JPH03283515A - Thin dielectric film - Google Patents

Thin dielectric film

Info

Publication number
JPH03283515A
JPH03283515A JP2083208A JP8320890A JPH03283515A JP H03283515 A JPH03283515 A JP H03283515A JP 2083208 A JP2083208 A JP 2083208A JP 8320890 A JP8320890 A JP 8320890A JP H03283515 A JPH03283515 A JP H03283515A
Authority
JP
Japan
Prior art keywords
thin film
film
dielectric
substrate
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2083208A
Other languages
Japanese (ja)
Inventor
Hisami Okuwada
久美 奥和田
Motomasa Imai
今井 基真
Yohachi Yamashita
洋八 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2083208A priority Critical patent/JPH03283515A/en
Publication of JPH03283515A publication Critical patent/JPH03283515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin dielectric film which provides high dielectric constant and is superior in bias characteristics by using the thin film of an antiferrodielectric perovskite type oxide. CONSTITUTION:Organic acid chlorides containing each metal ion, e.g. Pb, La, Zr, Ti and inorganic salt or organic metallic compounds such as metal alkoxide are used as starting materials and a material solution is prepared by mixing the above materials so that a metal ion ratio may satisfy the composition of an expression: (Pb1-xLax) (ZryTi1-y)1-x/4O3 where each x and y represents values within a region indicated by oblique lines in an attached x-y relational diagram and its material solution is applied to a substrate. In such a case, it is permissible to regulate viscosity by adding water or catalyst to the solution containing metal ions as occasion demands. Then the thin film of a perovskite type oxide equipped with a preferable composition in such a way that each value x and y is within the region indicated by the oblique lines in the attached diagram is obtained by performing burning or heat treatment at the temperature of 500 deg.C or higher for a film applied on the substrate.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ペロブスカイト型酸化物からなる誘電体薄膜
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a dielectric thin film made of a perovskite oxide.

(従来の技術) 一般に、コンデンサなどに使用される誘電体材料には、
高い誘電率が要求されることはもちろんのこと、読電損
失が小さく、絶縁耐力が大きいなど、種々の要求を満足
させる必要がある。
(Prior art) Generally, dielectric materials used in capacitors etc.
Not only is a high dielectric constant required, but it is also necessary to satisfy various requirements such as low reading loss and high dielectric strength.

従来から、このような要求を満足する誘電体材料として
、チタン酸バリウムBaT103のようなペロブスカイ
ト型の各種化合物が報告されており、また実使用に洪さ
れている。
Hitherto, various perovskite-type compounds such as barium titanate BaT103 have been reported as dielectric materials satisfying such requirements, and are in widespread use.

一方、近年、電子機器の小型化、高速化に伴い、コンデ
ンサや半導体素子のような回路素子の小型化、高密度化
の要求が高まってきている。このような要求に応えるた
めに、コンデンサにおいては、誘電体材料を薄膜化して
用いることにより、誘電率を高めるとともに素子の小型
化を図る必要が生じている。
On the other hand, in recent years, as electronic devices have become smaller and faster, there has been an increasing demand for smaller and higher density circuit elements such as capacitors and semiconductor elements. In order to meet such demands, in capacitors, it is necessary to increase the dielectric constant and downsize the device by using a thinner dielectric material.

(発明が解決しようとする課題) しかしながら、薄膜化された誘電体においては、厚さ当
りにかかる電圧が大きくなり、特に直流成分がかかった
状態での誘電率の低下(DCバイアス特性の低下)が問
題となっている。
(Problem to be solved by the invention) However, in a dielectric film made thin, the voltage applied per thickness increases, and the dielectric constant decreases (decreases DC bias characteristics) especially when a DC component is applied. is a problem.

そこで、薄膜化した際においても、DCバイアス特性の
低下が少ない誘電体材料が強く望まれている。
Therefore, there is a strong desire for a dielectric material that exhibits less deterioration in DC bias characteristics even when the film is made thinner.

本発明は、このような課題に対処するためになされたも
ので、誘電率が高く、シかもバイアス特性に優れた誘電
体薄膜を提供することを目的としている。
The present invention has been made to address these problems, and an object of the present invention is to provide a dielectric thin film with a high dielectric constant and excellent bias characteristics.

[発明の構成] (課題を解決するための手段と作用) すなわち本発明の誘電体薄膜は、薄膜中の酸化物成分が
、反強誘電性を有するペロブスカイト型酸化物であるこ
とを特徴として(Xる。
[Structure of the Invention] (Means and Effects for Solving the Problems) That is, the dielectric thin film of the present invention is characterized in that the oxide component in the thin film is a perovskite-type oxide having antiferroelectricity ( X Ru.

そして、本発明において用いられる反強誘電性を有する
ペロブスカイト型酸化物として11、化学式: %式% で表され、上記添字Xおよびyそれぞれが、第1図に示
すx−y関係図の斜線で示す領域内の値を満足するもの
が挙げられる。
The perovskite oxide having antiferroelectricity used in the present invention is represented by the chemical formula: Examples include those that satisfy the values within the indicated range.

すなわちXおよびyの値がいずれも第1図に示す斜線領
域内にある場合には、上記(1)式で表されるペロブス
カイト型酸化物は、直流電圧を力嘱けた状態でも反強誘
電性から強誘電性へ転移する間は、誘電率変化が負にな
らな(1゜また、温度の変化に対して緩慢な相転移を示
すため、温度1こ文・1する誘電率の変化も小さい。な
お、上記Xおよびyの値が第1図の斜線で示す領域外の
場合1こ6;t1上記(1)式で表される酸化物の薄膜
は強誘電相であって、誘電率変化は低直流電圧下でも負
となる。また、本発明の誘電体薄膜では、上記(1)式
に示したような組成の物質系に限定されることなく、上
述したような反強誘電性を有するペロブスカイト型酸化
物の薄膜を用いることにより、直流バイアス電圧がかか
った状態での誘電率の低下が抑制される。
In other words, if the values of During the transition from ferroelectricity to ferroelectricity, the change in dielectric constant does not become negative (1°) Also, since it exhibits a slow phase transition with respect to temperature changes, the change in dielectric constant with temperature change is small. Note that if the above values of X and y are outside the shaded area in FIG. is negative even under low DC voltage.In addition, the dielectric thin film of the present invention is not limited to the material system having the composition shown in equation (1) above, but can also have antiferroelectricity as described above. By using a thin film of a perovskite oxide having a perovskite type oxide, a decrease in dielectric constant is suppressed when a DC bias voltage is applied.

上述したような反強誘電性を有するペロブスカイト型酸
化物からなる薄膜は、蒸着法、スパッタリング法、CV
D法などの各種気相法によって形成することが可能であ
るが、これらの方法においては、各成分の組成制御や膜
厚制御が難しい。
A thin film made of a perovskite oxide having antiferroelectricity as described above can be produced by vapor deposition, sputtering, CV
Although it is possible to form by various vapor phase methods such as the D method, it is difficult to control the composition of each component and the film thickness in these methods.

したがって、本発明の誘電体薄膜は、以下に示すような
方法で形成することが望ましい。
Therefore, the dielectric thin film of the present invention is preferably formed by the method shown below.

すなわち、まずPbs La5Zr、TIの各金属イオ
ンを含有する有機酸塩、無機塩、あるいは金属アルコキ
シドのような有機金属化合物を出発原料とし、これらを
上記金属イオン比が上記(1)式の組成を満足するよう
に混合して原料溶液を調製する。
That is, first, organic acid salts, inorganic salts, or organometallic compounds such as metal alkoxides containing metal ions of PbsLa5Zr and TI are used as starting materials, and these are prepared so that the metal ion ratios correspond to the composition of formula (1) above. Prepare the raw solution by mixing to your satisfaction.

次に、この原料溶液を基板上に塗布する。この際、上記
金属イオンを含有する溶液に、必要に応じて水あるいは
触媒を加えて粘度を:a整してもよく、これにより膜厚
の制御が容易となる。また、上記溶液の塗布は、スピン
コーティング、デイ・ソビング、スプレーコーティング
などの種々の方法によって行うことができる。
Next, this raw material solution is applied onto the substrate. At this time, if necessary, water or a catalyst may be added to the solution containing the metal ions to adjust the viscosity, thereby making it easier to control the film thickness. Further, the solution can be applied by various methods such as spin coating, day soaking, and spray coating.

次いで、こうして基板上に塗布された塗膜に対し、50
0℃以上の温度で焼成または熱処理を施すことによって
、上記(1)式においてXおよびyの値が第1図の斜線
領域内にあるような、所望の組成のペロブスカイト型酸
化物の薄膜が得られる。
Next, the coating film thus applied on the substrate was coated with 50%
By performing baking or heat treatment at a temperature of 0° C. or higher, a thin film of perovskite oxide with a desired composition such that the values of X and y in the above equation (1) are within the shaded area in FIG. 1 can be obtained. It will be done.

また、他の物質系の反強誘電性を有するペロブスカイト
型酸化物についても、出発原料中の金属イオンの種類を
適宜変えることにより、あとは同様にして薄膜を得るこ
とができる。
Furthermore, thin films can be obtained in the same manner with respect to perovskite-type oxides of other materials having antiferroelectricity by appropriately changing the type of metal ions in the starting materials.

このように方法を採ることによって、反強誘電性を有す
る所望組成のペロブスカイト型酸化物の薄膜を、大面積
にわたって均一にかつ再現性良く製造することができる
By employing this method, a thin film of a perovskite oxide having a desired composition and having antiferroelectric properties can be manufactured uniformly over a large area with good reproducibility.

また、上記した溶液塗布焼成法によれば、膜厚制御など
が容易であり、さらに1000℃以下の低温熱処理によ
って、薄膜を形成することができるという利点かある。
Further, the solution coating and firing method described above has the advantage that it is easy to control the film thickness, and furthermore, a thin film can be formed by low-temperature heat treatment at 1000° C. or less.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1.2 金属成分の組成式 %式%) において、!−0,08、y−0,85(実施例1)お
よびX−0,12、y−0,75(実施例2)となるよ
うなモル比で、それぞれ出発原料である酢酸鉛、酢酸ラ
ンタン、ジルコニウムノルマルブトキシド、チタンノル
マルブトキシドおよび金属バリウムを、溶剤である2−
二トキシエタノールに混合して溶解し、それぞれ原料溶
液を調製した。なお、これら実施例1および2のXおよ
びyの値は、いずれも第1図に斜線で示した領域内の数
値である。
Example 1.2 Composition formula of metal components (% formula %) In,! -0,08, y-0,85 (Example 1) and X-0,12, y-0,75 (Example 2) in molar ratios of lead acetate and lanthanum acetate, respectively, as starting materials. , zirconium normal butoxide, titanium normal butoxide and metallic barium in a solvent of 2-
Each raw material solution was prepared by mixing and dissolving in ditoxyethanol. Note that the values of X and y in Examples 1 and 2 are both within the shaded area in FIG.

次いで、これら各原料溶液を白金基板上にそれぞれスピ
ンコードし、得られた塗膜に対して700”CX 10
分の条件でそれぞれ熱処理を施した。そして、このよう
なスピンコードによる溶液の塗布と熱処理とを8回繰返
し行い、厚さが1μ層の薄膜を形成し、下記に示す特性
評価に供した。
Next, each of these raw material solutions was spin-coded onto a platinum substrate, and the resulting coating film was coated with 700"CX 10
The heat treatment was performed under the following conditions. Then, the application of the solution using a spin cord and the heat treatment were repeated eight times to form a thin film with a thickness of 1 μm, which was subjected to the characteristic evaluation shown below.

なお、これら実施例1.2で得られた薄膜の電界と読本
分極との関係を求めたところ、これらを表すグラフは、
反強誘電性を示す2重ヒステリシスループを示した。ま
た、得られた薄膜をX線回折により分析したところ、い
ずれもペロブスカイト型酸化物であることが確認された
In addition, when the relationship between the electric field of the thin film obtained in Example 1.2 and the reader's polarization was determined, the graph representing them was as follows.
It exhibited a double hysteresis loop exhibiting antiferroelectricity. Further, when the obtained thin films were analyzed by X-ray diffraction, it was confirmed that all of them were perovskite type oxides.

比較例1.2 上記(II)式の金属成分の組成式において、X−0,
14、y−0,70(比較例1)および!−0、y−0
,80(比較例2)となるようなモル比で、上記実施例
1で用いた各出発原料をそれぞれ2−エトキシエタノー
ルに混合して溶解し、各々原料溶液を調製した。なお、
これら比較例1および2のXおよびyの値は、いずれも
第1図に斜線で示した領域外の数値である。
Comparative Example 1.2 In the compositional formula of the metal component of formula (II) above, X-0,
14, y-0,70 (Comparative Example 1) and! -0,y-0
, 80 (Comparative Example 2), each of the starting materials used in Example 1 was mixed and dissolved in 2-ethoxyethanol to prepare a raw material solution. In addition,
The values of X and y of Comparative Examples 1 and 2 are both outside the shaded area in FIG.

この後、上記原料溶液をそれぞれ用い、上記実施例1と
同一条件で薄膜を形成した。
Thereafter, thin films were formed using each of the above raw material solutions under the same conditions as in Example 1 above.

比較例3 BaaTlbにおいて、a=1.0 、b−1,0とな
るようなモル比で、金属バリウムおよびチタンノルマル
ブトキシドを2−エトキシエタノールに混合して溶解し
、原料溶液を調製した。
Comparative Example 3 In BaaTlb, metal barium and titanium normal butoxide were mixed and dissolved in 2-ethoxyethanol at a molar ratio such that a=1.0 and b-1.0 to prepare a raw material solution.

次いで、この原料溶液を白金基板上にスピンコードシ、
得られた塗膜に対して1200℃XIO分の条件で熱処
理を施した。そして、このようなスピンコードによる溶
液の塗布と熱処理とを8回繰返し行い、厚さがlμ麿の
薄膜を形成した。
Next, this raw material solution was applied onto a platinum substrate using a spin code.
The resulting coating film was heat-treated at 1200°C for XIO minutes. The application of the solution using a spin cord and the heat treatment were repeated eight times to form a thin film with a thickness of 1μ.

以上のようにして各実施例および比較例でそれぞれ得ら
れた薄膜について、誘電率および誘電損失を測定した結
果を第1表に示す。
Table 1 shows the results of measuring the dielectric constant and dielectric loss of the thin films obtained in each of the Examples and Comparative Examples as described above.

(以下余白) 第 表 また、上記各薄膜上に、金を蒸着して上部電極とし、バ
イアス電圧の変化に対する誘電率の変化率をそれぞれ測
定した。測定結果を第2図のグラフに示す。
(The following is a margin) Table 1 Gold was vapor-deposited on each of the above thin films to form an upper electrode, and the rate of change in dielectric constant with respect to change in bias voltage was measured. The measurement results are shown in the graph of FIG.

第2図のグラフから明かなように、実施例1.2で得ら
れた薄膜の誘電率変化は、バイアス電圧が高くなっても
負の値にはならなかった。これに対して、比較例1〜3
で得られた薄膜の誘電率変化は、バイアス電圧が充分に
高くなると負の値になった。また、実施例1.2で得ら
れた薄膜の誘電率は、1kllz 、 0.lVrms
 sバイアス電圧Ovの条件で、それぞれ1000以上
と大きな値を示し、誘電4M失は 1.5〜2.5%と
小さかった。
As is clear from the graph in FIG. 2, the change in dielectric constant of the thin film obtained in Example 1.2 did not take a negative value even when the bias voltage increased. On the other hand, Comparative Examples 1 to 3
The change in dielectric constant of the thin film obtained in 2008 became negative when the bias voltage was sufficiently high. Further, the dielectric constant of the thin film obtained in Example 1.2 is 1 kllz, 0. lVrms
Under the condition of s bias voltage Ov, each showed a large value of 1000 or more, and the dielectric 4M loss was small at 1.5 to 2.5%.

[発明の効果コ 以上の説明したように本発明の誘電体薄膜は、バイアス
特性に優れているうえに、1000以上の高誘電率を示
し、かつ誘電損失が小さいので、コンデンサなどの7u
子部品に広く適用することができる。また本発明の誘電
体薄膜は、所望の金属イオンを含Hする溶液をu板の上
に塗布し、1000℃以下の低温で熱処理することによ
って、容易に形成することができるため、その工業的価
値は極めて高い。
[Effects of the Invention] As explained above, the dielectric thin film of the present invention not only has excellent bias characteristics but also exhibits a high dielectric constant of 1000 or more and a small dielectric loss.
Can be widely applied to child parts. Furthermore, the dielectric thin film of the present invention can be easily formed by applying a H-containing solution containing desired metal ions onto a U-plate and heat-treating it at a low temperature of 1000°C or less. The value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(Pb   La  )  (Zr   −y
)1−x  x     yTll    !−x/4
03で表される酸化物が反強誘電性を示すXおよびyの
値の領域を示す図、第2図は本発明の実施例および比較
例でそれぞれ得られた薄膜のバイアス特性を示すグラフ
である。
Figure 1 shows (Pb La ) (Zr −y
)1-x x yTll! -x/4
FIG. 2 is a graph showing the region of X and y values in which the oxide represented by 03 exhibits antiferroelectricity, and FIG. 2 is a graph showing the bias characteristics of thin films obtained in Examples and Comparative Examples of the present invention. be.

Claims (1)

【特許請求の範囲】[Claims]  薄膜中の酸化物成分が、反強誘電性を有するペロブス
カイト型酸化物であることを特徴とする誘電体薄膜。
A dielectric thin film characterized in that an oxide component in the thin film is a perovskite-type oxide having antiferroelectricity.
JP2083208A 1990-03-30 1990-03-30 Thin dielectric film Pending JPH03283515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083208A JPH03283515A (en) 1990-03-30 1990-03-30 Thin dielectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083208A JPH03283515A (en) 1990-03-30 1990-03-30 Thin dielectric film

Publications (1)

Publication Number Publication Date
JPH03283515A true JPH03283515A (en) 1991-12-13

Family

ID=13795906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083208A Pending JPH03283515A (en) 1990-03-30 1990-03-30 Thin dielectric film

Country Status (1)

Country Link
JP (1) JPH03283515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024130A1 (en) * 1996-11-29 1998-06-04 Ngk Insulators, Ltd. Ceramic element, method of manufacturing ceramic element, display, relay device, and capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998024130A1 (en) * 1996-11-29 1998-06-04 Ngk Insulators, Ltd. Ceramic element, method of manufacturing ceramic element, display, relay device, and capacitor
US6265811B1 (en) 1996-11-29 2001-07-24 Ngk Insulators, Ltd. Ceramic element, method for producing ceramic element, display device, relay device and capacitor
US6476540B2 (en) 1996-11-29 2002-11-05 Ngk Insulators, Ltd. Ceramic element, method for producing ceramic element, display device, relay device, and capacitor

Similar Documents

Publication Publication Date Title
US6485779B1 (en) Solution for forming ferroelectric film and method for forming ferroelectric film
KR19980702980A (en) Layered Superlattice Materials and Methods of Manufacturing Electronic Devices Comprising the Same
US5625529A (en) PZT thin films for ferroelectric capacitor and method for preparing the same
JP3129175B2 (en) Method for manufacturing (Ba, Sr) TiO3 thin film capacitor
JPH0649638A (en) Production of ferrodielectric thin film
JPH03283515A (en) Thin dielectric film
JP3105080B2 (en) Manufacturing method of ferroelectric thin film
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
Liu et al. Thick layer deposition of lead perovskites using diol-based chemical solution approach
De Keijser et al. High quality lead zirconate titanate films grown by organometallic chemical vapour deposition
JPH0891841A (en) Production of ferroelectric film
JPH05298920A (en) Highly dielectric thin film
JP3363091B2 (en) Manufacturing method of dielectric memory
JP3215030B2 (en) Dielectric thin film
US5908658A (en) Process for forming thin film metal oxide materials having improved electrical properties
JP3195827B2 (en) Method for producing a ferroelectric bismuth titanate layer on a substrate
JP3127849B2 (en) Method for producing oxide thin film by coating method
JP2000031411A (en) Manufacture of ferroelectric thin film
KR100425531B1 (en) Ferroelectric bismuth titanate having rare earth elements
JPH088403A (en) Substrate covered with ferroelectric crystal thin film ferroelectric thin film element including the same, and method of manufacturing the ferroelectric thin film element
JPS62241825A (en) Production of porcelain of lead titanate zirconate-lead niobate manganate type
JPH03285864A (en) Thin dielectric film
JP3168299B2 (en) Dielectric thin film and method of manufacturing the same
KR20020020304A (en) Process for the formation of la-substituted bismuth titanate film with a sol coating method
JP6825420B2 (en) Capacitor, ZrO2 film manufacturing method and capacitor manufacturing method