JPH03282352A - Signal detector for optoacoustic infrared spectrochemical analysis - Google Patents

Signal detector for optoacoustic infrared spectrochemical analysis

Info

Publication number
JPH03282352A
JPH03282352A JP2084608A JP8460890A JPH03282352A JP H03282352 A JPH03282352 A JP H03282352A JP 2084608 A JP2084608 A JP 2084608A JP 8460890 A JP8460890 A JP 8460890A JP H03282352 A JPH03282352 A JP H03282352A
Authority
JP
Japan
Prior art keywords
optoacoustic
sample
signal
photoacoustic
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2084608A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
孝 吉田
Kimito Sakai
酒井 公人
Hideyuki Sasaki
秀幸 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2084608A priority Critical patent/JPH03282352A/en
Publication of JPH03282352A publication Critical patent/JPH03282352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the measurement of a very small black sample or spherical (or particulate) sample which is difficult to be measured by obtaining the optoacoustic IR spectra corresponding to IR absorption spectra. CONSTITUTION:The sample is irradiated with the modulating IR light 1 stopped down by a condenser mirror 3 via a crystal plate 11 and the optoacoustic IR signal generated from the microsample (a) is detected by a high-sensitivity microphone 12 and is amplified by a preamplifier 13; thereafter, the signal is sent to a data processor 16. A piston 14 is moved by a step motor 15 and the volume in the hermetic space in a detector is gradually changed. The optoacoustic IR signal of the preamplifier 13 is fed back to a data processor 16 at all times so as to determine the position where the optoacoustic signal generated from the sample is increased by a resonance phenomenon. The pres sure in the detector S is monitored at all times by a pressure sensor built in a valve 20. The piston 14 is changed and the optoacoustic signal is subjected to Fourier transform by the data processor 16 in the position where the optoacoustic signal detected by the high-sensitivity microphone 12 is maximized. by which the optoacoustic IR spectra are obtd.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、例えば数μm1〜100μmφの微小試料の
化学分析に適した光音響赤外スペクトル(FTIR/P
Aスペクトル)を求めるための光音響赤外分光分析用の
信号検出装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention provides a photoacoustic infrared spectrum (FTIR/P
The present invention relates to a signal detection device for photoacoustic infrared spectroscopy for determining A spectrum).

(従来の技術) 近年、微小な試料(特に有機系化合物)の分析には、顕
微鏡の機構を組み込んだフーリエ変換型の顕微赤外分光
分析装置(顕微FT−IR)か使用されるようになり、
場合によっては数μ■φの微小試料であっても赤外吸収
スペクトルが得られるようになってきた。しかし、黒色
試料の場合は照射した変調赤外光が吸収されて透過しに
くくなるために、また球形(もしくは粒子状)試料の場
合は透過赤外光が屈折して検出器側に到達しなくなるた
め、それぞれ赤外吸収スペクトルが得られにくいという
欠点があった。
(Prior art) In recent years, Fourier transform type micro infrared spectrometers (micro FT-IR), which incorporate a microscope mechanism, have come to be used to analyze minute samples (particularly organic compounds). ,
In some cases, it has become possible to obtain infrared absorption spectra even for microscopic samples of several micrometers. However, in the case of a black sample, the modulated infrared light irradiated is absorbed and becomes difficult to transmit, and in the case of a spherical (or particulate) sample, the transmitted infrared light is refracted and does not reach the detector side. Therefore, each had the disadvantage that it was difficult to obtain an infrared absorption spectrum.

一方、光音響赤外分光分析装置(FTIR/PAS)て
は、試料を透過した赤外光を検出するのではなく、試料
に吸収された変調赤外光で発生する熱(疎密波)によっ
て生じる音波を検出するため、黒色試料や球形(もしく
は粒子状)試料など、試料の形態に左右されることなく
、照射された変調赤外光が僅かでも吸収されれば、赤外
吸収スペクトル相当の光音響スペクトル(FT I R
/PAスペクトル)が得られるという利点があった。し
かし、光音響信号自体は本来、かなり微弱であるため、
照射する変調赤外光も細く絞ることなく、容器内の比較
的多量の試料全体に照射する必要があった。また、従来
の分析装置では微小な試料の場合に得られる光音響信号
は、例え得られたとしてもかなり微弱であったため、光
音響赤外スペクトル(FT I R/PAスペクトル)
に変換するとS/N比が小さいという欠点があった。そ
のため従来から、たとえば100μm以下の大きさの微
小試料の測定には不向きとされていた。
On the other hand, a photoacoustic infrared spectrometer (FTIR/PAS) does not detect the infrared light that has passed through the sample, but rather uses the heat (concentration wave) generated by the modulated infrared light absorbed by the sample. In order to detect sound waves, regardless of the shape of the sample, such as a black sample or a spherical (or particulate) sample, if even a small amount of modulated infrared light is absorbed, light corresponding to the infrared absorption spectrum will be detected. Acoustic spectrum (FT I R
/PA spectrum) can be obtained. However, since the photoacoustic signal itself is inherently quite weak,
The modulated infrared light to be irradiated had to be irradiated onto the entire relatively large amount of sample in the container without being narrowed down. Furthermore, with conventional analyzers, the photoacoustic signals obtained from minute samples were quite weak, even if they were obtained at all, so photoacoustic infrared spectra (FT I R/PA spectra)
When converted into , there was a drawback that the S/N ratio was small. For this reason, it has conventionally been considered unsuitable for measuring micro samples with a size of 100 μm or less, for example.

(発明が解決しようとする問題点) 本発明は従来から測定が困難であった数μl〜1100
uφの微小な黒色試料や微小な球形(もしくは粒子状)
の分析試料に対しても、S/N比が十分に大きい光音響
赤外スペクトルを得る事が出来る光音響赤外分析用の信
号検出装置を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention solves the problem of measuring from several μl to 1100 μl, which has been difficult to measure in the past.
uφ minute black sample or minute spherical (or particulate)
It is an object of the present invention to provide a signal detection device for photoacoustic infrared analysis that can obtain a photoacoustic infrared spectrum with a sufficiently large S/N ratio even for an analysis sample.

[発明の構成コ (問題点を解決するための手段) 本発明は、上記問題点を解決するため、微小試料のみに
変調赤外光を細く絞り込んで効率よく照射し、発生する
微弱な光音響信号をうまく捕らえるため、試料以外の部
位の光音響信号が混入しないような機構を持たせ、また
微弱な光音響信号を増幅するため、密閉された信号検出
器に任意の気体(充填ガス)を注入するという手段を講
じた。
[Structure of the Invention (Means for Solving the Problems)] In order to solve the above problems, the present invention aims to efficiently irradiate only a minute sample with modulated infrared light, thereby reducing the weak photoacoustic sound generated. In order to capture the signal well, we installed a mechanism that prevents photoacoustic signals from other parts of the sample from being mixed in, and in order to amplify weak photoacoustic signals, we introduced an arbitrary gas (filling gas) into the sealed signal detector. The solution was to inject it.

さらに、容器内部の圧力を一定に保ちながら容積を変化
させ、光音響信号を共鳴、増大させるという手段を講し
た。
Furthermore, we took measures to change the volume while keeping the pressure inside the container constant to resonate and increase the photoacoustic signal.

すなわち本発明は、分析試料に変調赤外光を照射する光
源と、該変調赤外光をより細く絞り込むための集光鏡と
、該光源と集光鏡との間に配設され変調赤外光の照射面
積を制御するためのアパーチャーと、該分析試料を収容
するための密閉空間を有し、かつ、この密閉空間の変調
赤外光照射側に変調赤外光透過性の結晶板を設けてなる
信号検出器と、この検出器の密閉空間内に配設され、分
析試料に変調赤外光を照射することで発生する光音響信
号を検出するための高感度マイクロフォンと、高感度マ
イクロフォンに接続され、検出された光音響信号を増幅
するためのプリアンプと、分析試料の光音響信号をフー
リエ変換して赤外吸収スペクトルに相当する光音響スペ
クトルを求めるためのデータ処理装置と、このデータ処
理結果を記録するためのレコーダとを具備してなること
を特徴とする光音響赤外分光分析用の信号検出装置を提
供するものである。
That is, the present invention provides a light source for irradiating modulated infrared light onto an analysis sample, a condensing mirror for narrowing down the modulated infrared light, and a modulated infrared light source disposed between the light source and the condensing mirror. It has an aperture for controlling the light irradiation area and a closed space for accommodating the analysis sample, and a crystal plate that transmits modulated infrared light is provided on the modulated infrared light irradiation side of this closed space. A signal detector consisting of a signal detector, a high-sensitivity microphone placed in the closed space of this detector to detect the photoacoustic signal generated by irradiating the analysis sample with modulated infrared light, and a high-sensitivity microphone. A preamplifier for amplifying the detected photoacoustic signal, a data processing device for performing Fourier transform on the photoacoustic signal of the analysis sample to obtain a photoacoustic spectrum corresponding to an infrared absorption spectrum, and processing of this data. The present invention provides a signal detection device for photoacoustic infrared spectroscopy, characterized in that it is equipped with a recorder for recording results.

なお、上記信号検出器は、高感度マイクロフォンで得ら
れた光音響信号を共鳴、増大させるために、試料周囲の
密閉空間の容積を変化させる手段と、ガスを密閉空間に
導入するためのガス導入および排出路と、このガス導入
および排出路に設けられ、密閉空間の容積を変化させる
際に密閉空間内の圧力か一定となるように任意のガス圧
を調整するための圧力センサを備えたパルプ機構とを有
するものとすることもてきる。
The signal detector described above includes a means for changing the volume of the closed space around the sample in order to resonate and increase the photoacoustic signal obtained by the high-sensitivity microphone, and a gas introduction device for introducing gas into the closed space. and a discharge path, and a pressure sensor provided in the gas introduction and discharge path to adjust the pressure of any gas so that the pressure in the closed space remains constant when changing the volume of the closed space. It is also possible to have a mechanism.

(作用) 本発明では、変調赤外光を微小な分析試料のみに効率よ
く照射させ、且つ発生する微弱な光音響信号をうまく捕
らえるようにしたため、従来から測定が困難であった数
μm〜100μmφの微小な黒色試料や微小な球形(も
しくは粒子状)試料の測定において、試料自体が変調赤
外光を僅かでも吸収しさえすれば、赤外吸収スペクトル
に相当する光音響赤外スペクトル(FT I R/PA
スペクトル)が得られる。
(Function) In the present invention, modulated infrared light is efficiently irradiated only on minute analysis samples, and the generated weak photoacoustic signals are successfully captured. When measuring a minute black sample or a minute spherical (or particulate) sample, as long as the sample itself absorbs even a small amount of modulated infrared light, a photoacoustic infrared spectrum (FTI) corresponding to the infrared absorption spectrum can be obtained. R/PA
Spectrum) is obtained.

なお、本発明は分析しようとする有機材料からなる試料
が微小、微量であり、かつ下地が金属、セラミックスな
どの赤外線が透過しない材料である場合に有効であり、
例えば1)窒化ケイ素、炭化ケイ素、窒化アルミニュウ
ム等の粒子表面の処理剤、2)湿度センサー表面の高分
子感渥膜などの各種センサーの有機薄膜、3)液晶TV
用カラフィルタの樹脂膜の分析にもちうろことができる
Note that the present invention is effective when the sample made of an organic material to be analyzed is minute or in trace amount, and the base is a material such as metal or ceramics that does not transmit infrared rays.
For example, 1) particle surface treatment agents such as silicon nitride, silicon carbide, and aluminum nitride, 2) organic thin films for various sensors such as polymer-sensitive films on the surface of humidity sensors, and 3) LCD TVs.
It can also be used to analyze the resin film of color filters.

(実施例) 以下、本発明を図示の実施例を参照して説明する。(Example) Hereinafter, the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の光音響赤外分光分析用の信号検出装置
の一実施例を示す模式図である。
FIG. 1 is a schematic diagram showing an embodiment of a signal detection device for photoacoustic infrared spectroscopy according to the present invention.

図示の如く、この光音響赤外分光分析用の信号検出装置
は、分析試料に対し照射する変調赤外光1aの光源1と
、該変調赤外光1aを、より細く絞り込むための集光鏡
(例えばカセグレン鏡)3と、これら光源1と集光鏡3
との間に配設され変調赤外光1aの照射面積を制御する
ための絞り、すなわちアパチャー2と、あらかじめ装置
内の試料を観察しピント、位置などの集光調整を行うた
め上記アパチャー2と変調赤外光1aとの間に矢線方向
に挿脱自在に配置されたハーフミラ−5を備えた第1の
鏡筒4並びに、ミラー7及び白色光源8を備えた第2の
鏡筒6と、該集光鏡3より下流側に設けられ分析試料a
を収容するための密閉空間Sを有し、かつ、この密閉空
間Sの変調赤外光照射側に変調赤外光透過性の結晶板1
1を設けてなる信号検出器10と、この検出器10の密
閉空間S内に配設され、分析微小試料aに変調赤外光1
aを照射することで発生する光音響信号を検出するため
の高感度マイクロフォン12と、高感度マイクロフォン
12に導通して設けられ検出された光音響信号を増幅す
るためのプリアンプ13と、密閉空間Sの高感度マイク
ロフォンで得られた光音響信号を共鳴、増大させるため
に、試料周囲の密閉空間の容積を変化させる手段(例え
ば密閉空間Sの一部に進退自在に設けられステップモー
タ15により駆動されるピストン14)と、微小試料1
aの光音響信号をフーリエ変換して赤外吸収スペクトル
に相当する光音響スペクトルを求めるためのデータ処理
装置16と、このデータ処理結果を記録するだめのレコ
ーダ17と、ガスを密閉空間に導入するためのガス導入
路18および排出路19と、このガス導入路18および
排出路19に設けられ、密閉空間Sの容積を変化させる
際に密閉空間S内の圧力が一定となるように任意のガス
圧に調整するための圧力センサを備えたバルブ機構20
.21と、照射する変調赤外光を任意の位置に設定でき
るように検出装置をx、y。
As shown in the figure, this signal detection device for photoacoustic infrared spectroscopy includes a light source 1 for emitting modulated infrared light 1a that is irradiated onto an analysis sample, and a condenser mirror for narrowing down the modulated infrared light 1a. (for example, a Cassegrain mirror) 3, these light sources 1, and a condensing mirror 3
A diaphragm, that is, an aperture 2, is disposed between the aperture 2 and the aperture 2 to control the irradiation area of the modulated infrared light 1a. A first lens barrel 4 equipped with a half mirror 5 that is removably inserted in the arrow direction between the modulated infrared light 1a, and a second lens barrel 6 equipped with a mirror 7 and a white light source 8. , an analysis sample a provided downstream from the condenser mirror 3
and a crystal plate 1 that transmits modulated infrared light on the modulated infrared light irradiation side of the closed space S.
A signal detector 10 is provided with a signal detector 10 provided with a signal detector 10, and a signal detector 10 is arranged in a closed space S of this detector 10, and a modulated infrared light 1 is provided to a microsample a for analysis.
a high-sensitivity microphone 12 for detecting a photoacoustic signal generated by irradiating a, a preamplifier 13 connected to the high-sensitivity microphone 12 for amplifying the detected photoacoustic signal, and a closed space S. In order to resonate and increase the photoacoustic signal obtained by the high-sensitivity microphone of piston 14) and microsample 1
A data processing device 16 for Fourier transforming the photoacoustic signal of a to obtain a photoacoustic spectrum corresponding to an infrared absorption spectrum, a recorder 17 for recording the data processing results, and a gas introduced into the closed space. A gas introduction path 18 and a discharge path 19 are provided for the gas introduction path 18 and the discharge path 19, and an arbitrary gas is provided in the gas introduction path 18 and the discharge path 19 so that the pressure in the closed space S remains constant when the volume of the closed space S is changed. Valve mechanism 20 with a pressure sensor for adjusting the pressure
.. 21, and the detection device is set at x and y so that the modulated infrared light to be irradiated can be set at any position.

Z軸の任意の方向に微小距離づつ移動させるための微動
調整機構(図示しない)とを具備してなる。
It is equipped with a fine movement adjustment mechanism (not shown) for moving by minute distances in any direction on the Z axis.

なお、第1の鏡筒4並びに第2の鏡筒6は他の光学的手
段で置き換えることも可能である。また、結晶板11と
しては臭化カリウム(KBr)、ヨウ化セシウム(Cs
l)など赤外線に対して透明な材料が用いられ、試料a
から発生する微弱な光音響信号が検出器10の外部に漏
れるのを防ぐため以外に、検出器内部に充填する気体、
例えばキセノン(Xe)を検出器外部に漏らさないため
に必要となるものである。そのためゴムバッキング22
を用いて機密性を更に高めるためるようにしてもよい。
Note that the first lens barrel 4 and the second lens barrel 6 can be replaced with other optical means. Further, as the crystal plate 11, potassium bromide (KBr), cesium iodide (Cs
A material transparent to infrared rays such as sample a
In addition to preventing the weak photoacoustic signal generated from leaking to the outside of the detector 10, the gas filled inside the detector,
For example, this is necessary to prevent xenon (Xe) from leaking outside the detector. Therefore rubber backing 22
may be used to further enhance confidentiality.

この気体は、微弱な光音響信号を増大させると共に、検
出器内部の密閉空間S内に存在する水蒸気や、試料aか
ら発生する水蒸気を除外するために充填するものである
。微動調整機構として検出器10全体を移動させるもの
について述べたが、これに限らず検出器10の一部すな
わち試料載置部分のみを移動させるもの、成るいは光学
系部分を移動させるものであってもよい。
This gas is filled to increase the weak photoacoustic signal and to exclude water vapor existing in the sealed space S inside the detector and water vapor generated from the sample a. Although the fine movement adjustment mechanism has been described as one that moves the entire detector 10, it is not limited to this, and may also be one that moves only a part of the detector 10, that is, the sample placement part, or one that moves the optical system part. It's okay.

次ぎに、この光音響赤外分光分析用の信号検出装置の使
用方法について説明する。
Next, a method of using this signal detection device for photoacoustic infrared spectroscopy will be explained.

まず、試料を観察するため、ハーフミラ−5を備えた第
1の鏡筒4と、ミラー7及び白色光源8を備えた第2の
鏡筒6を光路に割り込ませ、白色光源8から発つせられ
る可視光をカセグレン鏡3によって絞り込み、且つ必要
によってアパーチャー2で光路面積を制御した後に、第
1の鏡筒4及び第2の鏡筒6を光路から引き抜く。次ぎ
に測定のため、例えばマイケルソン干渉計によって変調
させた変調赤外光1を検出器10内の試料aに上述の可
視光と同様の光路によって入射させる。このとき、集光
鏡3て絞り込まれた変調赤外光1は結晶板11を介して
試料に照射される。その結果、微小試料aから発生した
光音響信号は、高感度マイクロフォン12で検出され、
プリアンプ13で増幅された後にデータ処理装置16に
送られる。
First, in order to observe a sample, a first lens barrel 4 equipped with a half mirror 5 and a second lens barrel 6 equipped with a mirror 7 and a white light source 8 are inserted into the optical path, and the white light source 8 emits light. After the visible light is narrowed down by the Cassegrain mirror 3 and the optical path area is controlled by the aperture 2 if necessary, the first lens barrel 4 and the second lens barrel 6 are pulled out from the optical path. Next, for measurement, modulated infrared light 1 modulated by, for example, a Michelson interferometer is made to enter the sample a in the detector 10 through the same optical path as the above-mentioned visible light. At this time, the modulated infrared light 1 focused by the condenser mirror 3 is irradiated onto the sample via the crystal plate 11. As a result, the photoacoustic signal generated from the microsample a is detected by the high-sensitivity microphone 12,
After being amplified by the preamplifier 13, it is sent to the data processing device 16.

この際、ステップモータ1,5によってピストン14を
移動させ、検出器内部の密閉空間内の容積を徐々に変化
させて、試料から発生する光音響信号が共鳴現象によっ
て増大する位置が求められるように、常時プリアンプ1
3の光音響信号をデータ処理装置16にフィードバック
する。気体は、データ処理装置16によって制御される
バルブ20の開閉で検出器S内部に充填される。検出器
S内部の圧力は、バルブ20に組み込まれた圧力センサ
で常時モニターされ、データ処理装置16に送られる。
At this time, the piston 14 is moved by the step motors 1 and 5 to gradually change the volume of the sealed space inside the detector, so that the position where the photoacoustic signal generated from the sample increases due to the resonance phenomenon is determined. , constant preamplifier 1
3 is fed back to the data processing device 16. The interior of the detector S is filled with gas by opening and closing a valve 20 controlled by the data processing device 16. The pressure inside the detector S is constantly monitored by a pressure sensor built into the valve 20 and sent to the data processing device 16.

ピストン14を変化させ、高感度マイクロフォン12で
検出される光音響信号が最大となる位置において、光音
響信号をデータ処理装置16でフーリエ変換することに
より、光音響赤外スペクトル(FTIR/PASスペク
トル)が得られる。この結果はレコーダ17で記録する
By changing the piston 14 and performing Fourier transform on the photoacoustic signal in the data processing device 16 at the position where the photoacoustic signal detected by the high-sensitivity microphone 12 is maximum, a photoacoustic infrared spectrum (FTIR/PAS spectrum) is obtained. is obtained. This result is recorded by the recorder 17.

次ぎに上記の検出装置を用いてビスフェノールA型エポ
キシ樹脂からなる表面処理剤で処理を施した平均粒径5
0μmの窒化アルミニュウム粒子を測定した結果を第2
図に示す。なお、第2図は窒化アルミニュウム粉末と、
表面処理剤とを含む光音響赤外スペクトルを示し、この
赤外吸収スペクトルから既知の窒化アルミニュウムの赤
外吸収スペクトルを差し引いたものはビスフェノールA
型エポキシ樹脂の赤外吸収スペクトルと良く一致してい
る。この結果、本発明に係わる検出装置を用いることに
より精度よく分析できる事は明らかである。
Next, using the above-mentioned detection device, the particles were treated with a surface treatment agent made of bisphenol A type epoxy resin.
The results of measuring 0μm aluminum nitride particles are shown in the second
As shown in the figure. In addition, Figure 2 shows aluminum nitride powder and
The photoacoustic infrared spectrum containing the surface treatment agent is shown, and the result obtained by subtracting the known infrared absorption spectrum of aluminum nitride from this infrared absorption spectrum is bisphenol A.
It matches well with the infrared absorption spectrum of type epoxy resin. As a result, it is clear that analysis can be performed with high accuracy by using the detection device according to the present invention.

[発明の効果] 以上説明したように、本発明によれば、従来から測定が
困難であった数μIm〜100μmφ程度の微小な黒色
試料や微小な球形(もしくは粒子状)試料の測定におい
て、試料自体が変調赤外光を僅かでも吸収しさえすれば
、赤外吸収スペクトルに相当する光音響赤外スペクトル
(FT I R/PAスペクトル)が得られる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to measure a small black sample or a small spherical (or particulate) sample in the range of several μIm to 100 μmφ, which has been difficult to measure in the past. As long as it absorbs even a small amount of modulated infrared light, a photoacoustic infrared spectrum (FT I R/PA spectrum) corresponding to an infrared absorption spectrum can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係わる光音響赤外分光分
析用の信号検出装置の模式図、第2図は本発明の装置に
より得た光音響赤外スペクトル図である。 1・・・変調赤外光、2・・・アパチャー、3・・・集
光鏡、4・・・第1の鏡筒、6・・・第2の鏡筒、10
・・・光音響赤外分光分析用の信号検出器、11・・・
結晶板、12・・・高感度マイクロフォン、13・・・
プリアンプ、14・・・ピストン、15・・・ステップ
モータ、16・・・データ処理装置、17・・・レコー
ダ。
FIG. 1 is a schematic diagram of a signal detection device for photoacoustic infrared spectroscopy according to an embodiment of the present invention, and FIG. 2 is a photoacoustic infrared spectrum obtained by the device of the present invention. DESCRIPTION OF SYMBOLS 1... Modulated infrared light, 2... Aperture, 3... Condenser mirror, 4... First lens barrel, 6... Second lens barrel, 10
...Signal detector for photoacoustic infrared spectroscopy, 11...
Crystal plate, 12... High sensitivity microphone, 13...
Preamplifier, 14... Piston, 15... Step motor, 16... Data processing device, 17... Recorder.

Claims (1)

【特許請求の範囲】[Claims]  分析試料に変調赤外光を照射する光源と、該変調赤外
光を細く絞り込む集光鏡と、該光源と集光鏡との間に配
設され変調赤外光の照射面積を制御するためのアパーチ
ャーと、該分析試料を収容するための密閉空間を有し、
かつ、この密閉空間の変調赤外光照射側に変調赤外光透
過性の結晶板を設けてなる信号検出器と、この検出器の
密閉空間内に配設され、分析試料に変調赤外光を照射す
ることで発生する光音響信号を検出するための高感度マ
イクロフォンと、高感度マイクロフォンに接続され、検
出された光音響信号を増幅するためのプリアンプと、分
析試料の光音響信号をフーリエ変換して赤外吸収スペク
トルに相当する光音響スペクトルを求めるデータ処理装
置と、このデータ処理結果を記録するためのレコーダと
を具備してなることを特徴とする光音響赤外分光分析用
の信号検出装置。
A light source that irradiates the analysis sample with modulated infrared light, a condensing mirror that narrows down the modulated infrared light, and a condensing mirror disposed between the light source and the condensing mirror to control the irradiation area of the modulated infrared light. an aperture and a closed space for accommodating the analysis sample,
Moreover, a signal detector is provided with a crystal plate that transmits modulated infrared light on the modulated infrared light irradiation side of this closed space, and a signal detector is provided in the closed space of this detector, and the modulated infrared light is applied to the analysis sample. A high-sensitivity microphone for detecting the photoacoustic signal generated by irradiation with Signal detection for photoacoustic infrared spectroscopy, comprising: a data processing device for obtaining a photoacoustic spectrum corresponding to an infrared absorption spectrum; and a recorder for recording the data processing results. Device.
JP2084608A 1990-03-30 1990-03-30 Signal detector for optoacoustic infrared spectrochemical analysis Pending JPH03282352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084608A JPH03282352A (en) 1990-03-30 1990-03-30 Signal detector for optoacoustic infrared spectrochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084608A JPH03282352A (en) 1990-03-30 1990-03-30 Signal detector for optoacoustic infrared spectrochemical analysis

Publications (1)

Publication Number Publication Date
JPH03282352A true JPH03282352A (en) 1991-12-12

Family

ID=13835409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084608A Pending JPH03282352A (en) 1990-03-30 1990-03-30 Signal detector for optoacoustic infrared spectrochemical analysis

Country Status (1)

Country Link
JP (1) JPH03282352A (en)

Similar Documents

Publication Publication Date Title
Adams et al. Analytical optoacoustic spectrometry. Part I. Instrument assembly and performance characteristics
Rockley Fourier-transformed infrared photoacoustic spectroscopy of solids
US6108096A (en) Light absorption measurement apparatus and methods
US5151590A (en) Photoacoustic cell and photoacoustic measuring device
CA2738820C (en) An arrangement adapted for spectral analysis of high concentrations of gas
Adams et al. Analytical optoacoustic spectrometry. Part IV. A double-beam optoacoustic spectrometer for use with solid and liquid samples in the ultraviolet, visible and near-infrared regions of the spectrum
US5596146A (en) Photoacoustic measurement of unburned carbon in fly-ash
US7050167B2 (en) Nephelometric detection unit with optical in-process control
US3013466A (en) Turbidity measuring instrument
CN110967301B (en) In-situ sum frequency vibration spectrum detection device with laser heating function
JPH03282352A (en) Signal detector for optoacoustic infrared spectrochemical analysis
JPH07502344A (en) Reflection-free polarimetry system for small volume sample cells
JP2001194297A (en) Method and apparatus for measuring environment
SE424024B (en) PHOTOTHERMIC METCELL FOR STUDYING THE LIGHT ABSORPTION OF A TEST SUBSTANCE
JPH08271336A (en) Photo-acoustic spectroscopic device
US3446562A (en) Apparatus for photometric analysis
JP2960474B2 (en) Nicotine sensor
JPH09251004A (en) Method and device for optical-acoustic analyzing
JPS6082835A (en) Automatic spectrum measuring device of light and heat
JPH05119000A (en) Fluorescent x-ray analyzing device
JPH0690181B2 (en) Photoacoustic measuring device with open cell
RU2345332C1 (en) Device for recording of infrared spectrum of sample emission
JPS6165138A (en) Optical reaction testing cell
JPS5942822B2 (en) Analysis equipment
JPS60117119A (en) Measurement and apparatus of reflected infrared absorption spectrum