JPH03283352A - Incandescent lamp - Google Patents

Incandescent lamp

Info

Publication number
JPH03283352A
JPH03283352A JP8353890A JP8353890A JPH03283352A JP H03283352 A JPH03283352 A JP H03283352A JP 8353890 A JP8353890 A JP 8353890A JP 8353890 A JP8353890 A JP 8353890A JP H03283352 A JPH03283352 A JP H03283352A
Authority
JP
Japan
Prior art keywords
refractive index
light
interference filter
filter film
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8353890A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP8353890A priority Critical patent/JPH03283352A/en
Publication of JPH03283352A publication Critical patent/JPH03283352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To utilize light of a wide angle range by containing colored metal ionic oxide in at least either high or low refractive index layer of an interference filter film comprising high refractive index layers and low refractive index layers alternately stacked one on the other. CONSTITUTION:An interference filter film 2 comprising high refractive index layers 2H and low refractive index layers 2L alternately stacked one on the other is formed on at least either one of the inner and outer surfaces of a glass bulb 1 having a filament 6 sealed therein and colored metal ionic oxide is contained in either one of the high refractive index layers 2H and the low refractive index layers 2L. Therefore the light-cut rate of the interference filter film 2 is enhanced, and even when the angle of incidence becomes greater and the cut wavelength range of the interference filter film 2 is shifted to the shorter wavelength side light of this cut wavelength range is absorbed by the colored metal ions so that lowering of the cut rate of desired wavelength range is restrained. Dependence of optical characteristics of an incandescent lamp on the angle of incidence is thereby restrained and light of a wider range of angle of incidence is used.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は白熱電球において、バルブに形成した干渉フィ
ルタ膜を改良して不要光をカットして所望の光色を得る
ものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is an incandescent light bulb that improves the interference filter film formed on the bulb to cut unnecessary light and obtain a desired light color. It is.

(従来の技v#) 従来、白熱電球バルブ外面に酸化チタン(Tj、0□)
などからなる高屈折率層とシリカ(SiO□)などから
なる低屈折率層とを交互積層してなる干渉フィルタ膜を
形成して青色光など不所望光をカットし、m写機の感光
体感度に合せた波長分布の複写機用光源(特願昭63−
30408号)や黄色などの自動車用フォグランプなど
が提案されている。
(Conventional technique v#) Conventionally, titanium oxide (Tj, 0□) was used on the outer surface of the incandescent bulb bulb.
An interference filter film is formed by alternately laminating a high refractive index layer made of silica (SiO□), etc., and a low refractive index layer made of silica (SiO□), etc., to cut out undesired light such as blue light. A light source for copying machines with a wavelength distribution tailored to the degree of
30408) and yellow fog lamps for automobiles.

(発明が解決しようとする課題) このような白熱電球においては、その原理上干渉フィル
タ膜で反射されてバルブ内にバックした不要な光のうち
一部はバルブ内部でフィラメントやサポートなどで吸収
されるが、残りはバルブの干渉フィルタ膜間で何回か反
射を繰返し、その間に相当の割合いが漏出し、干渉フィ
ルタ膜それ自体のカット率に比べて実際のランプにおけ
るカット率が不充分になる。このため、たとえば赤色光
を完全にカットしようとしても、ある程度たとえば70
〜80%程度まではカットできるが、それ以上はカット
できない。
(Problem to be solved by the invention) In principle, in such an incandescent light bulb, some of the unnecessary light reflected by the interference filter film and back into the bulb is absorbed by the filament, support, etc. inside the bulb. However, the remaining part is reflected several times between the interference filter films of the bulb, and during this time a considerable proportion leaks out, resulting in an insufficient cut rate in the actual lamp compared to the cut rate of the interference filter film itself. Become. For this reason, even if you try to completely cut out red light, for example, 70%
It can be cut up to about 80%, but it cannot be cut beyond that.

さらに、干渉フィルタ膜は、透過光の入射角が大きくな
るほど、各層をより斜めに透過するので、層内を通過す
る距離が長くなり、実質的に各層の厚さが厚くなったと
同じになり、また透過あるいは反射する波長域が短波長
側に移行し、かつ反射率が低下するため、使用に適した
入射角範囲が狭く、器具との調整が困難である。
Furthermore, as the incident angle of the transmitted light increases, the interference filter film passes through each layer more obliquely, so the distance it passes through the layers becomes longer, and the thickness of each layer becomes substantially thicker. Furthermore, since the wavelength range to be transmitted or reflected shifts to the shorter wavelength side and the reflectance decreases, the range of incident angles suitable for use is narrow and adjustment with instruments is difficult.

そこで、本発明の課題は干渉フィルタ膜を改良して所望
のとおりに特定光色をカットでき、しかも光学特性の入
射角依存性を緩和し、より広い入射角(導出光が法線と
なす導出角でも可)範囲まで使用できるようにした白熱
電球を提供することである。
Therefore, the problem of the present invention is to improve the interference filter film so that it is possible to cut a specific color of light as desired, while also easing the dependence of the optical characteristics on the angle of incidence, and widening the angle of incidence (the direction in which the outgoing light is normal to the An object of the present invention is to provide an incandescent light bulb that can be used up to a corner (even at a corner).

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明はフィラメントを封装したガラスバルブの内外両
面のうち少なくとも一方の面に高屈折率層と低屈折率層
とを交互積層してなる干渉フィルタ膜を設けた白熱電球
において、高屈折率層および低屈折率層のうち少なくと
も一方に有色金属イオンの酸化物を含有させたことによ
り、干渉フィルタ膜のカット率を向上し、さらに入射角
が大きくなって干渉フィルタ膜のカット波長域が短波長
側へずれても有色金属イオンの吸収によって所望波長域
のカット率があまり低下しないようにした。
(Means for Solving the Problems) The present invention provides an interference filter film formed by alternately laminating high refractive index layers and low refractive index layers on at least one of the inner and outer surfaces of a glass bulb sealed with a filament. In incandescent light bulbs, by incorporating colored metal ion oxides into at least one of the high refractive index layer and the low refractive index layer, the cut rate of the interference filter film is improved, and the angle of incidence is increased, making it possible to improve the interference filter. Even if the cut wavelength range of the film shifts to the shorter wavelength side, the cut rate in the desired wavelength range is not significantly reduced due to absorption of colored metal ions.

(作 用) 有色金属イオンの酸化物は高屈折率層あるいは低屈折率
層を構成するそれらの金属化合物内において固溶体をな
し、有色金属イオンは独得のイオン色を呈する。そして
、有色金属イオンによる特定波長の吸収率はイオン濃度
に比例し、かつ層の実質的厚さに比例する。しかも、こ
の吸収率は電球内における対向する干渉フィルタ膜間に
おいて互いに反射しあう現象には左右されない。さらに
、干渉フィルタ膜への入射角(導出角)が大きくなって
も、有色金属イオンの吸収波長域が変化しないので、干
渉フィルタ膜の反射波長域のずれによる色ずれを補正し
て所望の波長域の光を所望のようにカットできる。
(Function) Oxides of colored metal ions form a solid solution in the metal compounds constituting the high refractive index layer or the low refractive index layer, and the colored metal ions exhibit a unique ionic color. The absorption rate of a specific wavelength by colored metal ions is proportional to the ion concentration and proportional to the substantial thickness of the layer. Furthermore, this absorption rate is not affected by mutual reflection between opposing interference filter films within the light bulb. Furthermore, even if the angle of incidence (output angle) on the interference filter film increases, the absorption wavelength range of colored metal ions does not change, so the color shift caused by the shift in the reflection wavelength range of the interference filter film can be corrected and the desired wavelength can be adjusted. You can cut the light in the area as desired.

(実施例) 以下、本発明の詳細を実施例によって説明する。第1図
は本発明を適用してなるハロゲン電球の一例を示し、(
1)は先端閉塞した筒形硬質ガラスバルブ、(2)はこ
のバルブ(1)の外面に形成された干渉フィルタ膜、(
3)はバルブ(1)の端部を圧潰封止してなる封止部、
(4)、(4)はこの封止部(3)に基部を封着して先
端部をバルブ(1)内に延在させた1対のタングステン
内導線、(5)はこれら内導線(’I)、(4)を結束
するブリッジガラス、(6)は内導線(4)、(4)間
に装架されてバルブ(1)の中心線に位置するタングス
テンコイルフィラメント、(7)。
(Example) Hereinafter, the details of the present invention will be explained with reference to Examples. FIG. 1 shows an example of a halogen light bulb to which the present invention is applied;
1) is a cylindrical hard glass bulb with a closed end, (2) is an interference filter film formed on the outer surface of this bulb (1), (
3) is a sealing portion formed by crushing and sealing the end of the valve (1);
(4), (4) are a pair of tungsten inner conductors whose bases are sealed to this sealing part (3) and whose tips extend into the bulb (1); (5) are these inner conductors ( 'I), a bridge glass that binds (4), (6) a tungsten coil filament (7) installed between the inner conductors (4), (4) and located at the center line of the bulb (1);

(7)は内導線(4)、(4)に接続されて封止部(3
)外に延在するニッケル外導線である。そして、バルブ
(1)内にはアルゴンなどの不活性ガスとともに所要の
ハロゲンを封入しである。
(7) is connected to the inner conductors (4), (4) and the sealing part (3)
) is the nickel outer conductor extending outward. The valve (1) is filled with a necessary halogen along with an inert gas such as argon.

上記干渉フィルタ膜(2)は第2図に模型的に拡大して
示すように、ガラスバルブ(1)の外面において、ガラ
ス側から酸化チタン(TiO2)、酸化タンタル(ya
zos)、酸化ジルコニウム(ZrO□)などからなる
高屈折率層(2)1) (左上リハッチング)とシリカ
(Sin2) 、ふっ化マグネシウム(MgFz)など
からなる低屈折率層(2L)(右上リハッチング)とが
合計9〜15層交互積層しである。そして、本実施例白
熱電球の特徴は高屈折率層(2H)が酸化チタン(Ti
O□)で構成され、かつ酸化クロム(Cr、 03 )
を10〜20重電%含有していることである。
As shown schematically and enlarged in FIG. 2, the interference filter film (2) is formed of titanium oxide (TiO2), tantalum oxide (ya
zos), zirconium oxide (ZrO A total of 9 to 15 layers (rehatching) are alternately laminated. The characteristic of the incandescent lamp of this example is that the high refractive index layer (2H) is made of titanium oxide (Ti).
O□) and chromium oxide (Cr, 03)
It contains 10 to 20% of heavy electric current.

つぎにこの干渉フィルタ膜(2)の作用を説明する。光
がこの干渉フィルタ膜(2)に入射すると、高屈折率層
(2H)と低屈折率層(2L)とを交互に透過する。す
ると、光の干渉が生起し、特定波長域の光を透過し、か
つ特定波長域の光を反射して遮断する。そして、干渉フ
ィルタ膜(2)の透過または反射する波長域は両層(2
11) 、 (2L)の厚さによって定まる6また、光
が干渉フィルタ膜(2)を透過するときの入射角(導出
角で表現してもよいe)が大きいと、光が層(211)
 、 (2L)内を傾斜して透過するため経路が長くな
り1層(2H) 、 (2L)が厚くなったと同じ結果
になり、透過または反射する波長域が短波長側ヘシフト
する。
Next, the action of this interference filter film (2) will be explained. When light enters this interference filter film (2), it passes through the high refractive index layer (2H) and the low refractive index layer (2L) alternately. Then, light interference occurs, allowing light in a specific wavelength range to pass through and reflecting and blocking light in a specific wavelength range. The wavelength range that is transmitted or reflected by the interference filter film (2) is
11), determined by the thickness of (2L) 6 In addition, if the angle of incidence (e, which may be expressed as a derived angle) when light passes through the interference filter film (2) is large, the light will pass through the layer (211).
, (2L), the path becomes longer, resulting in the same result as if one layer (2H) and (2L) were thicker, and the wavelength range to be transmitted or reflected shifts to the shorter wavelength side.

また、高屈折率層(2■)は無色の酸化チタン(TjO
□)中に酸化クロム(crzoa)が固溶体となって存
在し、酸化クロムから生じた3価のクロムイオン((r
 + 3 )のため、透過光中の400〜5000■の
光を吸収して黄赤色を呈する。そして、この吸収特性中
、吸収波長域は高屈折率層(211)の厚さや層の数に
影響されず、また干渉フィルタ膜(2)への入射角にも
影響されないが、吸収率は層(2■)の厚さや層の数あ
るいは入射角によって影響される。
In addition, the high refractive index layer (2■) is made of colorless titanium oxide (TjO
Chromium oxide (crzoa) exists as a solid solution in chromium oxide (□), and trivalent chromium ions ((r
+3), it absorbs 400 to 5000 square meters of transmitted light and exhibits a yellow-red color. In this absorption characteristic, the absorption wavelength range is not affected by the thickness or number of layers of the high refractive index layer (211), nor is it affected by the angle of incidence on the interference filter film (2), but the absorption rate of the layer It is influenced by the thickness of (2), the number of layers, or the angle of incidence.

つぎに、上記実施例ハロゲン電球と同様な干渉フィルタ
膜(2)で酸化クロムを含有させないものと、酸化クロ
ムを含有した酸化チタン層(2日)との両者について分
光透過率を測定した。この結果を第3図に示す6図は横
軸に波長をnmの単位でとり、縦軸に透過率を%で示し
、実線は上述した酸化クロムを含有する酸化チタン層、
破線は前述した酸化チタンとシリカとの交互層のそれぞ
れの分光透過率曲線を示す。このグラフにおいて1両者
とも400〜500nmの範囲にカット波長域を有し、
光の入射角が大きくなると干渉フィルタ膜のカット波長
域が短波長側にずれかつカット率(透過率の逆数)が低
下するのに対し、酸化クロムはカット波長域がそのまま
でカット率が向上する性質を有する。
Next, the spectral transmittance was measured for both an interference filter film (2) similar to the halogen bulb of the above example but not containing chromium oxide and a titanium oxide layer (2 days) containing chromium oxide. This result is shown in Figure 3. In Figure 6, the horizontal axis shows the wavelength in nm, the vertical axis shows the transmittance in %, and the solid line is the titanium oxide layer containing the above-mentioned chromium oxide,
The broken lines indicate the respective spectral transmittance curves of the aforementioned alternating layers of titanium oxide and silica. In this graph, both have a cut wavelength range in the range of 400 to 500 nm,
When the incident angle of light increases, the cut wavelength range of the interference filter film shifts to the shorter wavelength side and the cut rate (reciprocal of transmittance) decreases, whereas with chromium oxide, the cut wavelength range remains the same and the cut rate improves. have a property.

しかして、上述の実施例ハロゲン電球はバルブの全周面
に干渉フィルタ膜(2)が形成されているので、バルブ
(1)の−側面の干渉フィルタ膜(2)において400
〜500nmの波長域の光が反射し、これがバルブ(1
)の他側面の干渉フィルタ膜(2)に入射して再度反射
し、このように何回も反射を繰返す。
In the above-described halogen light bulb, since the interference filter film (2) is formed on the entire circumferential surface of the bulb, the interference filter film (2) on the negative side of the bulb (1) has a
Light in the wavelength range of ~500 nm is reflected, and this is reflected by the bulb (1
) enters the interference filter film (2) on the other side and is reflected again, repeating the reflection many times in this way.

そして、この何回も往復する間に400〜b長域の光が
少しずつ透過して外界に放射されるはずであるが、本実
施例では高屈折率層(211)中に3価のクロムイオン
が存在して400〜500nmの波長域の光を吸収する
ので、この波長域の光が干渉フィルタ膜(2)で反射す
るとき反射光のかなりの割合いが吸収され、何回も往復
しないうちに消滅する。
During this many round trips, the light in the 400~b long range should be transmitted little by little and radiated to the outside world, but in this example, trivalent chromium is present in the high refractive index layer (211). Since ions exist and absorb light in the wavelength range of 400 to 500 nm, when light in this wavelength range is reflected by the interference filter film (2), a considerable proportion of the reflected light is absorbed and does not go back and forth many times. It will disappear within us.

したがって、本実施例においてはカット率が格段に向上
する。
Therefore, in this embodiment, the cutting rate is significantly improved.

また、本実施例ハロゲン電球においては干渉フィルタ膜
(2)がバルブ(1)の全長にわたって形成されている
ので、フィラメント(6)に正対するバルブ(+)側面
ではフィラメント(6)から入射する光の入射角はほぼ
Oeであるのに対し、頂部方向と封止部(3)方向のバ
ルブ(1)側面にフィラメント(6)から入射する光の
入射角はかなり大きい。しかし。
In addition, in the halogen light bulb of this example, since the interference filter film (2) is formed over the entire length of the bulb (1), the light incident from the filament (6) The incident angle of light is approximately Oe, whereas the incident angle of light incident from the filament (6) on the side surface of the bulb (1) in the direction of the top and the direction of the sealing part (3) is considerably large. but.

本実施例においては干渉フィルタ膜(2)は高屈折率層
(2H)に酸化クロムが含まれ、3価のクロムイオンに
よって400〜500nmの波長域の光を吸収するので
、入射角の大きい部位の干渉フィルタ膜(2)を透過し
た光は、干渉フィルタ膜(2)による500nm近傍の
光のカットはほとんどなくなるが、その反面、3価のク
ロムイオンのため400〜500nmの波長域の光が吸
収されるので50On+n近傍の光の漏出は極めて少な
い。特に、入射角が大きいほど反射波長域のずれが大き
くなるが、クロムイオンの吸収も大きくなるので色ずれ
が大きくなることがない。
In this example, the interference filter film (2) includes chromium oxide in the high refractive index layer (2H), and trivalent chromium ions absorb light in the wavelength range of 400 to 500 nm. The light that passes through the interference filter film (2) is almost completely cut off in the vicinity of 500 nm by the interference filter film (2), but on the other hand, the light in the wavelength range of 400 to 500 nm is cut off due to trivalent chromium ions. Since the light is absorbed, leakage of light around 50On+n is extremely small. In particular, as the incident angle increases, the shift in the reflected wavelength range increases, but since the absorption of chromium ions also increases, the color shift does not become large.

このため、本実施例においては入射角(導出角)が相当
大きい範囲まで色ずれなく利用でき、電球の器具効率が
向上した。
Therefore, in this embodiment, the light bulb can be used without color shift even in a considerably large range of incident angles (output angles), and the efficiency of the light bulb is improved.

つぎに、上述の実施例において、干渉フィルタ膜(2)
の高屈折率層(2日)を酸化チタン中に酸化クロム10
重景%および20%とし、種々の導出角(バルブから導
出する光が法線となす角度)における放射光の分光光強
度を調査した。また、比較のため同様な構造で、高屈折
率層に酸化クロムを含有しない従来例を試作し、同様に
種々の導出角で分光光強度を測定した。これらの結果を
第4図ないし第6図に示した。すなわち第4図は高屈折
率層中の酸化クロムの含有量lO重斌%、第5図は同じ
<20重景%、第6図は酸化クロムを含有しない従来例
のグラフで、各図とも横軸に波長をnmの単位で、縦軸
に光強度を相対値でとり、実線は導出角O°1点線は同
じ<15°、破線は同じ<30°、鎖線は同しく45°
の方向の光強度を示す。これらの図から明らかなとおり
、酸化クロムを含有する場合(第4図、第5図)、導出
光のカットは上述の干渉フィルタ膜の往復反射によるカ
ット率低下とクロムイオンによるカット率向上とが互い
に消し合った結果を示し、これに対しクロムイオンがな
い場合(第6図)はカット率が甚だ低い。さらに、クロ
ムイオンが存在しない場合(第6図)、導出角が大きく
なるに従ってカット波長が急激に短波長側へずれ、さら
に導出角が大きいほどカット率が急激に低下する。これ
に対し、酸化クロムが10重量%の場合(第4図)、導
出角が大きくなってもカット波長のずれはさほど大きく
なく、カット率の低下も小さい。さらに、酸化クロムが
20重景%の場合(第5図)は導出角が大きくなっても
波長のずれは甚だ小さく、カット率の低下はさらに小さ
い。
Next, in the above embodiment, the interference filter film (2)
High refractive index layer (2 days) of chromium oxide 10 in titanium oxide
The spectral light intensity of the emitted light was investigated at various derivation angles (the angles that the light derived from the bulb makes with the normal line) with a focus of 20% and 20%. For comparison, a conventional example having the same structure but containing no chromium oxide in the high refractive index layer was prototyped, and the spectral light intensity was similarly measured at various extraction angles. These results are shown in FIGS. 4 to 6. In other words, Fig. 4 shows the content of chromium oxide in the high refractive index layer 10%, Fig. 5 shows the same <20%, and Fig. 6 shows the conventional example that does not contain chromium oxide. The horizontal axis shows the wavelength in nm, and the vertical axis shows the relative light intensity.The solid line is the derived angle 0°1.The dotted line is the same <15°, the dashed line is the same <30°, and the dashed line is the same 45°.
Indicates the light intensity in the direction of As is clear from these figures, when chromium oxide is contained (Figures 4 and 5), the cut of the emitted light is due to the reduction in the cut rate due to the above-mentioned round-trip reflection of the interference filter film and the improvement in the cut rate due to chromium ions. The results show that they cancel each other out, and on the other hand, when there is no chromium ion (FIG. 6), the cutting rate is extremely low. Furthermore, in the absence of chromium ions (FIG. 6), as the derivation angle increases, the cut wavelength shifts rapidly to the shorter wavelength side, and furthermore, as the derivation angle increases, the cut rate rapidly decreases. On the other hand, when the chromium oxide content is 10% by weight (FIG. 4), even if the derivation angle becomes large, the shift in the cut wavelength is not so large and the decrease in the cut rate is also small. Further, when the chromium oxide content is 20% (FIG. 5), even if the extraction angle becomes large, the shift in wavelength is extremely small, and the reduction in cut rate is even smaller.

この結果、クロムイオンを含まない従来のもの(第6図
)が導出角が±30°以上ではイエローの範囲に入らな
いのに対し、本実施例のもの(第4図、第5図)はこれ
よりはるかに広い範囲、たとえば酸化クロム10重量%
のもので0°±30°、酸化クロム20重景%のもので
O°±45°以上の範囲まで利用でき、器具効率が大幅
に向上する。
As a result, while the conventional one (Fig. 6), which does not contain chromium ions, does not enter the yellow range when the derivation angle is ±30° or more, the one of this example (Figs. 4 and 5) A much wider range than this, e.g. chromium oxide 10% by weight
It can be used up to 0°±30° with chromium oxide, and 0°±45° or more with 20% chromium oxide, greatly improving the efficiency of the equipment.

なお、上述の実施例は干渉フィルタ膜の高屈折率層を酸
化チタンで構成し、これに酸化クロム(CrzOW を
含有させ、3価のクロムイオン(Cr+3)の青色吸収
作用を利用したが1本発明はこれに限らず、たとえば、
高屈折率層は酸化タンタル、酸化ジルコニウムなどでも
よく、また有色金属イオン酸化物としては酸化プラセオ
ジム(PrGO□□)、酸化鉄(Fe、 03) 、酸
化セリウム(CeO)などを用いてそれぞれのイオンP
r’+またはP「2+、Fe3+、Ce2+の作用を利
用してもよく、いずれも500nm以下の波長域の光を
吸収する効果がある。また、500〜600nmの波長
域をカットしたい場合には、干渉フィルタ膜の高屈折率
層と低屈折率層との層の厚さを適正にし、かつ高屈折率
層に酸化コバルト(Cod)、酸化ネオジウム(Nda
03)等を含有させ、C021あるいはNd’“によっ
て500〜600nmの光をカットすればよい。さらに
、有色金属イオン酸化物を低屈折率層に含有させてもよ
いが、有色金属イオン酸化物は一般に屈折率が高いので
、多量に含有させると低屈折率層の屈折率を上昇させる
ので、配合量には限界がある。
In the above embodiment, the high refractive index layer of the interference filter film is made of titanium oxide, which contains chromium oxide (CrzOW) to utilize the blue absorption effect of trivalent chromium ions (Cr+3). The invention is not limited to this, for example,
The high refractive index layer may be made of tantalum oxide, zirconium oxide, etc., and the colored metal ion oxides may be praseodymium oxide (PrGO□□), iron oxide (Fe, 03), cerium oxide (CeO), etc. P
You may use the action of r'+ or P'2+, Fe3+, and Ce2+, all of which have the effect of absorbing light in the wavelength range of 500 nm or less.Also, if you want to cut the wavelength range of 500 to 600 nm, , the thickness of the high refractive index layer and the low refractive index layer of the interference filter film is made appropriate, and cobalt oxide (Cod) and neodymium oxide (Nda) are added to the high refractive index layer.
03) etc., and the light of 500 to 600 nm may be cut by C021 or Nd''.Furthermore, a colored metal ion oxide may be contained in the low refractive index layer, but the colored metal ion oxide Generally, since it has a high refractive index, if it is contained in a large amount, it will increase the refractive index of the low refractive index layer, so there is a limit to the amount that can be added.

さらに、本発明を適用すべき白熱電球は普通電球や投光
電球でもよく、またガラスバルブの形状にも限定はなく
、さらに、干渉フィルタ膜のカット波長域にも限定がな
く、要は干渉フィルタ膜の光干渉によるカット波長域と
金属イオンの吸収波長域とが対応していればよい。そし
て、干渉フィルタ膜はバルブの内外両面のうち少なくと
も一方に形成すればよい。
Furthermore, the incandescent light bulb to which the present invention is applied may be a regular light bulb or a floodlight bulb, and there is no limitation on the shape of the glass bulb.Furthermore, there is no limitation on the cut wavelength range of the interference filter film. It is sufficient that the cut wavelength range due to optical interference of the film corresponds to the absorption wavelength range of metal ions. The interference filter film may be formed on at least one of the inner and outer surfaces of the bulb.

〔発明の効果〕〔Effect of the invention〕

このように本発明の白熱電球は、フィラメントを封装し
たガラスバルブの内外両面のうち少なくとも一方の面に
高屈折率層と低屈折率層とを交互積層してなる干渉フィ
ルタ膜を設けたものにおいて、高屈折率層および低屈折
率層のうち少なくとも一方に有色金属イオンの酸化物を
含有させたので、干渉フィルタ膜で反射した光がバルブ
内を往復しながら順次漏出するために生じたカット率の
低下を有色金属イオンによる特定波長域の光吸収によっ
て補い、この結果、所期のカット率が得られる。また、
干渉フィルタ膜の光干渉によるカット波長域は光の入射
角(導出角で表現してもよい。)が大きくなるに従って
カット波長域が短波長側へずれかつカット率が低下する
が、この現象を有色金属イオンの入射角には影響されな
い特定波長域の光吸収によって補い、この結果、所期の
カット波長において所期のカット率が得られ、カット波
長のずれが減り、この結果、より広い角度範囲の光まで
利用でき、器具効率が向上した。
As described above, the incandescent light bulb of the present invention is provided with an interference filter film formed by alternately laminating high refractive index layers and low refractive index layers on at least one of the inner and outer surfaces of a glass bulb sealed with a filament. , because at least one of the high refractive index layer and the low refractive index layer contains an oxide of colored metal ions, the cut rate caused by the light reflected by the interference filter film leaking out sequentially while going back and forth within the bulb. The decrease in the amount of light is compensated for by absorption of light in a specific wavelength range by colored metal ions, and as a result, the desired cut rate can be obtained. Also,
The cut wavelength range due to optical interference of the interference filter film shifts to the shorter wavelength side and the cut rate decreases as the incident angle (also expressed as the derivation angle) of the light increases. This is compensated for by light absorption in a specific wavelength range that is unaffected by the incident angle of colored metal ions.As a result, the desired cut rate is obtained at the desired cut wavelength, the deviation of the cut wavelength is reduced, and as a result, a wider angle can be obtained. Light within a wide range can be used, improving equipment efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の白熱電球の一実施例の正面図、第2図
は要部である干渉フィルタ膜の模型的拡大断面図、第3
図は上記干渉フィルタ膜における光干渉による分光透過
率曲線と有色金属イオンの光吸収による分光透過率曲線
とを示すグラフ、第4図は本実施例において酸化クロム
10重斌%含有させたものの各導出角における分光光強
度曲線のグラフ、第5図は同じく酸化クロム20重量%
含有させたものの各導出角における分光光強度曲線のグ
ラフ、第6図は従来の干渉フィルタ膜に有色金属イオン
酸化物を含有しないものの各導出角における分光光強度
曲線のグラフである。 (1)・・・バルブ、(2)・・・干渉フィルタ膜。 (21()・・・高屈折率層、 (2L)・・・低屈折
率層。 (3)・・・封止部、(4)・・・内導線。 (6)・・・フィラメント。
FIG. 1 is a front view of an embodiment of the incandescent light bulb of the present invention, FIG. 2 is a schematic enlarged sectional view of an interference filter film, which is the main part, and FIG.
The figure is a graph showing the spectral transmittance curve due to optical interference and the spectral transmittance curve due to light absorption of colored metal ions in the above-mentioned interference filter film. A graph of the spectral light intensity curve at the derivation angle, Figure 5 is also 20% by weight of chromium oxide.
FIG. 6 is a graph of a spectral light intensity curve at each derivation angle of a conventional interference filter film containing no colored metal ion oxide. (1)...Valve, (2)...Interference filter membrane. (21()...High refractive index layer, (2L)...Low refractive index layer. (3)...Sealing portion, (4)...Inner conducting wire. (6)...Filament.

Claims (1)

【特許請求の範囲】[Claims] フィラメントを封装したガラスバルブの内外両面のうち
少なくとも一方の面に高屈折率層と低屈折率層とを交互
積層してなる干渉フィルタ膜を設けた白熱電球において
、上記高屈折率層および上記低屈折率層のうち少なくと
も一方に有色金属イオンの酸化物を含有させたことを特
徴とする白熱電球。
In an incandescent light bulb, an interference filter film formed by alternately laminating a high refractive index layer and a low refractive index layer is provided on at least one of the inner and outer surfaces of a glass bulb sealed with a filament. An incandescent light bulb characterized in that at least one of the refractive index layers contains an oxide of a colored metal ion.
JP8353890A 1990-03-30 1990-03-30 Incandescent lamp Pending JPH03283352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8353890A JPH03283352A (en) 1990-03-30 1990-03-30 Incandescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8353890A JPH03283352A (en) 1990-03-30 1990-03-30 Incandescent lamp

Publications (1)

Publication Number Publication Date
JPH03283352A true JPH03283352A (en) 1991-12-13

Family

ID=13805283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8353890A Pending JPH03283352A (en) 1990-03-30 1990-03-30 Incandescent lamp

Country Status (1)

Country Link
JP (1) JPH03283352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024224A1 (en) * 1999-09-30 2001-04-05 Koninklijke Philips Electronics N.V. Electric lamp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239760A (en) * 1987-03-27 1988-10-05 ウシオ電機株式会社 Incandescent bulb

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239760A (en) * 1987-03-27 1988-10-05 ウシオ電機株式会社 Incandescent bulb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024224A1 (en) * 1999-09-30 2001-04-05 Koninklijke Philips Electronics N.V. Electric lamp

Similar Documents

Publication Publication Date Title
KR100742015B1 (en) Electric lamp
EP0682356B1 (en) Metal halide lamp
JPH08315776A (en) Multilayer coating film in metal halide lamp
KR100810816B1 (en) Electric lamp comprising a light absorbing medium
JP3727079B2 (en) lamp
JPH03283352A (en) Incandescent lamp
JPH09171800A (en) Discharge lamp
EP1479098B1 (en) Electric lamp
KR20010110712A (en) Electric lamp and interference film
JP2005019317A (en) Tubular heater
JP2007521621A (en) light bulb
JP2550709B2 (en) Lighting equipment
JPH03283351A (en) Incandescent lamp
EP1782453B1 (en) Electric lamp comprising a light absorbing medium
JPH11213959A (en) Incandescent lamp
JPH05129006A (en) Tungsten halogen lamp
JP4138186B2 (en) Amber coating film for light bulbs
JPH06111792A (en) Bulb
JPH07320688A (en) Metal halide lamp
JPH0320961A (en) Incandescent lamp
JPS62131462A (en) High-pressure discharge lamp
JPH0419956A (en) Halogen-sealed incandescent lamp for vehicle
JPH01115051A (en) Halogen lamp
JPH10162778A (en) Reflection type high-pressure discharge lamp
JPH0419958A (en) Halogen-sealed incandescent lamp for vehicle