JPH0328190B2 - - Google Patents

Info

Publication number
JPH0328190B2
JPH0328190B2 JP25726185A JP25726185A JPH0328190B2 JP H0328190 B2 JPH0328190 B2 JP H0328190B2 JP 25726185 A JP25726185 A JP 25726185A JP 25726185 A JP25726185 A JP 25726185A JP H0328190 B2 JPH0328190 B2 JP H0328190B2
Authority
JP
Japan
Prior art keywords
lipase
amino acids
culture
organic nitrogen
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25726185A
Other languages
Japanese (ja)
Other versions
JPS62118883A (en
Inventor
Toshimitsu Nakajima
Takenaga Shiotani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP25726185A priority Critical patent/JPS62118883A/en
Publication of JPS62118883A publication Critical patent/JPS62118883A/en
Publication of JPH0328190B2 publication Critical patent/JPH0328190B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、リパーゼを生産する微生物を培養し
てリパーゼを生産する際に、アミノ酸、またはア
ミノ酸およびペプチドを主成分とする有機窒素源
を流加することによつて培養液中のアミノ酸濃度
を低濃度に保ちながら培養し、リパーゼを生産す
る微生物のリパーゼ生産能を高めることを特徴と
する、油脂エステル交換反応のような非水系の反
応を触媒するのに適したリパーゼの生産方法に関
する。 〔従来の技術〕 従来、油脂の加水分解を触媒する酵素であるリ
パーゼは、その基質となる油脂が水に不溶であ
り、さらに反応が不均一系で行なわれるために他
の加水分解酵素、たとえばアミラーゼ、プロテア
ーゼなどと比較してその研究は著しく遅れてい
る。 しかし一方、その特徴ある基質特異性のために
実用的な用途も数多い。たとえば
Rhizopusdelemarのリパーゼは、そのトリグリ
セリドに対する位置特異性によつて油脂の構造決
定など油脂化学、生化学分野の研究に利用されて
おり、また血中脂質(リポプロテイン)によく作
用することから臨床診断試薬としての応用も期待
されている。さらにその脂肪酸特異性によつて食
品加工面でも乳製品フレバー製造にも利用されて
いる。また叙上のようなリパーゼによる加水分解
反応を応用したものの他に、その逆反応である合
成反応を利用した化粧品香料の合成、油脂エステ
ル交換反応による油脂の高付加価値変換など、工
業的にもその用途は広い。 このように、酵素として利用用途の高いリパー
ゼは自然界に広く分布しているが、酵素資源とし
ての見地からは動物臓器や植物種子を給源とする
ものは無尽蔵にうることができず、また水に抽出
されにくく不安定であるという難点を有している
ので、工業的生産の立場からは微生物起源のもの
にその給源を依存している。 〔問題点を解決するための手段〕 本発明者らは油脂のエステル交換反応を触媒す
るリパーゼを生産する微生物の培養方法を検討す
る過程において、リパーゼを生産する微生物を培
養する培地には有機窒素源が必要であり、また使
用した有機窒素源の種類によつてリパーゼを生産
する微生物によるリパーゼの生産性、すなわちエ
ステル交換能に差が生じることを見い出した。 本発明者らが鋭意研究を重ねた結果、叙上のご
とく培養に用いた有機窒素源の種類によつてリパ
ーゼの生産性が変化する原因は、有機窒素源中に
含まれるアミノ酸含量、すなわち培養液中のアミ
ノ酸濃度の違いに起因していることが明らかにな
つた。 リパーゼを生産する微生物、たとえばリゾプス
属(Rhizopus)の耐熱性菌株であるリゾプス・
キネンシス(Rhizopus chinensis)の培養では、
培地中に存在するアミノ酸はミカエル−メンテン
の式にしたがつてその資化速度は変化する。すな
わち、培地中に存在するアミノ酸のうち、その濃
度の高いアミノ酸はその資化速度が大きくなる。
これら資化されるアミノ酸のうち、ロイシン、フ
エニルアラニン、リジンおよびアルギニン以外の
アミノ酸の資化速度が大きい(培地中のアミノ酸
濃度が大きい)ばあいには、リパーゼを生産する
微生物によるリパーゼの生成が阻害されることが
本発明者らによつて見い出された。特にこれらリ
パーゼの生成を阻害するアミノ酸のうち、グルタ
ミン酸、プロリン、グリシン、アラニンおよびア
スパラギン酸は、その資化速度が大きい(培地中
のアミノ酸濃度が大きい)ばあいには、リパーゼ
生成に対する阻害が著しい。 一方、ロイシン、フエニルアラニン、リジンお
よびアルギニンのようなアミノ酸に関しては、そ
の資化速度が大きくても(培地中の濃度が大きく
ても)特に阻害作用は認められず、中でもフエニ
ルアラニンに関しては逆に促進効果さえ認められ
ることがわかつた。 したがつて、培地に有機窒素源を用いてリパー
ゼを生産する微生物を培養する際にリパーゼを生
産する微生物によるリパーゼの生産性を高めるに
は、有機窒素源中のアミノ酸組成が重要となる。
すなわち有機窒素源中のアミノ酸のうち、リパー
ゼ生成に阻害をおよぼすアミノ酸、たとえばグル
タミン酸、プロリン、アラニン、グリシンおよび
アスパラギン酸などはその含有量が小さいか、た
とえ含有量が大きくても遊離アミノ酸として存在
せず、ペプチドなどの形態をとつていることが望
まれる。 しかし、一般に微生物の培養に用いられる有機
窒素源、たとえば酵母エキス、肉エキス、マルト
エキスおよび蒸留廃液濃縮物(DDS)などは叙
上の要件を満たしておらず、グルタミン酸、アラ
ニン、グリシンおよびプロリンなどのようなリパ
ーゼ生成に阻害をおよぼすアミノ酸の含量が大き
い。したがつて、一般的な回分培養で叙上の有機
窒素源を使用しても微生物によるリパーゼの生産
性を高めることはできない。したがつて回分培養
においてリパーゼの生産性を高めるには天然蛋白
源、たとえばコーングルテンミール、血粉、フエ
ザーミールまたは脱脂大豆粕などを、適当な基質
特異性を有するプロテアーゼ、たとえばパパイ
ン、ペプシンまたはパンクレアチンなどで分解し
て叙上のようなリパーゼの生成を阻害するアミノ
酸をできるだけペプチドの形態をとつた状態で分
解を停止させて有機窒素源を製造しなければなら
ない。 しかし、リパーゼを生産する微生物の培養工程
に新たに叙上のような有機窒素源の製造工程を付
加することは経済的にも不利であり、リパーゼの
生産コストの上昇につながり望ましくない。 本発明は、リパーゼを生産する微生物の培養に
用いる有機窒素源の種類によらずにリパーゼの生
産性を高める方法であり、有機窒素源としては天
然に存在する有機窒素源、たとえば酵母エキス、
肉エキス、マルトエキス、フイシユソリユブルお
よび蒸留廃液濃縮物(DDS)などを用いること
ができる。 つぎに、本発明をさらに詳しく説明する。 〔作用〕 すでに述べたように、リパーゼを生産する微生
物、たとえばリゾプス属の耐熱性菌株であるリゾ
プス・キネンシスでは、アミノ酸の資化速度はミ
カエル−メンテンの式にしたがうので、たとえば
グルタミン酸、プロリン、グリシン、アラニンお
よびアスパラギン酸などのようなリパーゼの生成
に阻害作用をおよぼすアミノ酸の培地中の濃度を
低く保つことによりその資化速度は小さくなり、
阻害作用は解除される。本発明は、アミノ酸源を
流加することによつて培地中のアミノ酸濃度を低
く保ち、アミノ酸の資化速度を小さくして微生物
を培養することによつてリパーゼの生成を高める
方法である。 本発明者らは、天然に存在する有機窒素源、た
とえば酵母エキス、肉エキス、マルトエキス、プ
ロエキスP(大豆粕とグルテンの加水分解物)、フ
イシユソリユブルおよび蒸留廃液濃縮物(DDS)
などの種々の流加量と培地中の各アミノ酸濃度お
よびリパーゼ生成の関係を検討した結果、培地中
のトータルアミノ酸濃度で5000ppm以下になるよ
うな流加量で培養した時、はじめてリパーゼ活性
が上昇し、リパーゼの生産性が急激に上昇するこ
とを認めた。 また個々のアミノ酸についてみると、リパーゼ
生成を阻害するアミノ酸、すなわちロイシン、フ
エニルアラニン、リジンおよびアルギニン以外の
アミノ酸については、その培地中での個々の濃度
が1000ppmをこえるとリパーゼの生成が抑制さ
れ、特に阻害効果の著しいグルタミン酸、プロリ
ン、グリシン、アラニンおよびアスパラギン酸に
ついては500ppm以上になるとリパーゼの生成が
抑制されることが認められた。したがつて、これ
らリパーゼ生成に阻害作用をおよぼすアミノ酸に
ついてはその個々の培地中濃度が1000ppm以下に
なるように、またグルタミン酸、プロリン、グリ
シン、アラニンおよびアスパラギン酸については
500ppm以下になるように有機窒素源を流加する
ことが望ましい。 さらに流加する基質中にアミノ酸またはペプチ
ド以外の成分、たとえば後述する如き炭素源など
が多量に含まれていると、流加によつてトータル
アミノ酸濃度および個々のアミノ酸濃度を叙上の
範囲に保つてアミノ酸やペプチドは炭素源の代謝
のための窒素源として使われてしまい、リパーゼ
生成には有効に働かずリパーゼの生産性を向上さ
せることができない。したがつて流加する基質
は、主成分としてアミノ酸、またはアミノ酸およ
びペプチドを40%以上、さらに好ましくは60%以
上の含量で含んでいることが必須であり、炭素源
となる基質中の炭水化物、糖類、有機酸などは20
%以下、好ましくは10%以下であることが望まし
い。 現在のところ、培地中の各アミノ酸濃度をオン
ラインで検出できるセンサーは存在しない。そこ
で叙上のようなアミノ酸レベルにコントロールす
る具体的な方法としては、一定流量で有機窒素源
を流加し、培養のある時期以降に叙上のようなア
ミノ酸レベルを実現しリパーゼの生産性を高める
定流量流加法、および、あらかじめ菌体濃度、流
加量および培地中のアミノ酸濃度の関係を求めて
おき、菌体の増殖カーブに対応して叙上のアミノ
酸レベルに保てるように流加量を変化させるプロ
グラム流加法がある。 また本発明に適用できる有機窒素源は前述のよ
うに主成分としてアミノ酸、またはアミノ酸およ
びペプチドを含んでいるので、これらの資化に対
応して培地中にはアンモニウムイオンが発生す
る。したがつて、このアンモニウムイオン濃度ま
たは発生速度をアンモニウムイオン電極を用いて
測定し、そのフイードバツクにより流加量をコン
トロールして培地中にアミノ酸レベルをコントロ
ールすることも可能である。 本発明に用いられるリパーゼを生産する微生物
としてはリゾプス属(Rhizopus)、アスペルギル
ス属(Aspergillus)、ムコール属(Mucor)の微
生物がある。 また本発明によつて生産性を高められたリパー
ゼは、油脂のエステル交換反応のような非水系の
反応に対して特に著しい活性の上昇を示した。 〔実施例〕 つぎに実施例を用いて、本発明をさらに詳しく
説明するが、本発明はもとよりかかる実施例のみ
に限定されるものではない。 実施例 1 有機窒素源として肉エキス(和光純薬(株)製、ア
ミノ酸含量45%)を用いて、第1表に示す培地組
成、PH5.6、温度30℃、撹拌数400rpm、通気量
0.5VVMでリゾプス・キネンシス(Rhizopus
chinensis)IFO4768の回分培養および定流量流
加培養を行なつた。 流加培養方法としては、あらかじめ無機塩およ
びオレイン酸のみを含んだ培地3に、前培養よ
りのリゾプス・キネンシスを植菌し、肉エキス濃
度120g/の流加有機窒素源を15c.c./時のスピ
ードで67時間流加して培養し、ほぼ回分培養のば
あいと同量の有機窒素源を供給した。培養開始後
10時間ごとに培養液中の菌体をサンプリングし、
吸引濾過を行なつて分離した。 えられた菌体を水道水で2回、ついで80%アセ
トン水溶液で2回洗浄したのち、常温で24時間真
空乾燥した。このようにしてえられた乾燥菌体を
用いて第2表に示す反応系でエステル交換反応を
行なつた。えられたエステル交換反応率の比較を
第1図に示す。第1図からわかるように、定流量
流加培養によつてエステル交換反応率は急激に上
昇した。
[Industrial Application Field] The present invention provides a method for producing lipase by culturing lipase-producing microorganisms by feeding an organic nitrogen source mainly composed of amino acids or amino acids and peptides. A lipase suitable for catalyzing non-aqueous reactions such as oil and fat transesterification reactions, which is characterized by culturing while keeping the amino acid concentration in the liquid at a low concentration to increase the lipase production ability of lipase-producing microorganisms. Regarding the production method. [Prior Art] Conventionally, lipase, which is an enzyme that catalyzes the hydrolysis of fats and oils, has been known to use other hydrolytic enzymes such as Research on it is significantly behind compared to amylase, protease, etc. However, due to its unique substrate specificity, it also has many practical applications. for example
Rhizopusdelemar lipase is used in research in the fields of oleochemistry and biochemistry, such as determining the structure of fats and oils, due to its positional specificity for triglycerides, and is also used as a clinical diagnostic reagent because it acts well on blood lipids (lipoproteins). It is also expected to be applied as Furthermore, due to its fatty acid specificity, it is used in food processing and dairy flavor production. In addition to applying the hydrolysis reaction using lipase as described above, there are also industrial applications such as the synthesis of cosmetic fragrances using the reverse reaction, the synthesis reaction, and the high value-added conversion of oils and fats by transesterification of oils and fats. Its uses are wide. As described above, lipase, which is widely used as an enzyme, is widely distributed in nature, but from the viewpoint of enzyme resources, it cannot be obtained inexhaustibly from animal organs or plant seeds, and it cannot be obtained from water. Since it is difficult to extract and is unstable, industrial production relies on microbial sources as its source. [Means for Solving the Problem] In the process of investigating a method for culturing a microorganism that produces lipase that catalyzes the transesterification reaction of fats and oils, the present inventors added organic nitrogen to the medium for culturing the microorganism that produces lipase. It was also found that the productivity of lipase, that is, the transesterification ability of lipase-producing microorganisms, differs depending on the type of organic nitrogen source used. As a result of intensive research by the present inventors, we found that the reason for the change in lipase productivity depending on the type of organic nitrogen source used in the culture as described above is the amino acid content contained in the organic nitrogen source, that is, the culture It became clear that this was caused by the difference in amino acid concentration in the liquid. Microorganisms that produce lipase, such as Rhizopus, a heat-resistant strain of the genus Rhizopus.
In the culture of Rhizopus chinensis,
The assimilation rate of amino acids present in the medium changes according to the Michael-Menten equation. That is, among the amino acids present in the medium, amino acids with a high concentration have a high assimilation rate.
Among these assimilated amino acids, if the assimilation rate of amino acids other than leucine, phenylalanine, lysine, and arginine is high (the amino acid concentration in the medium is high), lipase will be produced by lipase-producing microorganisms. The present inventors have found that this is inhibited. Among these amino acids that inhibit lipase production, glutamic acid, proline, glycine, alanine, and aspartic acid have a significant inhibition on lipase production when their assimilation rate is high (the amino acid concentration in the medium is high). . On the other hand, with regard to amino acids such as leucine, phenylalanine, lysine, and arginine, no particular inhibitory effect is observed even if their assimilation rate is high (even if their concentration in the medium is high); On the contrary, it was found that even a promoting effect was observed. Therefore, when culturing a lipase-producing microorganism using an organic nitrogen source in a medium, the amino acid composition of the organic nitrogen source is important in order to increase the productivity of lipase by the lipase-producing microorganism.
In other words, among the amino acids in organic nitrogen sources, amino acids that inhibit lipase production, such as glutamic acid, proline, alanine, glycine, and aspartic acid, are either present in small amounts or do not exist as free amino acids even if their content is large. First, it is desirable that it be in the form of a peptide or the like. However, organic nitrogen sources commonly used for culturing microorganisms, such as yeast extract, meat extract, malt extract, and distillation waste concentrate (DDS), do not meet the above requirements, and organic nitrogen sources such as glutamic acid, alanine, glycine, and proline, etc. Contains a large amount of amino acids that inhibit lipase production, such as Therefore, even if the organic nitrogen sources mentioned above are used in general batch culture, it is not possible to increase the productivity of lipase by microorganisms. Therefore, to increase lipase productivity in batch cultures, natural protein sources, such as corn gluten meal, blood meal, feather meal or defatted soybean meal, are combined with proteases with appropriate substrate specificity, such as papain, pepsin or pancreatin. The organic nitrogen source must be produced by stopping the decomposition of amino acids that inhibit the production of lipase as described above in the form of peptides as much as possible. However, adding a new production process for an organic nitrogen source as described above to the culture process of lipase-producing microorganisms is economically disadvantageous and undesirable because it increases the production cost of lipase. The present invention is a method for increasing lipase productivity regardless of the type of organic nitrogen source used for culturing lipase-producing microorganisms.
Meat extracts, malt extracts, fish solvents, distillation waste concentrates (DDS), and the like can be used. Next, the present invention will be explained in more detail. [Effect] As mentioned above, in microorganisms that produce lipase, such as Rhizopus chinensis, a heat-resistant strain of the genus Rhizopus, the assimilation rate of amino acids follows the Michael-Menten equation, so for example, glutamic acid, proline, glycine, etc. By keeping the concentration of amino acids that inhibit lipase production, such as alanine and aspartate, in the medium low, the assimilation rate will be reduced.
The inhibitory effect is released. The present invention is a method for increasing the production of lipase by keeping the amino acid concentration in the medium low by feeding an amino acid source and culturing microorganisms while reducing the amino acid assimilation rate. We used naturally occurring organic nitrogen sources such as yeast extract, meat extract, malt extract, Proextract P (hydrolyzate of soybean meal and gluten), water-soluble and distillate waste concentrate (DDS). )
As a result of examining the relationship between various feeding amounts such as, the concentration of each amino acid in the medium, and lipase production, it was found that lipase activity increased only when culture was carried out at a feeding amount such that the total amino acid concentration in the medium was 5000 ppm or less. However, it was observed that the productivity of lipase increased rapidly. Looking at individual amino acids, amino acids that inhibit lipase production, other than leucine, phenylalanine, lysine, and arginine, inhibit lipase production when their individual concentrations exceed 1000 ppm in the medium. For glutamic acid, proline, glycine, alanine, and aspartic acid, which have particularly significant inhibitory effects, it was observed that lipase production was suppressed at concentrations of 500 ppm or more. Therefore, the concentration of amino acids that inhibit lipase production should be kept at 1000 ppm or less, and the concentrations of glutamic acid, proline, glycine, alanine, and aspartic acid should be kept below 1000 ppm.
It is desirable to feed an organic nitrogen source so that the concentration is 500 ppm or less. Furthermore, if the substrate to be fed contains a large amount of components other than amino acids or peptides, such as carbon sources as described below, the total amino acid concentration and the individual amino acid concentrations can be maintained within the above ranges by feeding. Therefore, amino acids and peptides are used as nitrogen sources for the metabolism of carbon sources, and do not work effectively for lipase production, making it impossible to improve lipase productivity. Therefore, it is essential that the substrate to be fed contains amino acids or amino acids and peptides as a main component in a content of 40% or more, more preferably 60% or more, and carbohydrates in the substrate that serve as carbon sources, Sugars, organic acids, etc. are 20
% or less, preferably 10% or less. Currently, there are no sensors that can detect the concentration of each amino acid in the culture medium online. Therefore, a specific method for controlling the amino acid level as described above is to feed an organic nitrogen source at a constant flow rate, and after a certain period of culture, achieve the amino acid level as described above and increase the productivity of lipase. The constant flow feeding method is used to increase the concentration of bacteria, and the relationship between the bacterial cell concentration, the feeding amount, and the amino acid concentration in the medium is determined in advance, and the feeding amount is adjusted so that the amino acid level can be maintained at the specified amino acid level in accordance with the bacterial growth curve. There is a program fed-batch method that changes . Furthermore, since the organic nitrogen source applicable to the present invention contains amino acids or amino acids and peptides as main components as described above, ammonium ions are generated in the medium in response to the assimilation of these. Therefore, it is also possible to control the amino acid level in the medium by measuring the ammonium ion concentration or generation rate using an ammonium ion electrode and controlling the feeding amount based on the feedback. Microorganisms that produce the lipase used in the present invention include microorganisms of the genus Rhizopus, Aspergillus, and Mucor. Furthermore, the lipase whose productivity has been increased according to the present invention showed a particularly remarkable increase in activity for non-aqueous reactions such as transesterification of oils and fats. [Examples] Next, the present invention will be explained in more detail using Examples, but the present invention is not limited to these Examples. Example 1 Using meat extract (manufactured by Wako Pure Chemical Industries, Ltd., amino acid content 45%) as an organic nitrogen source, the culture medium composition shown in Table 1, pH 5.6, temperature 30°C, stirring number 400 rpm, aeration amount
Rhizopus chinensis (Rhizopus
chinensis) IFO4768 was cultured in batch and constant flow fed-batch cultures. In the fed-batch culture method, Rhizopus chinensis from the pre-culture was inoculated into medium 3 containing only inorganic salts and oleic acid, and 15 c.c./fed-batch organic nitrogen source with a meat extract concentration of 120 g/mt was added. The cells were cultured in a fed-batch manner for 67 hours at a speed of 100 hrs., and an organic nitrogen source was supplied in approximately the same amount as in batch culture. After starting culture
Bacterial cells in the culture solution were sampled every 10 hours.
It was separated by suction filtration. The obtained bacterial cells were washed twice with tap water and then twice with an 80% acetone aqueous solution, and then vacuum-dried at room temperature for 24 hours. Using the dried bacterial cells thus obtained, a transesterification reaction was carried out in the reaction system shown in Table 2. A comparison of the transesterification reaction rates obtained is shown in FIG. As can be seen from FIG. 1, the rate of transesterification increased rapidly with constant flow fed-batch culture.

【表】【table】

【表】 実施例 2 実施例1の有機窒素源を酵母エキス(大五栄養
(株)製、全窒素10〜13%)にかえて、実施例1と同
じ培地組成および培養条件でアスペルギルス・ニ
ガー(Aspergillus niger)IFO4343の回分培養お
よび流加培養を行なつた。 流加培養では、流加量を実施例1のような定流
量流加ではなく、プログラム発生器を用いて流加
量を第2図のような曲線にしたがつて変化させる
プログラム制御を行なつた。他の流加培養の手順
は、実施例1と同じであつた。 実施例1と同様にして調製した乾燥菌体のエス
テル交換能を回分培養のばあいとプログラム制御
流加培養のばあいとを比較して第3図に示した。
培養初期よりプログラム制御によつて高いエステ
ル交換反応率がえられた。 実施例 3 有機窒素源としてプロエキスP(播州調味料(株)
製、アミノ酸含量63%)を用いて、ムコール・ジ
ヤバニカス(Mucor javanicus)IFO4569の回分
培養および流加培養を行なつた。回分培養につい
ては実施例1と同様に行ない、流加培養について
はアンモニウムイオン電極を用いて培地中のアン
モニウムイオン濃度を1000ppmとなるようにon
−offコントロールして有機窒素源を流加した。
実施例1と同様にして調製した乾燥菌体のエステ
ル交換能を第4図に比較して示す。 アンモニウムイオン濃度を指標として流加する
ことよつてリパーゼの生産性を高めることができ
た。
[Table] Example 2 The organic nitrogen source of Example 1 was yeast extract (Daigo Nutrition).
Batch culture and fed-batch culture of Aspergillus niger IFO4343 were performed using the same medium composition and culture conditions as in Example 1, except for using the same medium composition and culture conditions as in Example 1. In fed-batch culture, instead of constant flow feeding as in Example 1, a program generator is used to perform program control in which the fed-batch amount is varied according to a curve as shown in Figure 2. Ta. Other fed-batch culture procedures were the same as in Example 1. FIG. 3 shows a comparison of the transesterification ability of dried bacterial cells prepared in the same manner as in Example 1 in the case of batch culture and in the case of program-controlled fed-batch culture.
A high rate of transesterification was obtained by program control from the early stage of culture. Example 3 Proextract P (Banshu Seasoning Co., Ltd.) as an organic nitrogen source
Batch culture and fed-batch culture of Mucor javanicus IFO4569 were carried out using a commercially available commercially available product, Amino acid content 63%). Batch culture was carried out in the same manner as in Example 1, and fed-batch culture was carried out using an ammonium ion electrode to adjust the ammonium ion concentration in the medium to 1000 ppm.
An organic nitrogen source was fed under -off control.
The transesterification ability of dried bacterial cells prepared in the same manner as in Example 1 is shown in FIG. 4 for comparison. Lipase productivity could be increased by feeding ammonium ion concentration as an indicator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1において回分培養および定流
量流加培養したばあいの培養時間とエステル交換
反応率の関係を示すグラフ、第2図は実施例2の
流加培養においてプログラム発生器を用いて調節
した流加量と培養時間の関係を示すグラフ、第3
図は実施例2において回分培養およびプログラム
制御流加培養したばあいの培養時間とエステル交
換反応率の関係を示すグラフ、第4図は実施例3
において回分培養および流加培養したばあいの培
養時間とエステル交換反応率の関係を示すグラフ
をそれぞれあらわす。
Figure 1 is a graph showing the relationship between culture time and transesterification reaction rate in batch culture and constant flow fed-batch culture in Example 1. Graph showing the relationship between adjusted feeding amount and culture time, 3rd
The figure is a graph showing the relationship between culture time and transesterification reaction rate in the case of batch culture and program-controlled fed-batch culture in Example 2.
Graphs showing the relationship between culture time and transesterification reaction rate in the case of batch culture and fed-batch culture are shown respectively.

Claims (1)

【特許請求の範囲】 1 リパーゼを生産する微生物を培養する際に、
アミノ酸、またはアミノ酸およびペプチドを主成
分とする有機窒素源を流加することによつて培養
液中のトータルアミノ酸濃度を5000ppm以下に保
ちながら培養し、リパーゼを生産する微生物のリ
パーゼ生産能を高めることを特徴とするリパーゼ
の生産方法。 2 リパーゼを生産する微生物がリゾプス属
(Rhizopus)、アスペルギルス属(Aspergillus)
またはムコール属(Mucor)に属する微生物で
ある特許請求の範囲第1項記載の生産方法。
[Claims] 1. When culturing a microorganism that produces lipase,
To increase the lipase production ability of a lipase-producing microorganism by culturing while maintaining the total amino acid concentration in the culture solution at 5000 ppm or less by feeding an organic nitrogen source mainly composed of amino acids or amino acids and peptides. A method for producing lipase characterized by: 2 The microorganisms that produce lipase are Rhizopus and Aspergillus.
or a microorganism belonging to the genus Mucor.
JP25726185A 1985-11-15 1985-11-15 Production of lipase Granted JPS62118883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25726185A JPS62118883A (en) 1985-11-15 1985-11-15 Production of lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25726185A JPS62118883A (en) 1985-11-15 1985-11-15 Production of lipase

Publications (2)

Publication Number Publication Date
JPS62118883A JPS62118883A (en) 1987-05-30
JPH0328190B2 true JPH0328190B2 (en) 1991-04-18

Family

ID=17303927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25726185A Granted JPS62118883A (en) 1985-11-15 1985-11-15 Production of lipase

Country Status (1)

Country Link
JP (1) JPS62118883A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039851A1 (en) 1995-06-07 1996-12-19 Danisco A/S A method of improving the properties of a flour dough, a flour dough improving composition and improved food products
EP0973399B1 (en) 1997-04-09 2002-07-17 Danisco A/S Improved method for preparing flour doughs and products made from such doughs using glycerol oxidase

Also Published As

Publication number Publication date
JPS62118883A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
Souza et al. Production, purification and characterization of an aspartic protease from Aspergillus foetidus
Tsakona et al. Valorisation of side streams from wheat milling and confectionery industries for consolidated production and extraction of microbial lipids
Mukhtar et al. Studies on the lipase production by Aspergillus niger through solid state fermentation
Mase et al. Purification and characterization of Penicillium roqueforti IAM 7268 lipase
Dimitrijevic et al. Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents
CN102959084B (en) Process for production of useful substance
Nawal et al. An overview of bacterial lipases and their enormous applications
JPH0328190B2 (en)
JP2706778B2 (en) Oil and fat reforming method
Paranthaman et al. Optimization of fermentation conditions for production of tannase enzyme by Aspergillus oryzae using sugarcane baggasse and rice straw
Sinha et al. Studies on the production of acid protease by submerged fermentation
AU2005254730B2 (en) Fermentation process using faba beans as nitrogen source
Benluvankar et al. Medium formulation and its optimization for increased protease production by Penicillium sp. LCJ228 and its potential in blood stain removal
JP3592782B2 (en) Method for producing inositol
US3619372A (en) Acid resistant lipase and process for preparation thereof
Femi-Ola et al. Production and Characterization of Protease from Serratia marcescens
CN109182407A (en) A kind of tryptophan preparation method and its fermentation medium and tryptophan that use fermentation special nutritional member
JPS62118884A (en) Cultivation of microorganism capable of producing lipase having high ester interchange capacity
Omar et al. Lipase and Protease Production in Submerged and Solid State Fermentation by Candida rugosa using Olive Mills Wastes
Uma et al. Applications of fungal lipases–An overview
Priyanka et al. Neutral protease production by Rhizopus oligosporus NCIM 1215 under solid state fermentation using mixed substrates of agro industrial residues
CN113999833A (en) Culture medium for producing protease by fermenting mucor and application thereof
MD4828C1 (en) Process for submerged cultivation of Rhizopus arrhizus CNMN FD 03 fungus strain, producer of lipases
KR20160063650A (en) Enzyme Concentrate Manufacturing Method For Cowhide Decomposition
JPS63304992A (en) Hydrolysis of fat and oil