JPH0328380Y2 - - Google Patents
Info
- Publication number
- JPH0328380Y2 JPH0328380Y2 JP1987137492U JP13749287U JPH0328380Y2 JP H0328380 Y2 JPH0328380 Y2 JP H0328380Y2 JP 1987137492 U JP1987137492 U JP 1987137492U JP 13749287 U JP13749287 U JP 13749287U JP H0328380 Y2 JPH0328380 Y2 JP H0328380Y2
- Authority
- JP
- Japan
- Prior art keywords
- yoke
- separation
- magnet
- arc
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000926 separation method Methods 0.000 claims description 20
- 230000002093 peripheral effect Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Description
【考案の詳細な説明】
(産業上の利用分野)
この考案は所謂内部磁石型の可動コイル計器に
関するものである。[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a so-called internal magnet type moving coil instrument.
(従来の技術)
従来のこの種の内部磁石型可動コイル電気計器
の構造は、第5図A、同B、同Cに示した如く、
基本的にはフレームを兼ねた半円弧状の外周ヨー
ク51、内部に配置する磁石52、外周ヨーク5
1と対向してこれに嵌合させた半円弧状の分離ヨ
ーク53、上下の軸受で支持された指針54、可
動コイル55、磁極片56、制御用のスプリング
57等からなり、さらにこの他に磁束の調整をす
るため、外周ヨーク51と分離ヨーク53を密着
させる適宜の鉄片を取付けた構造が一般的であ
る。(Prior Art) The structure of a conventional internal magnet type moving coil electric meter of this type is as shown in FIGS. 5A, 5B, and 5C.
Basically, a semicircular arc-shaped outer yoke 51 that also serves as a frame, a magnet 52 arranged inside, and an outer yoke 5
1, a semicircular separation yoke 53 that faces and fits into this, a pointer 54 supported by upper and lower bearings, a moving coil 55, a magnetic pole piece 56, a control spring 57, etc. In order to adjust the magnetic flux, a structure in which an appropriate iron piece is attached to bring the outer yoke 51 and the separation yoke 53 into close contact is generally used.
(考案が解決しようとする課題)
しかしながら上記従来技術によつても、磁束の
分布が構造上依然として不均一であるため、動作
電流値と指針54の回転角度との関係はリニアな
特性とはならなかつた。これを具体的に前出の従
来技術に係る計器についていえば、X軸に回転角
度θ、Y軸に動作電流値iをとつた場合のグラフ
でその特性を示すと、第4図Aに示したように、
概ね指針54の回転角度が5゜〜45゜の範囲では上
に凸、50゜〜85゜の範囲では逆に下に凸に湾曲し
た、逆S字型の曲線で示される特性になつてしま
うのである。(Problem to be solved by the invention) However, even with the above conventional technology, the distribution of magnetic flux is still structurally non-uniform, so the relationship between the operating current value and the rotation angle of the pointer 54 does not have a linear characteristic. Nakatsuta. Specifically, regarding the instrument according to the prior art mentioned above, its characteristics are shown in a graph with the rotation angle θ on the X axis and the operating current value i on the Y axis, as shown in Figure 4A. Like,
In general, when the rotation angle of the pointer 54 is in the range of 5° to 45°, it is convex upward, and when it is in the range of 50° to 85°, it is curved convexly downward, resulting in a characteristic shown by an inverted S-shaped curve. It is.
これらの原因は、分離ヨーク53と外周ヨーク
51との嵌合位置(両端部相互間)の微小なギヤ
ツプ、磁石52の極表示溝の位置ずれ等、種々の
原因が重なつて依然として磁束密度の不均一が完
全には解消されないためである。 These causes are due to a combination of various factors, such as a small gap in the fitting position (between both ends) between the separation yoke 53 and the outer circumferential yoke 51, and misalignment of the pole display groove of the magnet 52, and the magnetic flux density still remains low. This is because the non-uniformity is not completely eliminated.
これを解決するため、適宜の補正鉄片を設けた
ものもあつたが、微調整が難しく、組立に当たつ
ては技能や経験等が不可欠であり、しかも組立完
了までに時間を要した。 In order to solve this problem, some models were equipped with appropriate correction iron pieces, but fine adjustment was difficult, skill and experience were essential for assembly, and it took a long time to complete assembly.
(課題を解決するための手段)
この考案は、そのような点に鑑みてなされたも
のであり、組立に際して特に技能や経験等を要せ
ず、しかも微妙な調整作業をしなくとも機械加工
によつて施した構成だけで、指針の回転角度と電
流値との間にリニアな関係が得られる内部磁石型
計器を提供するものである。(Means for solving the problem) This idea was made in view of the above points, and does not require any special skills or experience during assembly, and can be easily machined without making delicate adjustments. Thus, it is possible to provide an internal magnet type meter that can obtain a linear relationship between the rotation angle of the pointer and the current value just by using the above-mentioned configuration.
上記従来型の内部磁石型可動コイル計器は、外
周ヨークと分離ヨークの両端部を密着させたり、
その上からさらに鉄片を設けるなどして、基本的
には漏れ磁束をできるだけ小さくして、平等磁場
を実現しようとするものであつた。しかしなが
ら、上述のようにそのような方法では限界があ
る。 The above-mentioned conventional internal magnet type moving coil instrument has both ends of the outer yoke and separation yoke brought into close contact with each other.
The idea was to create an even magnetic field by placing an iron piece on top of it, basically minimizing the leakage flux as much as possible. However, as mentioned above, such a method has limitations.
そこでこの考案では発想を転換して作為的に漏
れ磁束を生じさせ、さらにこの漏れ磁束を積極的
に利用して指針の回転角度−動作電流値特性の補
正を行おうとするものである。 Therefore, in this invention, the idea is changed to artificially generate leakage magnetic flux, and furthermore, this leakage magnetic flux is actively used to correct the rotation angle-operating current value characteristic of the pointer.
そのためこの考案では、まずフレームを兼ねる
外周ヨークを半円弧状(円弧角180゜)とし、その
両端部が夫々磁石の各磁極に近接するように、即
ち一端部はN極に他端部がS極に近接するように
配し、一方分離ヨークは四半分円弧状(円弧角
90゜)とし、両ヨーク端部相互間にギヤツプを創
出し、さらにこれらギヤツプは同一長とし、また
外周ヨークにおけるいずれか一方の磁極側に寄つ
た側には、円周方向に沿つた横長の略楕円形の透
孔を設け、さらに前記一方の磁極側に近傍した位
置にある分離ヨークの一端部には凹欠溝を穿つ
た。 Therefore, in this invention, first, the outer yoke that also serves as the frame is made into a semicircular arc shape (arc angle 180°), and its both ends are close to each magnetic pole of the magnet, that is, one end is N pole and the other end is S. The separation yoke has a quarter arc shape (arc angle
90°), a gap is created between the ends of both yokes, and these gaps are of the same length. Also, on the side of the outer yoke that is closer to one of the magnetic poles, there is a horizontally long horizontal line along the circumference. A substantially elliptical through hole was provided, and a recessed groove was bored in one end of the separation yoke located near the one magnetic pole side.
そしてさらに前記透孔は外周ヨーク端部から円
弧角度約20゜乃至60゜の範囲に渡つて穿設し、一方
凹欠溝は分離ヨーク端部から円弧角度約45゜の範
囲に渡つて穿設したことを特徴とする構成を採つ
たものである。 Further, the through hole is bored over a range of an arc angle of about 20° to 60° from the end of the outer yoke, while the groove is bored over a range of an arc angle of about 45° from the end of the separation yoke. The structure is characterized by the following.
(作用)
外周ヨークを半円弧状とし、その両端部が夫々
磁石の各磁極に近接するように配置し、かつ分離
ヨークは四半分円弧状とし、両ヨーク間に積極的
に同一ギヤツプを創出したので、磁石の磁束は両
ヨークの端部により一層集中する。そしてこの外
周ヨークには楕円形の透孔を穿つと共に、分離ヨ
ークにも凹欠溝を穿つてあるので、作為的に漏れ
磁束が生じ、これによつて磁束の分布状態はほぼ
第3図に示したようになる。なお同図中、aは楕
円形の透孔、bは凹欠溝を表わす。(Function) The outer yoke is shaped like a semi-circular arc, and its ends are arranged so as to be close to each magnetic pole of the magnet, and the separation yoke is shaped like a quarter-circular arc to actively create the same gap between both yokes. Therefore, the magnetic flux of the magnet is more concentrated at the ends of both yokes. Since an elliptical through hole is bored in this outer yoke and a groove is also bored in the separation yoke, leakage magnetic flux is generated artificially, resulting in a distribution of magnetic flux almost as shown in Figure 3. It will be as shown. Note that in the figure, a represents an elliptical through hole, and b represents a concave groove.
而してこのような磁束の分布状態の下で可動コ
イルに動作電流を流すと、それによつて生ずる磁
束と磁石からの磁束とが相互に作用して、第4図
Aに示したような所謂S字形の回転角度−動作電
流特性はリニアになるように補正される。従つて
予め所定の位置を実験によつて定めておき、当該
位置に透孔及び凹欠溝を機械的に穿設することに
より、従来のような微調整することなく、回転角
度−動作電流特性がリニアな関係にある内部磁石
型計器を量産できる。 When an operating current is passed through the moving coil under such a magnetic flux distribution state, the resulting magnetic flux and the magnetic flux from the magnet interact with each other, resulting in the so-called phenomenon shown in Figure 4A. The rotation angle-operating current characteristic of the S-shape is corrected to be linear. Therefore, by determining a predetermined position in advance through experiments and mechanically drilling a through hole and a groove at that position, the rotation angle-operating current characteristic can be adjusted without the need for fine adjustment as in the conventional method. It is possible to mass produce internal magnet-type instruments that have a linear relationship.
(実施例)
以下、この考案の実施例を第1図、第2図に基
づいて説明すれば、本実施例で使用したフレーム
を兼ねる外周ヨーク1は、半円弧形状であつて内
径φ=12.4mm、幅が7.0mmであり、また磁石2は
直径φ=9.4mmのもので、両極端部を夫々0.7mmず
つ直線状にカツトしたものを用いた。また3は四
半分円弧形状の分離ヨーク、4は指針、5は可動
コイルである。(Example) Hereinafter, an example of this invention will be described based on FIGS. 1 and 2. The outer yoke 1 which also serves as a frame used in this example has a semicircular arc shape and an inner diameter φ=12.4. The magnet 2 had a diameter φ of 9.4 mm and had both ends cut into a straight line by 0.7 mm each. Further, 3 is a quarter-arc-shaped separation yoke, 4 is a pointer, and 5 is a moving coil.
而して外周ヨーク1には、その端部から円弧角
度約20゜乃至60゜の範囲に略楕円形の透孔が穿た
れ、分離ヨーク3にもその端部から円弧角度約
45゜に渡る凹欠溝が穿たれる。即ち指針4の軸心
を中心として第2図Aに示したように、X軸から
−20゜〜−60゜の範囲に位置するように透孔aが穿
たれ、一方分離ヨーク3にも第2図Aにおいて示
したように、指針4の軸心を中心としてX軸から
+45゜〜+90゜の範囲に位置するように、凹欠溝b
が穿たれている。 The outer yoke 1 is provided with a substantially elliptical through hole at an arc angle of about 20° to 60° from its end, and the separation yoke 3 is also bored at an arc angle of about 20° to 60° from its end.
A 45° groove is drilled. That is, as shown in FIG. 2A, a through hole a is bored in the range of -20° to -60° from the X-axis, centered on the axis of the pointer 4, and a hole a is also formed in the separation yoke 3. As shown in Fig. 2A, the concave groove b is located in the range of +45° to +90° from the X axis with the axis of the pointer 4 as the center.
is worn.
また透孔aの大きさは、縦が外周ヨーク1の幅
の1/3、即ち7.0mm×1/3≒2.3mm、横がヨーク1の
幅と同一の7.0mmであり、凹欠溝bの方は溝幅が
分離ヨーク3の幅の1/3、即ち7.0mm×1/3≒2.3
mm、切欠長が7.0mmである。 The size of the through hole a is 1/3 of the width of the outer circumferential yoke 1 in the vertical direction, that is, 7.0 mm x 1/3 ≒ 2.3 mm, and the horizontal size is 7.0 mm, which is the same as the width of the yoke 1. In the case of , the groove width is 1/3 of the width of the separation yoke 3, i.e. 7.0 mm x 1/3 ≒ 2.3
mm, and the notch length is 7.0 mm.
以上の構成に係る本実施例の回転角度−動作電
流特性を実験によつて確認したところ、第4図B
に示したように、殆ど直線的比例関係にある回転
角度−動作電流特性が得られた。 When the rotation angle-operating current characteristics of this embodiment according to the above configuration were confirmed through experiments, the results were as shown in Fig. 4B.
As shown in Figure 2, the rotation angle-operating current characteristics were almost linearly proportional.
(考案の効果)
この考案に係る内部磁石型計器によれば、従来
磁束密度の不均一を補正するために設けた調整用
鉄片等が不要になり、またそれを適宜調節するた
めの作業も不要となる。従つて組立も簡易、迅速
に行える。また特殊な技能や熟練を要しない。(Effects of the invention) According to the internal magnet type instrument according to this invention, there is no need for an adjustment iron piece, etc. that was conventionally provided to correct non-uniformity of magnetic flux density, and no work is required to adjust it appropriately. becomes. Therefore, assembly can be performed easily and quickly. Also, it does not require any special skills or expertise.
またこの考案では実施例でも明らかなように、
外付け補正片や磁石に設ける磁極片等を用いなく
とも叙上のような効果が得られるので、結果とし
て部品数や加工工程の減少が図れ、それだけ磁場
を乱す要素が減つて設計所期の効果が得られる。 In addition, in this invention, as is clear from the examples,
Since the above effects can be obtained without using external compensation pieces or magnetic pole pieces attached to the magnet, the number of parts and processing steps can be reduced, and the elements that disturb the magnetic field are reduced accordingly, achieving the design goal. Effects can be obtained.
なお透孔及び凹欠溝を穿つ位置は、上記実施例
において設定した位置で最も好ましい結果が得ら
れる。しかしながらその性質上、各部材の材質、
多少の形態の改変等により僅少な変更が生ずる場
合もあるが、事前の実験によつて予め穿設予定の
位置を定めておけばよく、以後はそれに従つて同
一物を量産すればよい。従つて依然として組立の
際の微調整は不要であり、組立作業は簡易迅速に
なし得る。 Note that the most preferable results can be obtained at the positions where the through holes and grooves are bored as set in the above embodiments. However, due to its nature, the material of each member,
Although slight changes may occur due to changes in the form, etc., it is sufficient to determine the intended drilling position in advance through preliminary experiments, and thereafter mass-produce the same product in accordance with that position. Therefore, there is still no need for fine adjustment during assembly, and the assembly work can be done easily and quickly.
而してこの考案によれば、特に従来第4図Aに
示したような略S字形の特性を有するフレームを
兼ねた外周ヨーク、及びこれに対向する位置に分
離ヨークを有する内部磁石型の可動コイル計器に
おいて、指針の回転角を電流値の特性が補正され
て、直線的な比較関係にある回転角−電流値特性
が得られるものである。従つて、例えば計器に対
する被測定電流や被測定電圧が均等目盛で示すこ
とができるものである。 According to this invention, the movable inner magnet type has an outer circumferential yoke that also serves as a frame and has a substantially S-shaped characteristic as shown in FIG. In a coil meter, the current value characteristic is corrected for the rotation angle of the pointer, and a rotation angle-current value characteristic having a linear comparison relationship is obtained. Therefore, for example, the current to be measured and the voltage to be measured for the meter can be shown on a uniform scale.
第1図はこの考案の実施例に関するものであつ
て、第1図Aは主要部材の配置を示す平面図、第
1図Bは同正面図、第1図Cは同右側面図、第1
図Dは分離ヨークの正面図、第2図はいずれも主
要部材の相互位置関係を示した説明図であつて、
第2図Aは指針の回転角度が0゜のときの説明図、
第2図Bは指針の回転角度が90゜のときの説明図、
第3図はこの考案による磁束の分布状態の概略を
示す説明図、第4図Aは従来技術による指針の回
転角度−動作電流値特性を示すグラフ、第4図B
は実施例による指針の回転角度−動作電流値特性
を示すグラフ、第5図A、第5図B、第5図Cは
いずれも従来技術に係る内部磁石型可動コイル計
器に関するものであつて、第5図Aは斜視図、第
5図Bは平面図、第5図Cは側面図である。
なお図中、1は外周ヨーク、2は磁石、3は分
離ヨーク、4は指針、5は可動コイル、aは透
孔、bは凹欠溝である。
Figure 1 relates to an embodiment of this invention, in which Figure 1A is a plan view showing the arrangement of main components, Figure 1B is a front view of the same, Figure 1C is a right side view of the same, and Figure 1C is a right side view of the same.
Figure D is a front view of the separation yoke, and Figure 2 is an explanatory diagram showing the mutual positional relationship of the main components.
Figure 2 A is an explanatory diagram when the rotation angle of the pointer is 0°,
Figure 2B is an explanatory diagram when the rotation angle of the pointer is 90°.
Fig. 3 is an explanatory diagram showing the outline of the magnetic flux distribution state according to this invention, Fig. 4A is a graph showing the rotation angle-operating current value characteristic of the pointer according to the prior art, and Fig. 4B
5A, 5B, and 5C are graphs showing the rotation angle-operating current value characteristics of the pointer according to the embodiment, and FIGS. 5A, 5B, and 5C all relate to internal magnet type moving coil instruments according to the prior art, 5A is a perspective view, FIG. 5B is a plan view, and FIG. 5C is a side view. In the figure, 1 is an outer yoke, 2 is a magnet, 3 is a separation yoke, 4 is a pointer, 5 is a moving coil, a is a through hole, and b is a groove.
Claims (1)
する位置に分離ヨークを有する内部磁石型の可動
コイル計器において、外周ヨークを半円弧状とし
てその両端部が夫々磁石の各磁極に近接するよう
に配し、一方分離ヨークは四半分円弧状とし、さ
らに外周ヨークと分離ヨークの各端部間のギヤツ
プを同一とし、外周ヨークにおけるいずれか一方
の磁極側に寄つた側には、円周方向に沿つた横長
の略楕円形の透孔を設け、さらに前記一方の磁極
側に近傍した位置にある分離ヨークの一端部には
円周方向に凹欠溝を穿ち、さらに前記透孔は外周
ヨーク端部から円弧角度約20゜乃至60゜の範囲に渡
るものとし、一方凹欠溝は分離ヨーク端部から円
弧角度約45゜に渡るものとしたことを特徴とする、
内部磁石型計器。 In an internal magnet-type moving coil instrument that has an outer circumferential yoke that also serves as a frame and a separation yoke at a position opposite to this, the outer circumferential yoke is shaped like a semicircular arc and its ends are arranged so as to be close to each magnetic pole of the magnet. On the other hand, the separation yoke has a quarter-arc shape, and the gap between each end of the outer yoke and the separation yoke is the same, and on the side of the outer yoke that is closer to one of the magnetic poles, there is a gap along the circumferential direction. A horizontally elongated, approximately elliptical through hole is provided, and a recessed groove is bored in the circumferential direction at one end of the separation yoke located near the one magnetic pole side, and the through hole extends from the end of the outer peripheral yoke. The groove extends over an arc angle of about 20° to 60°, while the groove extends over an arc angle of about 45° from the end of the separation yoke.
Internal magnetic instrument.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987137492U JPH0328380Y2 (en) | 1987-09-10 | 1987-09-10 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1987137492U JPH0328380Y2 (en) | 1987-09-10 | 1987-09-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6442463U JPS6442463U (en) | 1989-03-14 |
JPH0328380Y2 true JPH0328380Y2 (en) | 1991-06-18 |
Family
ID=31398961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1987137492U Expired JPH0328380Y2 (en) | 1987-09-10 | 1987-09-10 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0328380Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2542717Y2 (en) * | 1991-02-05 | 1997-07-30 | 株式会社シマノ | Fishing reel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420766A (en) * | 1977-07-18 | 1979-02-16 | Susumu Yamaguchi | Structure of internal magnet type instrument |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5454379U (en) * | 1977-09-26 | 1979-04-14 |
-
1987
- 1987-09-10 JP JP1987137492U patent/JPH0328380Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5420766A (en) * | 1977-07-18 | 1979-02-16 | Susumu Yamaguchi | Structure of internal magnet type instrument |
Also Published As
Publication number | Publication date |
---|---|
JPS6442463U (en) | 1989-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68926102D1 (en) | Permanent magnet arrangement | |
US5992006A (en) | Method for passive control of magnet hemogeneity | |
JPH0328380Y2 (en) | ||
KR19990063056A (en) | Magnetic film forming apparatus | |
US3587016A (en) | Null adjuster for magnetically operated torque motors | |
KR930000223Y1 (en) | Magnet structure for convergence calribration | |
US4311934A (en) | Off set stator laminations for small rotary transducers | |
US2978639A (en) | Moving magnet instrument | |
US3005952A (en) | Electrical instruments and method of adjusting scale characteristics | |
US4145582A (en) | Moving coil pickup having a substantially square magnetic armature mounted in an air gap adjacent a square face magnetic member | |
JPH0618248Y2 (en) | Electromagnetic force generator | |
JPH03966Y2 (en) | ||
US20220236045A1 (en) | Rotation sensing device | |
JPS605738Y2 (en) | Small non-adjustable step motor | |
JPS5852537Y2 (en) | Movable iron piece type instrument | |
JPS5925018Y2 (en) | Magnetic box for galvanometer | |
US4114124A (en) | Convergence apparatus with variably magnetized magnets | |
KR830000242Y1 (en) | Gauge for Movable Coils | |
KR0116742Y1 (en) | P.c.s using for mis-conversions supplement equipment | |
JPH0122214Y2 (en) | ||
KR200154852Y1 (en) | Gauss control device of magnet for deflection yoke | |
KR960000259Y1 (en) | Deflection yoke of crt | |
JPS5916497A (en) | Mc type pickup cartridge | |
JPH076607Y2 (en) | Deflection yoke device | |
JP3964012B2 (en) | Magnet drive device, device equipped with the same, light amount adjusting device, camera |