JPH032830A - Production of oriented film for liquid crystal - Google Patents

Production of oriented film for liquid crystal

Info

Publication number
JPH032830A
JPH032830A JP13845289A JP13845289A JPH032830A JP H032830 A JPH032830 A JP H032830A JP 13845289 A JP13845289 A JP 13845289A JP 13845289 A JP13845289 A JP 13845289A JP H032830 A JPH032830 A JP H032830A
Authority
JP
Japan
Prior art keywords
substrate
liquid crystal
resin layer
crystal molecules
rubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13845289A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamazoe
山添 博司
Sadao Mitamura
三田村 貞夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13845289A priority Critical patent/JPH032830A/en
Publication of JPH032830A publication Critical patent/JPH032830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily obtain the oriented film for liquid crystal molecules consisting of a high polymer resin by maintaining a substrate having a resin layer at a specific temp. and rubbing the surface of the resin layer with fibers. CONSTITUTION:The liquid crystal molecules at the boundary of an instrument wall are required to be oriented in order to orient the liquid crystal molecules. The oriented film is, therefore, provided usually on the boundary face. The surface of the oriented film requires some order and this order interacts with the liquid crystal molecules to orient the liquid crystal molecules at the boundary of the instrument wall. Such order is induced by stretching the high polymer of the oriented film in one way. The way of the stretching of the oriented film molecules varies with the substrate temp. at the time of the rubbing. Namely, the substrate 2 having the resin layer is kept at about <=50 deg.C and the surface of the resin layer is rubbed by the fibers 4, etc. The substrate having the resin layer is kept at about <=0 deg.C and the surface of the resin layer is rubbed by the fibers 4. The resin film for orienting the liquid crystal molecules is easily obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高分子樹脂からなる液晶分子の配向膜の製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an alignment film for liquid crystal molecules made of a polymer resin.

従来の技術 液晶分子の配向膜は、液晶デイスプレィには必須のもの
である。
BACKGROUND OF THE INVENTION A liquid crystal molecule alignment film is essential for liquid crystal displays.

前記配向膜としては、無R質の斜方蒸着膜、摩擦すなわ
ちラビングされた有機樹脂膜等が使われる(液晶エレク
トロニクスの基礎と応用、佐々木昭夫編)。
As the alignment film, an R-free obliquely evaporated film, a rubbed organic resin film, or the like is used (Basics and Applications of Liquid Crystal Electronics, edited by Akio Sasaki).

発明が解決しようとする課題 しかしながら、無機質の斜方蒸着膜については、装置が
比較的高価なこと、真空プロセスなのでプロセス・コス
トが高くつくことに難がある。
Problems to be Solved by the Invention However, the problem with obliquely deposited inorganic films is that the equipment is relatively expensive and the process cost is high because it is a vacuum process.

一般にラビング法が産業界では多用されているが、液晶
分子の捻り角の大きいモード、すなわちスーパー・ツィ
スティッド・ネマティック・モードでは、ラビング圧が
均一で、密度の高いラビングが必要となる。この条件を
得るためには、厳格な管理が必要となる。
Generally, rubbing methods are often used in industry, but in a mode in which liquid crystal molecules have a large twist angle, that is, a super twisted nematic mode, uniform rubbing pressure and high density rubbing are required. Strict management is required to achieve this condition.

課題を解決するための手段 本発明は前述のような課題を解決するために、樹脂層を
有する基板を約50゛c以上の温度に保ち、前記樹脂層
の表面を繊維等で摩擦するような液晶用配向膜の製法を
提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention maintains a substrate having a resin layer at a temperature of about 50°C or higher, and then rubs the surface of the resin layer with fibers or the like. The present invention provides a method for producing an alignment film for liquid crystal.

本発明はまた、樹脂層を有する基板を約0°C以下の温
度に保ち、前記樹脂層の表面を繊維等で摩擦するような
液晶用配向膜の製法をも提供するものである。
The present invention also provides a method for producing an alignment film for a liquid crystal, in which a substrate having a resin layer is kept at a temperature of about 0° C. or less, and the surface of the resin layer is rubbed with a fiber or the like.

本発明は更に、樹脂層を有する基板全面を繊維等で摩擦
する際、前記繊維と前記基板の線状接触部が時間的に前
記基板全面を走査されるにおいて、接触直前の基板の部
分、あるいは接触直後の基板の部分を所定時間赤外線を
照射することを特徴とする液晶用配向膜の製法をも提供
するものである。
The present invention further provides that when the entire surface of a substrate having a resin layer is rubbed with fibers or the like, a linear contact portion between the fibers and the substrate is temporally scanned over the entire surface of the substrate; The present invention also provides a method for producing an alignment film for liquid crystal, characterized in that a portion of the substrate immediately after contact is irradiated with infrared rays for a predetermined period of time.

また、本発明は、繊維が基板面に対して回転しているの
が望ましい。
Further, in the present invention, it is desirable that the fibers are rotated with respect to the substrate surface.

作用 液晶分子を配向させるためには、器壁界面での液晶分子
を配向させる必要がある。このために、界面に通常、配
向膜が設けられる。配向膜の表面は、ある秩序が必要な
のは理解される。この秩序は、液晶分子と相互作用して
、器壁界面での液晶分子を配向させる。このような秩序
は、ラビングによって、配向膜の高分子を一方向に延伸
させることにより生起させられる。
In order to align the working liquid crystal molecules, it is necessary to align the liquid crystal molecules at the vessel wall interface. For this purpose, an alignment film is usually provided at the interface. It is understood that a certain order is required on the surface of the alignment film. This order interacts with the liquid crystal molecules and orients them at the vessel wall interface. Such order is caused by stretching the polymer of the alignment film in one direction by rubbing.

この配向膜分子の延伸は、その様子がラビングの際の基
板温度により異なるのは理解さる。基板温度ないし樹脂
層の温度を室温以上にする場合、配向膜分子の延伸の程
度は大きくなり、配向膜材料をそれなりのものを選べば
、一般にスーパー・ツィスティッド・ネマティック・モ
ードで望ましいとされる、大きなプレチルト角が得られ
るやまた、ラビング時の静電帯電による影響は、樹脂層
の抵抗値の低下の結果、小さくなるようである。
It is understood that the manner in which the molecules of the alignment film are stretched differs depending on the substrate temperature during rubbing. When the temperature of the substrate or resin layer is higher than room temperature, the degree of stretching of the alignment film molecules increases, and if a suitable alignment film material is selected, super twisted nematic mode is generally preferred. It seems that once a large pretilt angle is obtained, the influence of electrostatic charging during rubbing becomes smaller as a result of a decrease in the resistance value of the resin layer.

基板温度ないし樹脂層の温度を室温よりかなり以下にす
る場合、配向膜分子の延伸の程度は小さくなるが、実験
ではプレチルト角の分布は良い。
When the substrate temperature or the temperature of the resin layer is set to be much lower than room temperature, the degree of stretching of the alignment film molecules becomes small, but the pretilt angle distribution is good in experiments.

以上のことは、温度による延伸の程度の異なりから、容
易に理解されることである。
The above is easily understood from the difference in the degree of stretching depending on temperature.

また、樹脂層を有する基板全面を繊維等で摩擦する際、
前記繊維と前記基板の線状接触部が時間的に前記基板全
面を走査されるにおいて、接触直後の基板の部分を所定
時間赤外線を照射した場合、すなわち樹脂層の局所部を
、摩擦すなわちラビングした直後、赤外線を瞬時、ある
いは短時間照射し、その後放冷した場合、プレチルト角
の揃いは非常によくなる。これは、赤外線により、配向
膜分子の延伸がエージングされると理解している。
In addition, when rubbing the entire surface of a substrate with a resin layer with fibers, etc.,
When the linear contact portion between the fiber and the substrate is temporally scanned over the entire surface of the substrate, when the portion of the substrate immediately after the contact is irradiated with infrared rays for a predetermined period of time, that is, the local portion of the resin layer is rubbed or rubbed. Immediately after, if infrared rays are irradiated instantaneously or for a short time and then allowed to cool, the pretilt angles will be very well aligned. This is understood to mean that the stretching of the alignment film molecules is aged by infrared rays.

ΔLは、0でも良い、すなわち摩擦と同時に赤外線の照
射を行っても良い。
ΔL may be 0, that is, infrared ray irradiation may be performed simultaneously with friction.

樹脂層を有する基板全面を繊維等でFf!擦する際、前
記繊維と前記基板の線状接触部が時間的に前記基板全面
を走査されるにおいて、接触直前の基板の部分を所定時
間赤外線を照射した場合、すなわち樹脂層の局所部が、
摩擦すなわちラビングされる直前、赤外線を瞬時、ある
いは短時間照射し、その直後放冷しつつラビングした場
合、プレチルト角の揃いはかなりよく、しかも配向膜材
料をそれなりのものを選べば大きなプレチルト角が得ら
れる。これは、赤外線により、配向膜分子がより柔軟に
なっており、これにラビングが加わると、前記の効果が
生起すると思われる。
Ff the entire surface of the board with the resin layer using fibers, etc. When rubbing, the linear contact portion between the fiber and the substrate is temporally scanned over the entire surface of the substrate, and when the portion of the substrate immediately before the contact is irradiated with infrared rays for a predetermined time, that is, the local portion of the resin layer is
Immediately before friction or rubbing, infrared rays are irradiated instantaneously or for a short time, and immediately after that, when rubbing is performed while cooling, the pretilt angles are fairly consistent, and if a suitable alignment film material is selected, a large pretilt angle can be obtained. can get. This is because the molecules of the alignment film become more flexible due to infrared rays, and when rubbing is added to this, the above-mentioned effect appears to occur.

なお、前記赤外線の望ましい波長は750nm以上、約
10ミクロンまでである。
Note that the desirable wavelength of the infrared rays is 750 nm or more and up to about 10 microns.

なお、これらの効果はいわゆる回転ラビングにおいて著
しい。
Note that these effects are remarkable in so-called rotary rubbing.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

本実施例では樹脂として、ポリアミック酸樹脂(溶剤タ
イプ)を用いた。ポリアミック酸樹脂は、所定の加熱処
理により、イミド化は可能であり、本実施例ではイミド
化が可能な熱処理をした。
In this example, polyamic acid resin (solvent type) was used as the resin. A polyamic acid resin can be imidized by a predetermined heat treatment, and in this example, a heat treatment capable of imidization was performed.

市販のポリアミック酸樹脂(8産化学製、5E−411
0)を溶剤で粘度調整をし、印刷機でガラス基板上に、
塗布した。これを所定の温度で熱処理した。かくてポリ
イミドからなる樹脂層を得た。
Commercially available polyamic acid resin (manufactured by Yasan Kagaku, 5E-411
Adjust the viscosity of 0) with a solvent and print it on a glass substrate using a printing machine.
Coated. This was heat-treated at a predetermined temperature. In this way, a resin layer made of polyimide was obtained.

次に本発明に係るラビング処理を樹脂層に行った。Next, the resin layer was subjected to a rubbing treatment according to the present invention.

基板同士を、通常の方法で、所定の方向に、所定の空隙
を保つように貼り合わせた。この場合、樹脂層は前記空
隙に向くようにされた。
The substrates were bonded together in a predetermined direction with a predetermined gap maintained using a conventional method. In this case, the resin layer was oriented toward the void.

この空隙に、ネマティック液晶を充填したところ、ガラ
ス基板壁において、所望の方向に、はぼ、液晶分子が配
向しているのが確認された。
When this gap was filled with nematic liquid crystal, it was confirmed that the liquid crystal molecules were oriented in the desired direction on the glass substrate wall.

磁場法により、液晶分子のプレチルト角を測った。The pretilt angle of liquid crystal molecules was measured using the magnetic field method.

(実施例1) 第1図に実施例1に関与するラビング装置を示す。(Example 1) FIG. 1 shows a rubbing device involved in Example 1.

第1図は概略構成図である。同図において、lは矢印の
方向に移動する台、2は基板、3は回転するロール、4
は繊維、5は台1及び基板2を加熱するためのヒーター
である。
FIG. 1 is a schematic configuration diagram. In the figure, l is a table that moves in the direction of the arrow, 2 is a substrate, 3 is a rotating roll, and 4
is a fiber, and 5 is a heater for heating the table 1 and the substrate 2.

ラビング時の基板の温度は、約50゛C〜約150°C
が扱い易い。
The temperature of the substrate during rubbing is approximately 50°C to approximately 150°C.
is easy to handle.

一般に、プレチルト角は、従来より数°高くし得た。従
って液晶分子の捻り安定性は向上した。
Generally, the pretilt angle can be made several degrees higher than before. Therefore, the twisting stability of liquid crystal molecules was improved.

また、液晶分子の配向規制力も液晶パネルの表示を見る
限り、向上した。また、ラビング時の基板の温度を約1
00 ’C以上にすると、ラビング時の静電気による問
題は著しく低減される。
Furthermore, the ability to regulate the alignment of liquid crystal molecules has also improved, as seen from the display on the liquid crystal panel. Also, the temperature of the board during rubbing should be adjusted to about 1
When the temperature is 00'C or higher, problems caused by static electricity during rubbing are significantly reduced.

(実施例2) 第2図に実施例2に関し多するラビング装置を示す。(Example 2) FIG. 2 shows a rubbing device related to the second embodiment.

第2図は概略構成図である。同図において、11は矢印
の方向に移動する、冷媒により冷却された台、12は基
板、13は回転するロール、14は繊維、15は基板に
水分が露結しないように、基板に冷却した乾燥空気を吹
きつけるためのノズルである。
FIG. 2 is a schematic configuration diagram. In the figure, 11 is a table cooled by a refrigerant that moves in the direction of the arrow, 12 is a substrate, 13 is a rotating roll, 14 is a fiber, and 15 is a cooling device that is cooled to the substrate so that moisture does not condense on the substrate. A nozzle for blowing dry air.

ラビング時の基板の温度は約O′c〜約−io’c位が
扱い易い。
The temperature of the substrate during rubbing is easily manageable at about O'c to about -io'c.

できた液晶パネルの表示は均一であり、これはプレチル
ト角の測定結果の揃いの良さと符合する。
The display on the resulting liquid crystal panel was uniform, which is consistent with the uniformity of the pretilt angle measurement results.

(実施例3) 第3図に実施例3に関与するラビング装置を示す。第3
図は概略構成図である。同図において、21は矢印の方
向に移動する台、22は基板、23は回転するロール、
24は繊維、25は赤外線ランプであり、基l7f22
は繊維24でラビングする前に赤外線ランプ25で照射
される。
(Example 3) FIG. 3 shows a rubbing device involved in Example 3. Third
The figure is a schematic configuration diagram. In the figure, 21 is a table that moves in the direction of the arrow, 22 is a substrate, 23 is a rotating roll,
24 is a fiber, 25 is an infrared lamp, and the base l7f22
is irradiated with an infrared lamp 25 before being rubbed with fibers 24.

−Cに、プレチルト角は、従来より数”高くし得た。従
って液晶分子の捻り安定性は向上した。
-C, the pretilt angle can be made several inches higher than before. Therefore, the twisting stability of the liquid crystal molecules is improved.

また、液晶分子の配向規制力も液晶パネルの表示を見る
限り、向上した。
Furthermore, the ability to regulate the alignment of liquid crystal molecules has also improved, as seen from the display on the liquid crystal panel.

(実施例4) 第4図に実施例4に関与するラビング装置を示す。(Example 4) FIG. 4 shows a rubbing device involved in Example 4.

第4図は概略構成図である。同図において、31は矢印
の方向に移動する台、32は基板、33は回転するロー
ル、34は繊維、35は赤外線ランプであり、基板32
は繊11i34でラビングした後に赤外線ランプ35で
照射される。
FIG. 4 is a schematic configuration diagram. In the figure, 31 is a table that moves in the direction of the arrow, 32 is a substrate, 33 is a rotating roll, 34 is a fiber, 35 is an infrared lamp, and 32 is a substrate.
is rubbed with a fiber 11i34 and then irradiated with an infrared lamp 35.

−iに、プレチルト角の分布は、従来よりかなり減少し
た。そのためであろうか、液晶パネルの表示は、より均
一になった。
-i, the distribution of pretilt angles is considerably reduced compared to the conventional one. Perhaps because of this, the display on the liquid crystal panel has become more uniform.

実施例1.実施例2.実施例3.実施例4において、回
転するロールの円周部の速度は、台の移動する速度に比
べて、はるかに大きい。
Example 1. Example 2. Example 3. In Example 4, the circumferential speed of the rotating roll is much greater than the moving speed of the table.

発明の効果 以上本発明は液晶分子配向用樹脂膜の製法を提供するも
のであり、産業上の価値は大なるものがある。
Effects of the Invention The present invention provides a method for producing a resin film for aligning liquid crystal molecules, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は本発明に係るラビン
グ装置の概略構成図である。 1.21.31・・・・・・矢印の方向に移動する台、
11・・・・・・矢印の方向に移動する、冷媒により冷
却された台、2,12,22.32・・・・・・基板、
3゜13.23.33・・・・・・回転するロール、4
,14゜24.34・・・・・・繊維、5・・・・・・
台l及び基板2を加熱するためのヒーター、15・・・
・・・基板に水分が露結しないように、基板に冷却した
乾燥空気を吹きつけるためのノズル、25.35・旧・
・赤外線ランプ。 代理人の氏名 弁理士 粟野重孝 はか1名派 1’4
FIG. 1, FIG. 2, FIG. 3, and FIG. 4 are schematic configuration diagrams of a rubbing device according to the present invention. 1.21.31... A platform that moves in the direction of the arrow,
11... A stand cooled by a refrigerant that moves in the direction of the arrow, 2, 12, 22. 32... A substrate,
3゜13.23.33・・・Rotating roll, 4
, 14゜24.34...fiber, 5...
A heater for heating the table l and the substrate 2, 15...
...Nozzle for blowing cooled dry air onto the board to prevent moisture from condensing on the board, 25.35/old/
・Infrared lamp. Name of agent: Patent attorney Shigetaka Awano, 1'4

Claims (4)

【特許請求の範囲】[Claims] (1)樹脂層を有する基板を約50℃以上の温度に保ち
、前記樹脂層の表面を繊維等で摩擦することを特徴とす
る液晶用配向膜の製法。
(1) A method for producing an alignment film for a liquid crystal, which comprises keeping a substrate having a resin layer at a temperature of about 50° C. or higher, and rubbing the surface of the resin layer with a fiber or the like.
(2)樹脂層を有する基板を約0℃以下の温度に保ち、
前記樹脂層の表面を繊維等で摩擦することを特徴とする
液晶用配向膜の製法。
(2) Maintaining the substrate having the resin layer at a temperature of about 0°C or less,
A method for producing an alignment film for a liquid crystal, characterized in that the surface of the resin layer is rubbed with a fiber or the like.
(3)樹脂層を有する基板全面を繊維等で摩擦する際、
前記繊維と前記基板の線状接触部が時間的に前記基板全
面を走査されるにおいて、接触直前の基板の部分、ある
いは接触直後の基板の部分を所定時間赤外線を照射する
ことを特徴とする液晶用配向膜の製法。
(3) When rubbing the entire surface of the substrate with a resin layer with fibers, etc.
The liquid crystal is characterized in that when the linear contact portion between the fiber and the substrate temporally scans the entire surface of the substrate, a portion of the substrate immediately before contact or a portion of the substrate immediately after contact is irradiated with infrared rays for a predetermined period of time. Production method of alignment film for use.
(4)繊維が基板面に対して回転していることを特徴と
する特許請求の範囲第1項、第2項、第3項記載の液晶
用配向膜の製法。
(4) A method for producing an alignment film for liquid crystal according to claims 1, 2, and 3, wherein the fibers are rotated relative to the substrate surface.
JP13845289A 1989-05-31 1989-05-31 Production of oriented film for liquid crystal Pending JPH032830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13845289A JPH032830A (en) 1989-05-31 1989-05-31 Production of oriented film for liquid crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13845289A JPH032830A (en) 1989-05-31 1989-05-31 Production of oriented film for liquid crystal

Publications (1)

Publication Number Publication Date
JPH032830A true JPH032830A (en) 1991-01-09

Family

ID=15222343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13845289A Pending JPH032830A (en) 1989-05-31 1989-05-31 Production of oriented film for liquid crystal

Country Status (1)

Country Link
JP (1) JPH032830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250146A (en) * 2009-04-17 2010-11-04 Nitto Denko Corp Method for producing optical anisotropic film, rubbing processing method and image display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302225A (en) * 1988-05-30 1989-12-06 Sharp Corp Production of liquid crystal display element
JPH0251127A (en) * 1988-08-12 1990-02-21 Stanley Electric Co Ltd Manufacture of liquid crystal cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302225A (en) * 1988-05-30 1989-12-06 Sharp Corp Production of liquid crystal display element
JPH0251127A (en) * 1988-08-12 1990-02-21 Stanley Electric Co Ltd Manufacture of liquid crystal cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250146A (en) * 2009-04-17 2010-11-04 Nitto Denko Corp Method for producing optical anisotropic film, rubbing processing method and image display

Similar Documents

Publication Publication Date Title
Paek et al. A mechanistic picture of the effects of rubbing on polyimide surfaces and liquid crystal pretilt angles
JP2004046194A (en) Manufacturing method for optical compensator
KR100353742B1 (en) A treatment method of an orientation membrane for a liquid crystal display element and a process for making the liquid crystal display element
JP3223142B2 (en) Manufacturing method of liquid crystal display element
JPH0255330A (en) Production of oriented film for liquid crystal
US6770335B2 (en) Photoalignment materials and liquid crystal display device and method for fabricating the same with said materials
JPH032830A (en) Production of oriented film for liquid crystal
US5151298A (en) Process for preparing orientation film for liquid crystals
JP2873822B2 (en) Liquid crystal display device and manufacturing method thereof
JPH07287237A (en) Liquid crystal oriented film and liquid crystal display element using the same
JPH0643457A (en) Formation of liquid crystal orienting film
WO1993000604A1 (en) Process for producing liquid crystal alignment film
JPH04141625A (en) Liquid crystal element
JPH032829A (en) Formation of oriented film for liquid crystal
JP3197392B2 (en) Liquid crystal electro-optical device
JPH0273326A (en) Liquid crystal display body and its production
JPH07191322A (en) Formation of oriented liquid crystal macromolecular layer
JPH04251821A (en) Production of oriented film for liquid crystal
JPH0359622A (en) Liquid crystal display element
JPH0255331A (en) Production of oriented film for liquid crystal
JPH03256023A (en) Production of liquid crystal element
JPH03210529A (en) Production of polyimide film
JPH04366920A (en) Liquid crystal oriented film
JPH04372932A (en) Manufacture of liquid crystal orientation film
JPH02165119A (en) Production of oriented film for liquid crystal