according to how many times vehicle acceleration computed from vehicle speed by a wheel acceleration computing means M3 exceeds a prescribed reference value within a prescribed period, and brake fluid pressure is controlled by a pressure control means M5 according to output from the road condition judging means M4, a wheel speed detecting means M1, the wheel acceleration computing means M3, and an estimated vehicle speed computing means M2. With this constitution, there are provided a vehicle speed variation ratio computing means M41 which computes variation ratio of an estimated vehicle speed for a certain period, and a comparison means M42 which compensates either of wheel acceleration or a prescribed reference value according to variation ratio of an estimated vehicle speed for comparison in the road condition judging means M4, which is constituted so as to judge a driving road condition according to the compared result within a prescribed period.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、車両制動時に車輪に対する制動力を制御し車
輪のロックを防止するアンチスキッド制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an anti-skid control device that controls the braking force on the wheels and prevents the wheels from locking when braking a vehicle.

[従来の技術] 車両の急制動時に車輪がロックすると路面状況によって
は走行が不安定となったり操舵性が損なわれる場合があ
ることはよく知られている。このため、急制動時に車輪
がロックしないように、ホイールシリンダに対するブレ
ーキ液圧を減圧、増圧あるいは圧力保持することにより
制動力を制御するアンチスキッド制御装置が知られてい
る。
[Prior Art] It is well known that when the wheels of a vehicle lock during sudden braking, the vehicle may run unstable or lose steering performance depending on the road surface conditions. For this reason, anti-skid control devices are known that control the braking force by reducing, increasing, or maintaining the brake fluid pressure to the wheel cylinders so that the wheels do not lock during sudden braking.

アンチスキッド制御装置においては、ホイールシリンダ
へのブレーキ液圧を増加させたとき車輪に対する摩擦係
数μが最大となる直前に車輪速度が急激に低下すること
に鑑み、加速度(特に規定しない限り減速度を含む。以
下同じ)に応じてブレーキ液圧を制御し結果的に車輪の
スリップ率が20%前後となるように、即ち最大摩擦係
数が得られるように制動力を制御することとしている。
In anti-skid control devices, in consideration of the fact that when the brake fluid pressure to the wheel cylinders is increased, the wheel speed suddenly decreases just before the friction coefficient μ for the wheels reaches its maximum, acceleration (unless otherwise specified, deceleration) is (including the same hereinafter), and the braking force is controlled so that the slip rate of the wheels becomes around 20%, that is, the maximum friction coefficient is obtained.

このような制動力の制御においては、車輪のロック状態
が検出されるとホイールシリンダのブレーキ液圧が減圧
されるように制御されるが、路面に凹凸がある悪路を走
行するとき路面状態によっては恰も車輪がロック傾向を
示したように判定され、これに応じホイールシリンダの
ブレーキ液圧が減圧され制動距離が延びることがあり得
る。これを解決するため、例えば特開昭60−2254
8号公報には路面の凹凸レベルに応じて、例えば凹凸が
緩かな良路、凹凸が激しい悪路というような路面状態に
応じて、減圧出力感度を落とし増圧出力感度を高めるよ
うにしたアンチスキッド制御装置が提案されている。
In this type of braking force control, when a wheel lock condition is detected, the brake fluid pressure in the wheel cylinder is controlled to be reduced, but when driving on a rough road with uneven roads, depending on the road surface condition. It may be determined that the wheels are showing a tendency to lock, and the brake fluid pressure in the wheel cylinders may be reduced accordingly and the braking distance may be extended. In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 60-2254
Publication No. 8 discloses an anti-pressure sensor that lowers the pressure reduction output sensitivity and increases the pressure increase output sensitivity depending on the level of unevenness of the road surface, such as a good road with gentle unevenness or a bad road with severe unevenness. Skid control devices have been proposed.

[発明が解決しようとする課題ゴ 然し乍ら、上記従来装置においては車輪加速度が一定の
凹凸レベル判定基準加速度を超えた回数を計数すること
を前提としている。このため車両が一定の速度で走行し
ている状態で上記基準加速度を設定すると、例えば車両
が減速状態にある場合、車体速度の変化割合即ち減速度
によっては相対的に基準加速度のレベルが高過ぎること
となり、これを超える回数が減少しあるいは皆無となり
、正確な悪路判定ができなくなる。
[Problems to be Solved by the Invention] However, the above-mentioned conventional device is premised on counting the number of times the wheel acceleration exceeds a certain unevenness level determination reference acceleration. Therefore, if the above reference acceleration is set while the vehicle is running at a constant speed, for example, if the vehicle is decelerating, the level of the reference acceleration will be relatively high depending on the rate of change in vehicle speed, that is, the deceleration. As a result, the number of times exceeding this limit decreases or disappears, making it impossible to accurately judge rough roads.

そこで本発明は車両が減速状態にあるときにも路面状態
に応じて的確にアンチスキッド制御を行ない得るように
することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable anti-skid control to be performed accurately in accordance with road surface conditions even when a vehicle is in a decelerating state.

[i!!題を解決するための手段] 上記の目的を達成するため、本発明のアンチスキッド制
御装置は第1図に構成の概要を示したように、車輪FR
に装着し制動力を付与するホイールシリンダ51と、車
輪FRの車輪速度を検出する車輪速度検出手段M1と、
車輪速度に基き推定車体速度を演算する推定車体速度演
算手段M2と、車輪速度から車輪加速度を演算する車輪
加速度演算手段M3と、車輪加速度が所定時間内に所定
の基準値を超えた回数に応じて走行路面の状態を判定す
る路面状態判定手段M4と、路面状態判定手段M4の判
定結果並びに車輪速度検出手段M1、車輪加速度演算手
段M3及び推定車体速度演算手段M2の出力に応じてホ
イールシリンダ51に供給するブレーキ液圧を制御する
圧力制御手段M5とを備えている。そして、路面状態判
定手段M4は、推定車体速度の一定時間内の変化割合を
演算する車体速度変化割合演算手段M41と、車輪加速
度及び所定の基準値の何れか一方の値を推定車体速度の
変化割合に応じて補正して比較する比較手段M42とを
備え、比較手段M42の所定時間内の比較結果に応じて
走行路面の状態を判定するものである。
[i! ! Means for Solving the Problem] In order to achieve the above object, the anti-skid control device of the present invention has a configuration that is as shown in FIG.
A wheel cylinder 51 attached to the wheel cylinder 51 to apply braking force, and a wheel speed detection means M1 to detect the wheel speed of the wheel FR.
An estimated vehicle speed calculation means M2 that calculates an estimated vehicle speed based on the wheel speed; a wheel acceleration calculation means M3 that calculates a wheel acceleration from the wheel speed; road surface condition determining means M4, which determines the state of the road surface on which the road is being traveled; and pressure control means M5 for controlling the brake fluid pressure supplied to the brake fluid pressure. The road surface condition determination means M4 includes a vehicle speed change rate calculating means M41 that calculates a change rate of the estimated vehicle speed within a certain period of time, and a change in estimated vehicle speed that calculates either one of the wheel acceleration and a predetermined reference value. It is provided with a comparing means M42 that performs correction and comparison according to the ratio, and determines the state of the road surface on which the vehicle is traveling according to the comparison result of the comparing means M42 within a predetermined time.

[作用] 上記の構成になるアンチスキッド制御装置において、車
輪PRの回転速度即ち車輪速度が車輪速度検出手段M1
によって検出される。この車輪速度に基き、推定車体速
度演算手段M2において推定車体速度が演算され、車輪
加速度演算手段M3において車輪加速度が演算される。
[Operation] In the anti-skid control device configured as described above, the rotational speed of the wheel PR, that is, the wheel speed is detected by the wheel speed detection means M1.
detected by. Based on this wheel speed, the estimated vehicle speed calculation means M2 calculates the estimated vehicle speed, and the wheel acceleration calculation means M3 calculates the wheel acceleration.

車輪加速度演算手段M3の演算結果は路面状態判定手段
M4に供給され、所定の基準値と比較され、これを超え
た回数に応じて走行路面の状態が判定される。そして、
この判定結果である路面状態、並びに車輪速度検出手段
M1、推定車体速度演算手段M2及び車輪加速度演算手
段M3の出力に基づいて判定される車輪FRのロック状
態に応じて、圧力制御手段M5によりホイールシリンダ
51に供給するブレーキ液圧が制御される。例えば、圧
力制御手段M5によってホイールシリンダ51のブレー
キ液圧が減圧され、車輪FRがロック状態となることが
防止される。
The calculation result of the wheel acceleration calculation means M3 is supplied to the road surface condition determination means M4, where it is compared with a predetermined reference value, and the condition of the road surface is determined depending on the number of times that this value is exceeded. and,
According to the road surface condition as a result of this determination, and the locked state of the wheel FR determined based on the outputs of the wheel speed detection means M1, estimated vehicle body speed calculation means M2, and wheel acceleration calculation means M3, the pressure control means M5 The brake fluid pressure supplied to the cylinder 51 is controlled. For example, the brake fluid pressure in the wheel cylinder 51 is reduced by the pressure control means M5, and the wheels FR are prevented from being locked.

上記路面状態判定手段M4においては、車体速度変化割
合演算手段M41によって、推定車体速度演算手段M2
の出力に基き車体速度の変化割合に対応する推定車体速
度の変化割合、例えば車体減速度が演算される。この推
定車体速度の変化割合に応じて車輪加速度と基準値の何
れか一方の値が補正される。そして、この補正された値
に基き両者が比較され、所定時間内の比較結果が路面状
態の判定結果として圧力制御手段に出力される。
In the road surface condition determination means M4, the estimated vehicle speed change rate calculation means M2
Based on the output of , a rate of change in the estimated vehicle speed corresponding to the rate of change in the vehicle speed, such as vehicle deceleration, is calculated. Either the wheel acceleration or the reference value is corrected according to the rate of change in the estimated vehicle speed. Then, the two are compared based on this corrected value, and the comparison result within a predetermined time is outputted to the pressure control means as a determination result of the road surface condition.

例えば、基準値から上記変化割合(例えば車体減速度)
が減じられた値が新たな基準値として設定されるので、
車輪加速度がこの値を超える回数は車両が一定速度で走
行しているときと同様の条件で計算されることになる。
For example, the above change rate from the reference value (e.g. vehicle deceleration)
The value from which is subtracted is set as the new reference value, so
The number of times the wheel acceleration exceeds this value is calculated under the same conditions as when the vehicle is running at a constant speed.

[実施例コ 以下、本発明の実施例として、上記アンチスキッド制御
装置を備えた車両を具体的に説明する。
[Embodiment] Hereinafter, as an embodiment of the present invention, a vehicle equipped with the above-mentioned anti-skid control device will be specifically described.

第2図は本発明の一実施例のアンチスキッド制御装置を
示すもので、マスクシリンダ2a及びブースタ2bから
成り、ブレーキペダル3によって駆動される液圧発生装
置2と、車輪FR,FL。
FIG. 2 shows an anti-skid control device according to an embodiment of the present invention, which includes a mask cylinder 2a and a booster 2b, a hydraulic pressure generating device 2 driven by a brake pedal 3, and wheels FR, FL.

RR及びRLに配設されたホイールシリンダ51乃至5
4とが接続される液圧路に、ポンプ21゜22、リザー
バ23.24及び電磁弁31乃至38が介装されている
。尚、車輪FRは運転席からみて前方右側の車輪を示し
、以下車輪FLは前方左側、車輪RRは後方右側、車輪
RLは後方左側の車輪を示しており、第2図に明らかな
ように所謂ダイアゴナル配管が構成されている。
Wheel cylinders 51 to 5 arranged in RR and RL
Pumps 21, 22, reservoirs 23, 24, and electromagnetic valves 31 to 38 are interposed in the hydraulic pressure path connected to 4. Note that the wheel FR indicates the front right wheel as seen from the driver's seat, the wheel FL indicates the front left wheel, the wheel RR indicates the rear right wheel, and the wheel RL indicates the rear left wheel. Diagonal piping is configured.

マスクシリンダ2aの一方の出力ボートとホイールシリ
ンダ51.54の各々を接続する液圧路に夫々電磁弁3
1.32及び電磁弁33.34が介装され、これらとマ
スクシリンダ2aとの間にポンプ21が介装されている
。同様に、マスクシリンダ2aの他方の出力ボートとホ
イールシリンダ52.53の各々を接続する液圧路に夫
々電磁弁35.36及び電磁弁37,38が介装され、
これらとマスクシリンダ2aとの間にポンプ22が介装
されている。ポンプ21,22は電動モータ20によっ
て駆動され、これらの液圧路に所定の圧力に昇圧された
ブレーキ液が供給される。
A solenoid valve 3 is provided in each hydraulic pressure path connecting one output boat of the mask cylinder 2a and each of the wheel cylinders 51 and 54.
1.32 and solenoid valves 33, 34 are interposed, and a pump 21 is interposed between these and the mask cylinder 2a. Similarly, a solenoid valve 35, 36 and solenoid valves 37, 38 are interposed in the hydraulic passages connecting the other output boat of the mask cylinder 2a and each of the wheel cylinders 52, 53, respectively.
A pump 22 is interposed between these and the mask cylinder 2a. The pumps 21 and 22 are driven by the electric motor 20, and brake fluid boosted to a predetermined pressure is supplied to these hydraulic pressure paths.

而して、これらの液圧路が常開のt磁弁3133.35
.37に対するブレーキ液圧の供給側となっている。常
閉の電磁弁32,34の排土側液圧路はリザーバ23を
介してポンプ21に接続され、同じく常閉の電磁弁36
.38の排出側液圧路はリザーバ24を介してポンプ2
2に接続されている。リザーバ23.24は夫々ピスト
ンとスプリングを備えており、電磁弁32,34゜36
.38から排出側液圧路を介して還流されるブレーキ液
を収容し、ポンプ21.22作動時にこれらに対しブレ
ーキ液を供給するものである。
Therefore, these hydraulic pressure paths are connected to the normally open t-magnetic valve 3133.35.
.. This is the brake fluid pressure supply side for 37. The discharge side hydraulic pressure paths of the normally closed solenoid valves 32 and 34 are connected to the pump 21 via the reservoir 23, and are connected to the normally closed solenoid valve 36.
.. 38 is connected to the pump 2 via the reservoir 24.
Connected to 2. The reservoirs 23 and 24 are each equipped with a piston and a spring, and are connected to solenoid valves 32, 34 and 36.
.. It accommodates the brake fluid that is returned from the pump 38 via the discharge side hydraulic pressure path, and supplies the brake fluid to the pumps 21 and 22 when they are operated.

電磁弁31乃至38は2ボ一ト2位置1tIifi切替
弁であり、夫々ソレノイドコイル非通電時には第2図に
示す第1位置にあって、各ホイールシリンダ51乃至5
4は液圧発生装置2及びポンプ21あるいは22と連通
している。ソレノイドコイル通電時には第2位置となり
、各ホイールシリンダ51乃至54は液圧発生装置2及
びポンプ21゜22とは遮断され、リザーバ23あるい
は24と連通ずる。尚、第2図中のチエツクバルブはホ
イールシリンダ51乃至54及びリザーバ23゜24側
から液圧発生装置2側への還流を許容し、逆方向の流れ
を遮断するものである。
The solenoid valves 31 to 38 are 2-point, 2-position 1tIifi switching valves, and when the solenoid coils are not energized, they are in the first position shown in FIG.
4 communicates with the hydraulic pressure generating device 2 and the pump 21 or 22. When the solenoid coil is energized, it is in the second position, and each wheel cylinder 51 to 54 is disconnected from the hydraulic pressure generator 2 and the pumps 21 and 22 and communicated with the reservoir 23 or 24. The check valve shown in FIG. 2 allows flow back from the wheel cylinders 51 to 54 and the reservoirs 23 and 24 to the hydraulic pressure generating device 2, and blocks flow in the opposite direction.

而して、これらの電磁弁31乃至38のソレノイドコイ
ルに対する通電、非通電を制御することによりホイール
シリンダ51乃至54内のブレーキ液圧を増減すること
ができる。即ち、電磁弁31乃至38のソレノイドコイ
ル非通電時にはホイールシリンダ51乃至54に液圧発
生装置2及びポンプ21あるいは22からブレーキ液圧
が供給されて増圧し、通電時にはリザーバ23あるいは
24側に連通し減圧する。
By controlling the energization and de-energization of the solenoid coils of these solenoid valves 31 to 38, the brake fluid pressure in the wheel cylinders 51 to 54 can be increased or decreased. That is, when the solenoid coils of the solenoid valves 31 to 38 are de-energized, brake fluid pressure is supplied to the wheel cylinders 51 to 54 from the hydraulic pressure generator 2 and the pump 21 or 22 to increase the pressure, and when energized, the brake fluid pressure is communicated to the reservoir 23 or 24 side. Depressurize.

上記電磁弁31乃至38は電子制御装置10に接続され
、各々のソレノイドコイルに対する通電、非通電が制御
される。t!I]モータ20も電子制御装置10に接続
され、これにより駆動制御される。車輪FR,FL、R
R,RLには夫々本発明にいう車輪速度検出手段たる車
輪速度センサ41乃至44が配設され、これらが電子制
御装置10に接続されており、各車輪の回転速度、即ち
車輪速度信号が電子制御装置10に人力されるように構
成されている。車輪速度センサ41乃至44は各車輪の
回転に伴なって回転する歯付ロータと、このロータの歯
部に対向して設けられたピックアップから成る周知の電
tin誘導方式のセンサであり、各車輪の回転速度に比
例した周波数の電圧を出力するものである。尚、これに
替えホールIC,光センサ等を用いることとしてもよい
The electromagnetic valves 31 to 38 are connected to an electronic control device 10, and energization and de-energization of each solenoid coil is controlled. T! I] The motor 20 is also connected to the electronic control device 10 and is driven and controlled thereby. Wheels FR, FL, R
Wheel speed sensors 41 to 44, which are wheel speed detection means according to the present invention, are respectively arranged at R and RL, and these are connected to the electronic control device 10, so that the rotational speed of each wheel, that is, the wheel speed signal, is electronically transmitted. It is configured to be manually operated by the control device 10. The wheel speed sensors 41 to 44 are well-known electric tin induction type sensors consisting of a toothed rotor that rotates as each wheel rotates, and a pickup provided opposite the teeth of this rotor. It outputs a voltage with a frequency proportional to the rotation speed of the motor. Note that instead of this, a Hall IC, optical sensor, etc. may be used.

電子制御装置10は、第3図に示すように、CPU14
、ROM15及びRAM16等を有しコモンバスを介し
て入力ボート12及び出力ポート13に接続されて外部
との入出力を行なうワンチップマイクロコンピュータ1
1を備えている。上記車輪速度センサ41乃至44の出
力信号は増巾回路1フa乃至17dを介して夫々入力ボ
ート12からCPU14に入力される。また出力ポート
13から駆動回路IBmを介して電動モータ20に制御
信号が出力されると共に、駆動回路18b乃至18iを
介して夫々電磁弁31乃至38に制御信号が出力される
The electronic control device 10 includes a CPU 14 as shown in FIG.
, a ROM 15, a RAM 16, etc., and is connected to an input port 12 and an output port 13 via a common bus to perform external input/output.
1. The output signals of the wheel speed sensors 41 to 44 are input from the input boat 12 to the CPU 14 via the amplifying circuits 1a to 17d, respectively. Further, a control signal is output from the output port 13 to the electric motor 20 via the drive circuit IBm, and control signals are output to the electromagnetic valves 31 to 38 via the drive circuits 18b to 18i, respectively.

上記電子制御装置10においてはアンチスキッド制御の
ための一連の処理が行なわれるが、以下これを第4図に
基いて説明する。同図は本発明のアンチスキッド制御装
置の一実施例の制御を示すフローチャートであり、所定
時間毎に繰り返し実行される。
A series of processes for anti-skid control are performed in the electronic control device 10, which will be explained below with reference to FIG. This figure is a flowchart showing the control of one embodiment of the anti-skid control device of the present invention, which is repeatedly executed at predetermined time intervals.

電源オンとなりルーチンが開始されると、先ずステップ
100にて初期化され、車速を表す推定車体速度Vs、
各車輪の車輪速度Vw及び車輪加速度DVwが0とされ
る。そして、ステップ102において車輪速度センサ4
1乃至44の出力信号から各車輪の車輪速度Vwが演算
され、ステップ104に進みこの値から車輪加速度DV
wが演算される。尚、上記推定車体速度Vsは制動時の
車輪速度を基準に所定の減速度で減速したと仮定したと
きの値を車速として設定し、四つの車輪の内−つでもこ
の値を超えたときにはその値から再度所定の減速度で減
速したときの値を車速と設定するものである。
When the power is turned on and the routine is started, first, in step 100, the estimated vehicle speed Vs, which represents the vehicle speed, is initialized.
The wheel speed Vw and wheel acceleration DVw of each wheel are set to zero. Then, in step 102, the wheel speed sensor 4
The wheel speed Vw of each wheel is calculated from the output signals 1 to 44, and the process proceeds to step 104, where the wheel acceleration DV is calculated from this value.
w is calculated. The above estimated vehicle speed Vs is set as the vehicle speed assuming that the vehicle speed is decelerated at a predetermined deceleration based on the wheel speed during braking, and if any of the four wheels exceeds this value, the vehicle speed The value obtained when the vehicle is decelerated again at a predetermined deceleration is set as the vehicle speed.

次に、ステップ106にて、先ず例えば車輪FRについ
てアンチスキッド制御中か否かが判定され、制御中であ
ればステップ110にジャンプし、そうでなければステ
ップ108にてアンチスキッド*Jaが開始したか否か
が判定され、開始していればステップ110に進む、ア
ンチスキッド制御が開始していなければそのままステッ
プ120にジャンプする。ステップ110においては後
述する回数バッファに記憶された値BNbに応じて良路
、悪路等の路面状態が判定される。尚、路面状態の判定
方法は従来と同様であるので説明は省略する。そして、
ステップ112に進み、上記車輪速度Vw、車輪加速度
DVw及び推定車体速度Vsに基いて判定される制動状
況及び上記ステップ110の判定結果である路面状態に
応じて少くとも減圧及び増圧の何れかの制御モードに設
定される。ステップ114にて制御モードが増圧モード
か減圧モードの何れかが判定され、増圧モードであれば
ステップ116に進み増圧信号が出力され、減圧モード
であればステップ118に進み減圧信号が出力される。
Next, in step 106, it is first determined whether or not anti-skid control is being performed for the wheels FR, for example. If the anti-skid control is being performed, the process jumps to step 110, and if not, anti-skid*Ja is started in step 108. It is determined whether or not the anti-skid control has started, and if the anti-skid control has started, the process advances to step 110. If the anti-skid control has not started, the process directly jumps to step 120. In step 110, the road surface condition, such as a good road or a bad road, is determined according to a value BNb stored in a frequency buffer, which will be described later. Note that the method for determining the road surface condition is the same as the conventional method, so a description thereof will be omitted. and,
Proceeding to step 112, at least one of pressure reduction and pressure increase is performed depending on the braking situation determined based on the wheel speed Vw, wheel acceleration DVw, and estimated vehicle speed Vs, and the road surface condition that is the determination result of step 110. Set to control mode. In step 114, it is determined whether the control mode is a pressure increase mode or a pressure decrease mode. If the control mode is the pressure increase mode, the process proceeds to step 116 and a pressure increase signal is output. If the control mode is the pressure decrease mode, the process proceeds to step 118 and a pressure decrease signal is output. be done.

尚、増圧モードを更に急増圧モードと緩増圧モードに分
ける等種々の制御モードがあるが、何れの制御モードを
組み合せることとしてもよい。
There are various control modes, such as dividing the pressure increase mode into a rapid pressure increase mode and a slow pressure increase mode, and any of the control modes may be combined.

上記制御モードの設定及び増、減圧信号の出力はその余
の車輪FL、RR,RLのホイールシリンダ52乃至5
4の各々についても同様に行なわれ、ステップ120に
て四つの車輪FR,FL。
The above control mode setting, increase, and pressure reduction signals are output from the wheel cylinders 52 to 5 of the remaining wheels FL, RR, and RL.
The same process is carried out for each of the four wheels FR and FL at step 120.

RR,RLの全てに関し処理が行なわれたか否かが判定
され、四輪金てについて処理が完了するまで上記ルーチ
ンが繰り返される。これが完了するとステップ122に
て新たに推定車体速度Vsが演算され、更にステップ1
24にて車体減速度の絶対値DVsoが演算された後ス
テップ102に戻る。尚、車体減速度の絶対値DVso
は減速状態における推定車体速度Vsの一定時間内の変
化割合で、前回の推定車体速度V S (n−11と今
回の推定車体速度Vs、の差の微分値として求められる
It is determined whether or not the processing has been performed for all of the RR and RL, and the above routine is repeated until the processing for the four wheels is completed. When this is completed, a new estimated vehicle speed Vs is calculated in step 122, and then in step 1
After the absolute value DVso of the vehicle body deceleration is calculated in step 24, the process returns to step 102. Furthermore, the absolute value DVso of the vehicle body deceleration
is the rate of change of the estimated vehicle speed Vs in a deceleration state within a certain period of time, and is determined as the differential value of the difference between the previous estimated vehicle speed V S (n-11) and the current estimated vehicle speed Vs.

第5図は第4図のステップ110における路面判定の処
理内容の一部を示すもので、先ずステップ200におい
てタイマ値Tがインクリメントされ、ステップ202に
て基準時間Tbを超えたか否かが判定される。この基準
時間Tbは、後述する悪路判定用車輪加速度基準値GB
(以下、単に基準値GBという)を車輪加速度DVwが
超える回数をカウントするための基準時間で、0.3乃
至0.5秒に設定される。タイマ値が基準時間Tbを超
えていると判定されたときには、ステップ204にて車
輪加速度DVwが基準値GBを超える回数を計数する回
数カウンタの値Nbが回数バッファの値BNbとして記
憶され、ステップ206にてタイマ値Tがリセットされ
る。ステップ202においてタイマ値Tが基準時間Tb
以下であると判定されたときにはそのままステップ20
8に進む。
FIG. 5 shows a part of the road surface determination process in step 110 of FIG. 4. First, in step 200, the timer value T is incremented, and in step 202, it is determined whether or not it has exceeded the reference time Tb. Ru. This reference time Tb is a wheel acceleration reference value GB for rough road determination, which will be described later.
(hereinafter simply referred to as reference value GB) is a reference time for counting the number of times the wheel acceleration DVw exceeds the reference value GB, and is set to 0.3 to 0.5 seconds. When it is determined that the timer value exceeds the reference time Tb, the value Nb of the number counter that counts the number of times the wheel acceleration DVw exceeds the reference value GB is stored in step 204 as the value BNb of the number buffer, and step 206 The timer value T is reset at . In step 202, the timer value T is set to the reference time Tb.
If it is determined that the
Proceed to step 8.

ステップ208においてはカウント許可フラグFNbが
セットされているか否かが判定される。
In step 208, it is determined whether the count permission flag FNb is set.

カウント許可フラグFNbは回数カウンタに対しカウン
トの許可又は禁止を設定するもので、セットされている
ときに「許可」、リセットされると「禁止」となり、後
述するステップ216の判定結果に応じてセットされる
。カウント許可フラグFNbがセットされていればステ
ップ210に進み、セットされていなければステップ2
16にジャンプする。ステップ210においては、車輪
加速度DVwに車体減速度の絶対値DVsoを加算した
値が基準値GBと比較される。この値が基準値GB以下
であればステップ216にジャンプする。基準値GBよ
り犬であればステップ212に進み回数カウンタの値N
bがインクリメントされステップ214にてカウント許
可フラグFNbがリセットされた後ステップ216に進
む。そしてステップ216において、(DVw+DVs
o)の値がOG即ち加速度Oレベルを下回ったか否かが
判定され、下回ればカウント許可フラグFNbがセット
され、次の演算周期で(DVw+DVsO)の値が基準
値GBを超えるか否かが判定される。車輪加速度DVw
が00以上であればカウント許可フラグFNbがセット
されず、そのまま路面判定の処理に戻る。
The count permission flag FNb is used to enable or prohibit counting for the number counter. When set, it becomes "permitted", and when reset, it becomes "prohibited", and is set according to the determination result of step 216, which will be described later. be done. If the count permission flag FNb is set, proceed to step 210; if not set, proceed to step 2.
Jump to 16. In step 210, a value obtained by adding the absolute value DVso of the vehicle body deceleration to the wheel acceleration DVw is compared with a reference value GB. If this value is less than the reference value GB, the process jumps to step 216. If it is a dog than the reference value GB, the process advances to step 212 and the value N of the number counter is determined.
After b is incremented and the count permission flag FNb is reset in step 214, the process proceeds to step 216. Then, in step 216, (DVw+DVs
It is determined whether the value of o) has fallen below the OG, that is, the acceleration O level, and if it is below, the count permission flag FNb is set, and it is determined whether the value of (DVw+DVsO) exceeds the reference value GB in the next calculation cycle. be done. Wheel acceleration DVw
If is 00 or more, the count permission flag FNb is not set and the process returns to the road surface determination process.

而して、ステップ208乃至218において基準時間T
bの間に(DVw+DVso)の値が基準値GBを超え
た回数が計数される。即ち、車輪加速度DVwは車体減
速度の絶対値DVsoだけ加算されて基準値GBと比較
されるので、推定車体速度Vsとして演算される車体速
度が減少傾向にあるときにも、車輪加速度DVwはこれ
に影響されることなく所定の基準値GBと正しく比較さ
れる。尚、ステップ210において車体減速度の絶対値
DVsoは車輪加速度DVwに加算して基準値GBと比
較することとしたが、基準値GBから車体減速度の絶対
値DVsoを減算した値と車輪加速度DVwを比較する
ようにしてもよい。
Therefore, in steps 208 to 218, the reference time T
The number of times the value of (DVw+DVso) exceeds the reference value GB during period b is counted. That is, since the wheel acceleration DVw is added by the absolute value DVso of the vehicle deceleration and compared with the reference value GB, even when the vehicle speed calculated as the estimated vehicle speed Vs is on a decreasing trend, the wheel acceleration DVw is It can be correctly compared with a predetermined reference value GB without being influenced by Incidentally, in step 210, the absolute value DVso of the vehicle body deceleration is added to the wheel acceleration DVw and compared with the reference value GB, but the value obtained by subtracting the absolute value DVso of the vehicle body deceleration from the reference value GB and the wheel acceleration DVw It is also possible to compare.

第6図は上記路面判定の処理における動作を示すタイム
チャートであり、タイマ値(T)に基準時間Tbが設定
されている。第6図において破線で示す車輪加速度DV
wに対し車体減速度の絶対値DVsoが加算された値が
実線で示されている。前述のように車両が減速中である
ときには車体減速度分のバイアスがかかるため、−点鎖
線で示す基準値GBに対し破線で示すように車輪加速度
DVwが基準値GBを超えない場合があり、このままで
は悪路であるにも拘らずその旨の判定が行なわれないこ
とになる。これに対し、実線で示す(DVw+DVso
)の値は基準値GBを超え、定速走行時の車輪加速度D
Vwと基準値GBとの関係と同様の関係となる。そして
、基準値GBを超えた後車輪加速度DVwのOGレベル
を下回るまでの間カウント許可フラグFNbがリセット
され(即ち“0”とされ)、OGを下回った後基準値G
Bに到達するまでセットされている(即ち“1”とされ
ている)。換言すれば、通常はカウント許可となってお
り(DVw+DVso)の値が一回基準値GBを超える
と禁止となり、OGを下回ると再度許可となる。そして
、カウント許可フラグFNbがセットされているときに
基準値GBを超える毎に回数カウンタの値Nbが1づつ
インクリメントされ、基準時間Tb内における回数カウ
ンタの値Nbが回数バッファの値BNbとして記憶され
る(第6図の例では“3”となっている)。而して、こ
のカウント結果が路面判定に供される。
FIG. 6 is a time chart showing the operation in the road surface determination process, in which a reference time Tb is set in the timer value (T). Wheel acceleration DV indicated by a broken line in Fig. 6
The solid line indicates the value obtained by adding the absolute value DVso of the vehicle body deceleration to w. As mentioned above, when the vehicle is decelerating, a bias corresponding to the vehicle body deceleration is applied, so the wheel acceleration DVw may not exceed the reference value GB as shown by the dashed line with respect to the reference value GB shown by the - dotted chain line. If this continues, no judgment will be made to that effect even though the road is rough. In contrast, the solid line (DVw+DVso
) exceeds the standard value GB, and the wheel acceleration D when driving at a constant speed
The relationship is similar to the relationship between Vw and reference value GB. Then, the count permission flag FNb is reset (that is, set to "0") until the rear wheel acceleration DVw that exceeds the reference value GB falls below the OG level, and after falling below the reference value G
It is set (ie, set to "1") until it reaches B. In other words, counting is normally permitted, and once the value of (DVw+DVso) exceeds the reference value GB, it is prohibited, and when it falls below OG, it is permitted again. Then, when the count permission flag FNb is set, the value Nb of the number counter is incremented by 1 each time the reference value GB is exceeded, and the value Nb of the number counter within the reference time Tb is stored as the value BNb of the number buffer. (In the example of Fig. 6, it is "3"). This count result is then used for road surface determination.

尚、上記の実施例では推定車体速度Vsの一定時間内の
変化割合として車体減速度DVsoを用いたが、車体加
速度を用い加速時に同様の制御を行なうこととしてもよ
い。
In the above embodiment, the vehicle deceleration DVso is used as the rate of change of the estimated vehicle speed Vs within a certain period of time, but the same control may be performed during acceleration using the vehicle acceleration.

[発明の効果] 本発明は上述のように構成したので以下の効果を奏する
[Effects of the Invention] Since the present invention is configured as described above, it has the following effects.

即ち、本発明のアンチスキッド制御装置によれば、路面
状態判定手段は、車体速度変化割合演算手段の演算結果
に応じて比較手段における基準値及び車輪加速度の何れ
か一方の値が補正されるように構成されているので、例
えば車両が減速状態にあるとぎにおいても、路面の凹凸
が異なる種々の路面状態に応じて的確なアンチスキッド
制御を。
That is, according to the anti-skid control device of the present invention, the road surface condition determination means corrects either the reference value or the wheel acceleration in the comparison means according to the calculation result of the vehicle speed change rate calculation means. Therefore, even when the vehicle is decelerating, for example, anti-skid control can be performed accurately in accordance with various road surface conditions with different unevenness.

行なうことができる。can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアンチスキッド制御装置の概要を示す
ブロック図、第2図は本発明のアンチスキッド制御装置
の実施例の全体構成図、′s3図は第2図の電子制御装
置の構成を示すブロック図、第4図は本発明の一実施例
の制動力制御のための処理を示すフローチャート、第5
図は本発明の一実施例における路面判定の処理を示すフ
ローチャート、第6図は同、路面判定に係る動作を説明
するためのタイムチャートである。 2・・・液圧制御装置、  2a・・・マスクシリンダ
。 2b・・・ブースタ、  3・・・ブレーキペダル。 10・・・電子制御装置。 17 a 〜17 d−・増幅回路。 18a〜18i・・・駆動回路。 20・・・電動モータ、  21.22・・・ポンプ。 23.24・・・リザーバ、  31〜38・・・電磁
弁。 41〜44・・・車輪速度センサ(車輪速度検出手段)
、   51〜54・・・ホイールシリンダ。 FR,FL、RR,RL・・・車輪
Fig. 1 is a block diagram showing an overview of the anti-skid control device of the present invention, Fig. 2 is an overall configuration diagram of an embodiment of the anti-skid control device of the present invention, and Fig. 3 is a configuration of the electronic control device of Fig. 2. FIG. 4 is a flowchart showing processing for braking force control according to an embodiment of the present invention, and FIG.
The figure is a flowchart showing the process of road surface determination in one embodiment of the present invention, and FIG. 6 is a time chart for explaining the operation related to road surface determination. 2... Hydraulic pressure control device, 2a... Mask cylinder. 2b...Booster, 3...Brake pedal. 10...Electronic control device. 17a to 17d-・Amplification circuit. 18a-18i...drive circuit. 20...Electric motor, 21.22...Pump. 23.24... Reservoir, 31-38... Solenoid valve. 41 to 44...Wheel speed sensor (wheel speed detection means)
, 51-54...Wheel cylinder. FR, FL, RR, RL...wheels

Claims (1)

【特許請求の範囲】[Claims] (1)車輪に装着し制動力を付与するホィールシリンダ
と、前記車輪の車輪速度を検出する車輪速度検出手段と
、該車輪速度に基き推定車体速度を演算する推定車体速
度演算手段と、前記車輪速度から車輪加速度を演算する
車輪加速度演算手段と、該車輪加速度が所定時間内に所
定の基準値を超えた回数に応じて走行路面の状態を判定
する路面状態判定手段と、該路面状態判定手段の判定結
果並びに前記車輪速度検出手段、前記車輪加速度演算手
段及び前記推定車体速度演算手段の出力に応じて前記ホ
ィールシリンダに供給するブレーキ液圧を制御する圧力
制御手段とを備えたアンチスキッド制御装置において、
前記路面状態判定手段が、前記推定車体速度の一定時間
内の変化割合を演算する車体速度変化割合演算手段と、
前記車輪加速度及び前記所定の基準値の何れか一方の値
を前記推定車体速度の変化割合に応じて補正して比較す
る比較手段とを備え、該比較手段の所定時間内の比較結
果に応じて走行路面の状態を判定することを特徴とする
アンチスキッド制御装置。
(1) A wheel cylinder attached to a wheel to apply braking force, a wheel speed detection means for detecting the wheel speed of the wheel, an estimated vehicle speed calculation means for calculating an estimated vehicle speed based on the wheel speed, and the wheel Wheel acceleration calculating means for calculating wheel acceleration from speed; road surface condition determining means for determining the condition of a traveling road surface according to the number of times the wheel acceleration exceeds a predetermined reference value within a predetermined time; and the road surface condition determining means. and pressure control means for controlling the brake fluid pressure supplied to the wheel cylinders according to the determination results and the outputs of the wheel speed detection means, the wheel acceleration calculation means, and the estimated vehicle speed calculation means. In,
The road surface condition determining means is a vehicle speed change rate calculating means for calculating a change rate of the estimated vehicle speed within a certain period of time;
and a comparison means for correcting and comparing one of the wheel acceleration and the predetermined reference value according to the rate of change in the estimated vehicle speed, and according to the comparison result of the comparison means within a predetermined time. An anti-skid control device characterized by determining the condition of a running road surface.
JP8604690A 1990-03-31 1990-03-31 Anti-skid control device Expired - Fee Related JP2924065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8604690A JP2924065B2 (en) 1990-03-31 1990-03-31 Anti-skid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8604690A JP2924065B2 (en) 1990-03-31 1990-03-31 Anti-skid control device

Publications (2)

Publication Number Publication Date
JPH03284463A true JPH03284463A (en) 1991-12-16
JP2924065B2 JP2924065B2 (en) 1999-07-26

Family

ID=13875737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8604690A Expired - Fee Related JP2924065B2 (en) 1990-03-31 1990-03-31 Anti-skid control device

Country Status (1)

Country Link
JP (1) JP2924065B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547264A (en) * 1992-11-04 1996-08-20 Aisin Seiki Kabushiki Kaisha Braking force distribution control system
DE112011103577T5 (en) 2010-10-29 2013-09-12 Toyota Jidosha Kabushiki Kaisha Brake force control device and braking force control method for a vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547264A (en) * 1992-11-04 1996-08-20 Aisin Seiki Kabushiki Kaisha Braking force distribution control system
US5624164A (en) * 1992-11-04 1997-04-29 Aisin Seiki Kabushiki Kaisha Braking force distribution control system
DE112011103577T5 (en) 2010-10-29 2013-09-12 Toyota Jidosha Kabushiki Kaisha Brake force control device and braking force control method for a vehicle
DE112011103577B4 (en) 2010-10-29 2017-06-01 Toyota Jidosha Kabushiki Kaisha Vehicle braking force control device and vehicle braking force control method

Also Published As

Publication number Publication date
JP2924065B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3346041B2 (en) Anti-skid control device
JP2725332B2 (en) Anti-lock control device
JP3021463B2 (en) Anti-lock control device
US5505532A (en) Skid control system
JPH07186928A (en) Estimation device for maximum coefficient of friction of vehicle traveling road surface
JP2841577B2 (en) Anti-skid control device
KR100274708B1 (en) Antilock Brake Control
JPH0542865A (en) Anti-skid controller
JP2734037B2 (en) Anti-lock control device
JP2627453B2 (en) Vehicle traction control method
JP4543484B2 (en) Brake hydraulic pressure control device
JP2844777B2 (en) Anti-skid control device
JP3128883B2 (en) Anti-skid control device
JPH03284463A (en) Anti-skid controller
JPH0367768A (en) Anti-skid control device
JPH0367761A (en) Anti-skid control device
JPH03159855A (en) Anti-skid control device
JP2903553B2 (en) Anti-skid control device
US5150952A (en) Anti-skid control system for an automotive vehicle
JP3554569B2 (en) Braking force distribution control device
JP3939859B2 (en) Step determination device for vehicle road surface
JP3035968B2 (en) Anti-skid control device
JPH03118264A (en) Antiskid control device
JPH05213176A (en) Anti-skid controller
JP3346046B2 (en) Anti-skid control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees