JPH03283615A - Etching monitor method - Google Patents

Etching monitor method

Info

Publication number
JPH03283615A
JPH03283615A JP8436790A JP8436790A JPH03283615A JP H03283615 A JPH03283615 A JP H03283615A JP 8436790 A JP8436790 A JP 8436790A JP 8436790 A JP8436790 A JP 8436790A JP H03283615 A JPH03283615 A JP H03283615A
Authority
JP
Japan
Prior art keywords
etching
spectrum
thin film
end point
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8436790A
Other languages
Japanese (ja)
Inventor
Tadashi Suda
須田 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP8436790A priority Critical patent/JPH03283615A/en
Publication of JPH03283615A publication Critical patent/JPH03283615A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable detection of etching velocity and end point by radiating white light for spectrum processing of reflection light from both surfaces of a thin film and by displaying intensity distribution of spectrum of interference wave by interfering both spectrums. CONSTITUTION:White light 5 from a light source 5a is reflected by a half mirror 14 and radiated to a thin film 2 during etching through a glass window 13b of a reflection furnace 13, and reflection wave from both sides is transmitted through a half mirror 14 and input to diffraction grating 7. Both reflection waves are spectrum-dispersed by the diffraction grating 7, focus and interfer per wavelength by a lens 8 and input to CCD9 to output intensity distribution of spectrum of interference wave. An output voltage is processed by data processing part 10 and figures of processing results are output to an output part 12 simultaneously with display of spectrum on a display 11. According to this constitution, it is possible to detect etching velocity readily and to acquire accurate end point by data processing since the detailed state of etching near end point can be observed.

Description

【発明の詳細な説明】 [M梁上の利用分野] この発明はエツチングφモニタ方式に関し、詳しくは薄
膜のエツチング中において、その速度と終点を検出する
方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application on M Beams] The present invention relates to an etching φ monitoring system, and more specifically to a system for detecting the speed and end point during etching of a thin film.

[従来p技術] 半導体素子の製造においては、シリコンなどのウェハに
対してCVD装置により酸化物の薄膜が蒸着され、。こ
れに対して所定のパターンを形成するためにエツチング
が行われる。製品の品質を良好とするためにエツチング
は重要な工程であり、最適条件を設定するためにその速
度と終点を知ることが必要である。このために各種の方
式が行われているが、光の干渉波を利用するものは公知
であり、これを生産工程に適用してインラインで行うも
のとして例えば、特許出願公表「昭和83−50300
8号、レーザ干渉で撮像する方法及びこの方法を実施す
るためのレーザー干渉計」がある。
[Conventional technology] In the manufacture of semiconductor devices, a thin film of oxide is deposited on a wafer of silicon or the like using a CVD device. Etching is performed on this to form a predetermined pattern. Etching is an important process in order to improve the quality of the product, and it is necessary to know its speed and end point in order to set the optimum conditions. Various methods have been used for this purpose, and one that uses optical interference waves is well known.
No. 8, "Method of imaging by laser interference and laser interferometer for carrying out this method".

第4図(a)、(b)は上記の特許出願公表における、
エツチングの速度と終点を検出する原理を説明するもの
で、図(a)において、図示しない反応炉内に薄膜2が
蒸着された基板1が置かれ、薄膜2に対して単一波長の
レーザビーム3が照射される。
Figures 4(a) and (b) show the above patent application publication.
This explains the principle of detecting the speed and end point of etching. In Figure (a), a substrate 1 on which a thin film 2 is deposited is placed in a reactor (not shown), and a laser beam of a single wavelength is applied to the thin film 2. 3 is irradiated.

薄膜2の表面より反射波41が反射され、薄膜が透明で
あるとその裏面からも反射波42が反射され、両反射波
4皿と42が干渉する。周知のように、干渉波の波長を
λとするとき、両干渉波の位相差がλ/2の偶数倍のと
き強度が最大となり、奇数倍において最小となる。エツ
チングの進行に伴って薄膜2の厚さdは漸次薄くなるの
で、両反射波の位相差はλ/2の奇数倍と偶数倍の間を
連続して変化し、従って干渉波の強度は最大値と最小値
の間を変化する。このような干渉波を光電変換器により
受光し、その出力電圧の波形をディスプレイに表示する
と、図(b)の曲線が観察される。図における1、は強
度の平均値であり、波形はこれを中心として最大値I■
axと最小値I s+Inの間を時間tに従って変化す
る。エツチングが終点に達すると、強度変化が無くなっ
て最大値I 園axに落ち着き、この時点11が終点と
して検出される。また、2つの最大値1 waxの時間
間隔Tsは、λ/2の偶数倍(λの整数倍)に相当する
ので、これよりエツチング速度が計測される。なお、上
記の特許出願公表においては、レーザビームを走査して
被処理の薄膜の必要な範囲に対するエツチング状態を面
積的に捉え、データ処理装置によりその範囲における干
渉波強度をディスプレイに表示するものである。
A reflected wave 41 is reflected from the surface of the thin film 2, and if the thin film is transparent, a reflected wave 42 is also reflected from the back surface, and both reflected waves 42 interfere with each other. As is well known, when the wavelength of the interference wave is λ, the intensity is maximum when the phase difference between the two interference waves is an even multiple of λ/2, and is minimum when the phase difference is an even multiple of λ/2. As the etching progresses, the thickness d of the thin film 2 gradually decreases, so the phase difference between both reflected waves continuously changes between odd and even multiples of λ/2, and therefore the intensity of the interference wave is at its maximum. Vary between the value and the minimum value. When such an interference wave is received by a photoelectric converter and the waveform of its output voltage is displayed on a display, the curve shown in FIG. 3(b) is observed. 1 in the figure is the average value of the intensity, and the waveform is centered around this and the maximum value I
It changes between ax and the minimum value Is+In according to time t. When the etching reaches the end point, the intensity changes no longer and settles to the maximum value I, and this time point 11 is detected as the end point. Furthermore, since the time interval Ts between the two maximum values of 1 wax corresponds to an even multiple of λ/2 (an integral multiple of λ), the etching rate can be measured from this. In addition, in the above patent application publication, the etching state of the required range of the thin film to be processed is captured by scanning with a laser beam, and the interference wave intensity in that range is displayed on a display using a data processing device. be.

[解決しようとする課題] 上記の特許出願公表にかかる干渉波方式においては、第
4図(b)の曲線は終点11に達するまでに最大値1 
waxと最小値1 minの間を、当初の厚さに相当し
て複数回変化し、終点においていわば唐突に最大値1 
waxに落ち着くものである。従って、終点の手前にお
けるエツチングの進行状態が詳細に把握できず、終点を
事前に予測することができない。
[Problem to be solved] In the interference wave system disclosed in the above patent application, the curve in FIG. 4(b) has a maximum value of 1 before reaching the end point 11
wax and the minimum value of 1 min, it changes multiple times corresponding to the initial thickness, and suddenly reaches the maximum value of 1 min at the end point.
It settles on wax. Therefore, the progress of etching before the end point cannot be grasped in detail, and the end point cannot be predicted in advance.

この発明は以上に鑑みてなされたもので、生産工程にイ
ンラインで使用し、エツチングの進行状況、特に終点近
くを詳細に観察でき、エツチングの速度と終点を検出す
るエッチング・モニタ方式を提供することを目的とする
ものである。
The present invention has been made in view of the above, and provides an etching monitor method that can be used in-line in the production process, allows detailed observation of the progress of etching, especially near the end point, and detects the speed and end point of etching. The purpose is to

[課題を解決するための手段] この発明はエッチング・モニタ方式であって、エツチン
グ中の薄膜に白色光を照射し、薄膜の表面および裏面よ
りの反射光を回折格子によりそれぞれスペクトルに分光
する。分光された両スペクトルを干渉させてCCDセン
サにより受光し、干渉波のスペクトルの強度分布をディ
スプレイに表示してエツチングの進行状況が観察され、
またデータ処理によりエツチング速度および終点が検出
される。
[Means for Solving the Problems] The present invention is an etching monitor system in which a thin film being etched is irradiated with white light, and the reflected light from the front and back surfaces of the thin film is separated into spectra using a diffraction grating. The two separated spectra are interfered and received by a CCD sensor, and the intensity distribution of the interference wave spectrum is displayed on a display to observe the progress of etching.
The etching speed and end point are also detected through data processing.

[作用] 以上の構成によるこの発明のエッチング・モニタ方式に
おいては、薄膜に対して白色光が照射され、薄膜の表裏
の両面よりの反射光は、回折格子によりそれぞれスペク
トルに分光される。この両スペクトルは白色光に含まれ
る広い範囲の波長領域に広がった連続スペクトルであり
、両反射光のスペクトルはそれぞれの同一の波長同士が
干渉するので、干渉波のスペクトルかえられる。この干
渉波スペクトルはCCDセンサにより受光され、波長に
対する強度分布が2次元的にディスプレイに表示されて
観察される。ここで、干渉波の強度は両反射波の位相差
、すなわち薄膜の厚さに依存し、エツチングの進行によ
り薄膜が薄くなるに従って最大値または最小値を示す波
長がディスプレイ上で漸次移動する。この移動速度はす
なわちエツチング速度であるので、エツチング速度は波
形の観察またはデータ処理により容易に検出される。
[Operation] In the etching monitor system of the present invention having the above configuration, a thin film is irradiated with white light, and the reflected light from both the front and back surfaces of the thin film is separated into spectra by a diffraction grating. Both spectra are continuous spectra spread over a wide range of wavelengths included in white light, and since the same wavelengths of both reflected lights interfere with each other, the spectra of the interference waves are changed. This interference wave spectrum is received by a CCD sensor, and the intensity distribution with respect to wavelength is displayed two-dimensionally on a display and observed. Here, the intensity of the interference wave depends on the phase difference between both reflected waves, that is, the thickness of the thin film, and as the thin film becomes thinner as etching progresses, the wavelength showing the maximum or minimum value gradually shifts on the display. Since this moving speed is the etching speed, the etching speed can be easily detected by waveform observation or data processing.

さらに、薄膜の厚さが連続スペクトルの最小波長の4分
の1(位相差は2分の1)より薄くなると、その厚さの
減少に伴って干渉波スペクトルの強度の最大値と最小値
の差が漸次小さくなり、エツチングの終点において強度
分布は最大値に落ち着く。
Furthermore, when the thickness of the thin film becomes thinner than one-fourth of the minimum wavelength of the continuous spectrum (the phase difference is one-half), the maximum and minimum intensity values of the interference wave spectrum decrease as the thickness decreases. The difference gradually decreases, and the intensity distribution settles to its maximum value at the end of etching.

このように、薄膜の厚さが薄くなって終点に近づくと、
干渉波スペクトルの強度分布が特異な形で漸次最大値に
接近するので、これにより終点付近のエツチングの状況
が詳細に観察され、データ処理により終点を正確に把握
することができる。
In this way, as the thickness of the thin film decreases and approaches the end point,
Since the intensity distribution of the interference wave spectrum gradually approaches the maximum value in a peculiar manner, the etching situation near the end point can be observed in detail, and the end point can be accurately determined through data processing.

[実施例] 第1図(a)は、この発明によるエッチング・モニタに
おける光学系の実施例を示す。シリコンウェハ1の表面
には酸化物などの薄膜2が蒸着され、これに対して白色
光5が照射される。白色光5としては格別な線スペクト
ルを打しない連続スペクトルのものが好ましい。白色光
5は薄M2の表面および裏面によりそれぞれ反射波旧、
62が反射され、回折格子7により分光される。回折格
子7としてこの場合は反射型を示すが、透過型でも差し
支えない。なお、回折格子の分光原理は周知であるが参
考のために第1図(b)により一応説明する。
[Embodiment] FIG. 1(a) shows an embodiment of an optical system in an etching monitor according to the present invention. A thin film 2 of oxide or the like is deposited on the surface of a silicon wafer 1, and white light 5 is irradiated onto the thin film 2. The white light 5 is preferably one with a continuous spectrum that does not have any particular line spectrum. The white light 5 is reflected by the front and back surfaces of the thin M2, respectively.
62 is reflected and separated into spectra by the diffraction grating 7. In this case, a reflection type diffraction grating 7 is shown, but a transmission type may also be used. Although the spectroscopic principle of a diffraction grating is well known, it will be briefly explained with reference to FIG. 1(b) for reference.

反射型の回折格子7に対して白色光5が入射角αで入射
するときは、回折作用により次式のλに対応した反射角
βの回折光50.51.52・・・・・・が射出される
When white light 5 is incident on the reflective diffraction grating 7 at an incident angle α, due to the diffraction effect, diffracted light 50, 51, 52, etc. with a reflection angle β corresponding to λ in the following equation are obtained. be ejected.

d (s inα+s inβ)=nλ   (1)こ
こでnは回折光の次数であり、dは薄膜の厚さである。
d (s in α+s in β)=nλ (1) where n is the order of the diffracted light and d is the thickness of the thin film.

n=oに対する0次の回折光50の反射角β0は波長λ
に無関係に入射角αと同一であり、すなわち正反射をな
す。これに対して、n=1に対する1次回折光51,5
2.53・・・・・・は波長λの大きさにより分離され
、その反射角β1.β2.β3・・・・・・はβ0より
この順序に大きく、すなわち白色光5は波長λに対応し
たスペクトルに分光される。
The reflection angle β0 of the 0th order diffracted light 50 for n=o is the wavelength λ
It is the same as the angle of incidence α regardless of the angle of incidence, that is, specular reflection occurs. On the other hand, the first-order diffracted light 51,5 for n=1
2.53... are separated by the size of the wavelength λ, and their reflection angles β1. β2. β3... are larger than β0 in this order, that is, the white light 5 is divided into spectra corresponding to the wavelength λ.

なお、2次以」−の回折光があるがこれらの強度は小さ
いのでここでは問題としない。
Incidentally, although there are diffracted lights of second order and higher order, their intensities are small, so they are not considered a problem here.

再び第1図(a)において、回折格子7により分光され
た両反射波GO,61の各回折光は、レンズ8により各
波長がCCDセンサ9に対して合焦して受光される。こ
こで前記の両反射波[il、 82には位相差があるの
で、両反射波の回折光の同一波長もそれぞれ位相差があ
り、これらが互いに干渉して干渉波のスペクトルが生じ
、干渉波スペクトルに対するCCDセンサ9の各素子の
出力電圧がデータ処理部鳳0に人力する。
Referring again to FIG. 1(a), each of the diffracted lights of both reflected waves GO, 61 separated by the diffraction grating 7 is received by the lens 8 with each wavelength focused on the CCD sensor 9. Here, since there is a phase difference between the two reflected waves [il, 82, the same wavelength of the diffracted light of both reflected waves also has a phase difference, these interfere with each other to produce an interference wave spectrum, and the interference wave The output voltage of each element of the CCD sensor 9 with respect to the spectrum is input to the data processing section 0.

第2図(a)〜(f)により、ディスプレイに表示され
た干渉波スペクトルの強度分41の変化を説明する。各
図において、横軸を波長λ、白色光の波長範囲をλ1n
〜λWaXとし、λ1nに近いλ1と、その2倍のλ3
 (λ3〈λ■aXとする)、およびこれらの中央のλ
2について着目する。ここで、dを前記と同様に薄膜2
の厚さとし、εを薄膜の屈折率とすると、2d/εは両
反射波の位相差に相当する(ただし、簡便のために薄膜
2に対する入射角αをOとする)。図(a)は、薄膜の
厚さdlによる位相差2dl/εが、λt/2の偶数倍
(n ” 2 * 3・・・・・・とする)の場合を示
し、従ってこの位相差はλ3/2の偶数倍でもあり、λ
1とλ3の点が最大値1膳aXとなる。また中央のλ2
では最小値lm1nとなる。図(b)は厚さd2による
位相差がλl/2の奇数倍の場合で、λlとλ3で最小
値、λ2で最大値となる。エツチングの進行に伴って上
記の最大値、または最小値が移動するので、これを観察
するか、またはデータ処理によりエツチング速度が検出
される。以上の変化は規則的であるが、エツチングが進
んで図(e)のように厚さdpの位相差がλl/2に等
しくなると、λ1では最小値■1nとなるが、λ2とλ
3では位相差がλ/2以下であるために、ll1a×ま
たはI minに達しない。図(d)、(e)において
は、厚さdQ、drがさらに薄くなって、それぞれの位
相差がλl/4またはλt/8の場合を示し、曲線は漸
次上昇して終点においては図(f)のように最大値I 
saxに落ち着く。このように、終点の近くでは強度分
布がいわば特異な変化をなすので、その変化を詳細に観
察することができる。
Changes in the intensity 41 of the interference wave spectrum displayed on the display will be explained with reference to FIGS. 2(a) to 2(f). In each figure, the horizontal axis is the wavelength λ, and the wavelength range of white light is λ1n.
~λWaX, λ1 close to λ1n, and λ3 twice that
(λ3〈λ■aX), and their center λ
Let's focus on point 2. Here, d is the same as above for the thin film 2
When the thickness is , and ε is the refractive index of the thin film, 2d/ε corresponds to the phase difference between both reflected waves (however, for the sake of simplicity, the incident angle α with respect to the thin film 2 is assumed to be O). Figure (a) shows the case where the phase difference 2dl/ε due to the thin film thickness dl is an even multiple of λt/2 (n 2 * 3...), and therefore this phase difference is It is also an even multiple of λ3/2, and λ
1 and λ3 is the maximum value 1 set aX. Also, the central λ2
Then, the minimum value lm1n is obtained. Figure (b) shows a case where the phase difference due to the thickness d2 is an odd multiple of λl/2, with the minimum value at λl and λ3 and the maximum value at λ2. As the etching progresses, the above-mentioned maximum value or minimum value moves, and the etching speed can be detected by observing this or by data processing. The above changes are regular, but as the etching progresses and the phase difference in the thickness dp becomes equal to λl/2 as shown in Figure (e), the minimum value ■1n is reached at λ1, but between λ2 and λ
3, the phase difference is less than λ/2, so it does not reach ll1a× or I min. In Figures (d) and (e), the thicknesses dQ and dr become even thinner, and the respective phase differences are λl/4 or λt/8, and the curves gradually rise and at the end point, the figure ( f) such that the maximum value I
I settled on sax. In this way, the intensity distribution undergoes a peculiar change near the end point, and this change can be observed in detail.

第3図は、この発明によるエッチング・モニタ方式をプ
ラズマCVD装置に適用した場合の全体構成の実施例を
示す。反応炉口の底部に試料台13aが設けられて被処
理のシリコンウェハlが載置される。ウェハ1の表面に
は酸化物の薄膜2が蒸着されており、反応炉に対してふ
っ素糸などのエツチングガスが圧入されてエツチング作
用が行われる。これに対して、光源5aよりの白色光5
が、ハーフミラ−目により下方に反射されて、反応炉の
F部のガラス窓13bを通して薄膜2に照射され、表裏
両面による反射波がハーフミラ−14を透過して回折格
子7に入力する。両反射波は回折格子によりそれぞれス
ペクトル分光され、レンズ8により波長ごとに合焦して
干渉し、CCDセンサ9に入力して干渉波のスペクトル
の強度分布に対する電圧が各素子より出力される。出力
電圧はデータ処理部10において処理され、ディスプレ
イHによりスペクトルが表示され、同時に、データ処理
結果の数値が出力部12に出力される。データ処理部1
0はマイクロプロセッサにより構成され、!―記の処理
や表示は自動化されている。
FIG. 3 shows an embodiment of the overall configuration when the etching monitor system according to the present invention is applied to a plasma CVD apparatus. A sample stage 13a is provided at the bottom of the reactor mouth, on which a silicon wafer 1 to be processed is placed. A thin oxide film 2 is deposited on the surface of the wafer 1, and an etching action is performed by injecting an etching gas such as fluorine thread into a reactor. On the other hand, the white light 5 from the light source 5a
is reflected downward by the half-mirror eye and irradiated onto the thin film 2 through the glass window 13b of the F section of the reactor, and the reflected waves from both the front and back surfaces pass through the half-mirror 14 and enter the diffraction grating 7. Both reflected waves are spectrally separated by a diffraction grating, focused and interfered by a lens 8 for each wavelength, input to a CCD sensor 9, and a voltage corresponding to the intensity distribution of the spectrum of the interference wave is output from each element. The output voltage is processed in the data processing section 10, the spectrum is displayed on the display H, and at the same time, the numerical value of the data processing result is outputted to the output section 12. Data processing section 1
0 is configured by a microprocessor and! - The processing and display of the notes are automated.

[発明の効果] 以上の説明により明らかなように、この発明によるエッ
チング・モニタ方式によれば、エツチングされる薄膜に
対して白色光を照射し、その表裏の両面よりの反射波を
回折格子によりそれぞれ分光し、両分光スペクトルの同
一波長同士の干渉波スペクトルをCCDセンサにより受
光してディスプレイに表示して強度変化を観察し、また
はデータ処理を行って、強度変化よりエツチング速度と
その終点を自動的に検出するもので、従来の単一波長の
レーザビームを使用した方式においては、強度変化が時
間軸に沿って1次元的に捉えられるに対して、この発明
の場合は、波長に対する強度分布がディスプレイに2次
元表示されるので、エツチング速度と、終点付近のエツ
チング吠況の変化がより詳細に把握されて最適条件を設
定するデータかえられ、エツチングの管理に寄与する効
果には大きいものがある。
[Effects of the Invention] As is clear from the above explanation, according to the etching monitoring method according to the present invention, a thin film to be etched is irradiated with white light, and reflected waves from both the front and back sides are detected by a diffraction grating. The interference wave spectrum between the same wavelengths of both spectra is received by a CCD sensor and displayed on a display to observe the change in intensity, or data processing is performed to automatically determine the etching speed and its end point from the change in intensity. In the conventional method using a single wavelength laser beam, the intensity change is detected one-dimensionally along the time axis, but in the case of this invention, the intensity distribution with respect to wavelength is detected. Since it is displayed two-dimensionally on the display, changes in etching speed and etching conditions near the end point can be grasped in more detail, and data can be changed to set optimal conditions, which has a great effect on etching management. be.

【図面の簡単な説明】 第1図(a)および(b)は、この発明によるエツチン
グ拳モニタ方式の実施例における光学系の構成図および
公知の回折格子の作用の説明図、第2図(a)〜(f)
は、第1図(a)における干渉波スペクトルの強度分布
の変化を説明する曲線図、第3図は、この発明によるエ
ッチング・モニタ方式を適用したエツチング装置の実施
例における全体構成図、第4図(a)および(b)は、
特許出願公表に開示された単一波長のレーザビームによ
るエツチング速度と終点の検出方法の概要説明図である
。 1・・・シリコンウェハ、 2・・・薄膜、3・・・レ
ーザビーム、41.42・・・反射波、5・・・白色光
、     5a・・・光源、61・・・表面反射波、
62・・・裏面反射波、7・・・回折格子、     
8・・・レンズ、9・・・CCDセンサ、1G・・・デ
ータ処理部、■・・・ディスプレイ、12・・・出力部
、■・・・反応炉、13a・・・試料台、13b・・・
ガラス窓、14・・・ハーフミラ−第 図 (a) (b) ち 第 図 1.2
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1(a) and 1(b) are diagrams of the configuration of an optical system in an embodiment of the etching fist monitor system according to the present invention and an explanatory diagram of the action of a known diffraction grating, and FIG. a) ~ (f)
1A is a curve diagram illustrating changes in the intensity distribution of the interference wave spectrum in FIG. Figures (a) and (b) are
FIG. 2 is a schematic explanatory diagram of a method for detecting etching speed and end point using a single wavelength laser beam as disclosed in a patent application publication. DESCRIPTION OF SYMBOLS 1... Silicon wafer, 2... Thin film, 3... Laser beam, 41.42... Reflected wave, 5... White light, 5a... Light source, 61... Surface reflected wave,
62...Back surface reflected wave, 7...Diffraction grating,
8... Lens, 9... CCD sensor, 1G... Data processing section, ■... Display, 12... Output section, ■... Reactor, 13a... Sample stage, 13b.・・・
Glass window, 14...Half mirror - Figures (a) (b) Figure 1.2

Claims (1)

【特許請求の範囲】[Claims] (1)エッチング中の薄膜に白色光を照射し、該薄膜の
表面および裏面よりの反射光を回折格子によりそれぞれ
スペクトルに分光し、該分光された両スペクトルの干渉
波をCCDセンサにより受光し、該干渉波のスペクトル
の強度分布をディスプレイに表示して、上記エッチング
の進行状態を観察し、データ処理によりエッチング速度
および終点を検出することを特徴とする、エッチング・
モニタ方式。
(1) Irradiate the thin film being etched with white light, separate the reflected light from the front and back surfaces of the thin film into spectra using a diffraction grating, and receive the interference waves of both of the separated spectra with a CCD sensor, An etching method characterized by displaying the intensity distribution of the spectrum of the interference wave on a display to observe the progress of the etching, and detecting the etching rate and end point by data processing.
Monitor method.
JP8436790A 1990-03-30 1990-03-30 Etching monitor method Pending JPH03283615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8436790A JPH03283615A (en) 1990-03-30 1990-03-30 Etching monitor method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8436790A JPH03283615A (en) 1990-03-30 1990-03-30 Etching monitor method

Publications (1)

Publication Number Publication Date
JPH03283615A true JPH03283615A (en) 1991-12-13

Family

ID=13828559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8436790A Pending JPH03283615A (en) 1990-03-30 1990-03-30 Etching monitor method

Country Status (1)

Country Link
JP (1) JPH03283615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229117A (en) * 2004-02-09 2005-08-25 Axcelis Technologies Inc In-situ absolute measuring method and equipment for thickness of thin film, removal rate of thin film and removal end point
JP2021077859A (en) * 2019-11-05 2021-05-20 エスピーティーエス テクノロジーズ リミティド Reflectometry end point imaging apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229117A (en) * 2004-02-09 2005-08-25 Axcelis Technologies Inc In-situ absolute measuring method and equipment for thickness of thin film, removal rate of thin film and removal end point
JP2021077859A (en) * 2019-11-05 2021-05-20 エスピーティーエス テクノロジーズ リミティド Reflectometry end point imaging apparatus and method

Similar Documents

Publication Publication Date Title
JP3292029B2 (en) Dry etching end point monitoring method and apparatus therefor
EP1218689B1 (en) Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
KR20040071146A (en) Method and apparatus for measuring stress in semiconductor wafers
US20050007603A1 (en) Spatial wavefront analysis and 3d measurement
TW201118334A (en) Film thickness measurement device and film thickness measurement method
JP2001500975A (en) Improved method and apparatus for measuring material properties using a transient grating spectrometer
TW201037266A (en) Film thickness measurement device and measurement method
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
EP2821777A1 (en) Spectral characteristics measurement device and method for measuring spectral characteristics
CN109387155A (en) Shape measure device and Shape measure method
US20050042777A1 (en) Control of etch and deposition processes
US20050122529A1 (en) Measurement system of three-dimensional shape of transparent thin film using acousto-optic tunable filter
JP5273644B2 (en) Film thickness measuring apparatus and film thickness measuring method
JPH03283615A (en) Etching monitor method
JP2009115503A (en) Method and device for measuring roughness
JP6709407B2 (en) Thickness measuring device and thickness distribution measuring device
JP2010210384A (en) Refractive index meter
TWI429877B (en) Photoelastic measuring method and apparatus
JP3979611B2 (en) Stress measuring device
JP2010060385A (en) Device and method for measuring liquid membrane thickness
JPS63122906A (en) Apparatus for measuring thickness of film
WO2021181545A1 (en) Plasma processing device or plasma processing method
JPS6271804A (en) Film thickness measuring instrument
JP2009115474A (en) Method and device for observing multilayer film structure
WO2022172532A1 (en) Film thickness measuring device and film thickness measuring method