JPH03279903A - Laminated phase difference plate and liquid crystal panel - Google Patents

Laminated phase difference plate and liquid crystal panel

Info

Publication number
JPH03279903A
JPH03279903A JP2080263A JP8026390A JPH03279903A JP H03279903 A JPH03279903 A JP H03279903A JP 2080263 A JP2080263 A JP 2080263A JP 8026390 A JP8026390 A JP 8026390A JP H03279903 A JPH03279903 A JP H03279903A
Authority
JP
Japan
Prior art keywords
refractive index
plane
liquid crystal
laminated
stretched plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2080263A
Other languages
Japanese (ja)
Inventor
Yasuo Fujimura
保夫 藤村
Hiroyuki Yoshimi
裕之 吉見
Suguru Yamamoto
山本 英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2080263A priority Critical patent/JPH03279903A/en
Publication of JPH03279903A publication Critical patent/JPH03279903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE:To make improvement in contrast and visibility by laminating >=2 sheets of stretched plastic films which are substantially the same in refractive index characteristics in such a manner that the optical axes thereof intersect with each other and averaging the refractive indices in respective bearings within the plane of the laminate. CONSTITUTION:The refractive indices of the respective bearings within the plane of the laminate are averaged by adhering >=2 sheets of the transparent stretched plastic films 1 which are substantially the same in the refractive index characteristic via transparent adhesive layers 2. The light transmitted diagonally through the laminate has the phase differences varying according the azimuth thereof as the vertical and horizontal route components vary with the azimuth if there is the anisotropy in the refractive index in the respective bearings within the plane. The averaging the refractive indices of the respective bearings within the plane by lamination signifies that the refractive indices are approximated to the isotropy and, therefore, the refractive indices are theoretically nearer the isotropy as intersection angle of the optical axes is smaller. The liquid crystal panel having an excellent visual field angle and contrast and high visibility is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、面内方向の屈折率が平均化するよう2枚以上
の延伸プラスチックフィルムを積層してなる積層位相差
板、及びそれからなる視角補償板を用いた視認性に優れ
る液晶パネルに関する。
Detailed Description of the Invention: Industrial Field of Application The present invention relates to a laminated retardation plate formed by laminating two or more stretched plastic films so that the refractive index in the in-plane direction is averaged, and a viewing angle compensation plate formed from the same. This invention relates to a liquid crystal panel with excellent visibility.

従来の技術及び課題 液晶デイスプレィが、時計や電卓、ゲーム機やテレビ、
あるいはコンピュータ等の広範な分野で利用されており
、新たな分野でも種々の実用カ検討されている。その液
晶デイスプレィは、TN型やSTN型、スーパーホメオ
トロピック型、あるいは単純マトリクス型やアクティブ
マトリクス型など、液晶や配列方式、駆動方式等により
種々分類されているが、総じてCRTに比べ、視野角が
狭く、コントラスト不足で視認性に劣ることが指摘され
ている。
Conventional technology and issues LCD displays are used in clocks, calculators, game consoles, televisions,
It is also used in a wide range of fields such as computers, and various practical applications are being considered in new fields. Liquid crystal displays are classified into various types depending on the liquid crystal type, arrangement method, driving method, etc., such as TN type, STN type, super homeotropic type, simple matrix type, and active matrix type, but in general, the viewing angle is lower than that of CRT. It has been pointed out that it is narrow and lacks contrast, resulting in poor visibility.

従来、かかる欠点の克服を目的として延伸プラスチック
フィルムを液晶パネルに付設する方法が提案されている
が、満足できる解決を見るに至っていない。
Conventionally, a method of attaching a stretched plastic film to a liquid crystal panel has been proposed to overcome this drawback, but no satisfactory solution has yet been found.

本発明者らは、視認性改善の新規な手段を開発すべく鋭
意研究を重ねるうち、視認性に劣る主原因が液晶の複屈
折性にありその克服に、面内の各方位における屈折率が
同じで厚さ方向の屈折率が面内のそれとは異なる補償板
が有効である新知見を得、かかる特性を有する視角補償
板の開発を種々試みた。例えば、等延伸率となるよう二
軸延伸したり、プレス方式等で多軸圧縮配向させたり、
あるいは精密にインフレーション成形したりして得たプ
ラスチックフィルムである。
The inventors of the present invention conducted extensive research to develop new means for improving visibility, and discovered that the main cause of poor visibility was the birefringence of liquid crystals.To overcome this, the refractive index in each direction within the plane We obtained new knowledge that a compensator plate with the same refractive index in the thickness direction but different from that in the plane is effective, and various attempts were made to develop viewing angle compensators with such characteristics. For example, biaxial stretching may be performed to obtain a uniform stretching ratio, or multiaxial compression orientation may be performed using a press method, etc.
Alternatively, it is a plastic film obtained by precision inflation molding.

しかしながら、その製造に置時間を要したり、大判体の
形成が困難である点もさりながら、プラスチックフィル
ムの屈折率を面内方向にも、かつ厚さ方向にも制御する
ことが困難で、満足できる特性を付与しに(い難点があ
った。
However, it is difficult to control the refractive index of the plastic film both in the in-plane direction and in the thickness direction, in addition to the fact that it takes a long time to manufacture and it is difficult to form a large size. There were some difficulties in imparting satisfactory characteristics.

課題を解決するための手段 本発明は、延伸プラスチックフィルムを積層する方式に
より前記の課題を克服したものである。
Means for Solving the Problems The present invention overcomes the above problems by laminating stretched plastic films.

すなわち本発明は、屈折率特性が実質的に同一な2枚以
上の延伸プラスチックフィルムをそれらの光軸が交差す
るよう積層して、積層体の面内における各方位の屈折率
を平均化させると共に、厚さ方向の屈折率が前記面内の
屈折率と異なるよう形成してなることを特徴とする積層
位相差板、及び前記の積層位相差板からなる視角補償板
を液晶セルの少なくとも片側に配置してなることを特徴
とする液晶パネルを提供するものである。
That is, the present invention laminates two or more stretched plastic films having substantially the same refractive index characteristics so that their optical axes intersect, and averages the refractive index in each direction within the plane of the laminate. , a laminated retardation plate formed such that the refractive index in the thickness direction is different from the refractive index in the plane, and a viewing angle compensation plate made of the laminated retardation plate on at least one side of the liquid crystal cell. The present invention provides a liquid crystal panel characterized in that:

作用 延伸プラスチックフィルムを積層することにより、各延
伸プラスチックフィルムによる複屈折光の位相差を重畳
、ないし加減でき、その積層体における屈折率の制御と
等価な効果をもたせることができる。その場合、延伸プ
ラスチックフィルムの光軸が交差するよう積層すること
により、積層体の面内における各方位の屈折率を平均化
することができる。面内の各方位における屈折率に異方
性があると、積層体を斜めに透過した光はその方位角に
よる縦、横の径路成分の相違で例えば第4図の如(、そ
の方位角に応じて異なる位相差となるが、等方性の場合
には縦、横の径路成分に左右されないため第3図に例示
の如く、上下いずれかの曲線となり、面内の各方位にお
いて同じ位相差となる。上下いずれかの曲線として位相
差に違いが現れる原因は、延伸プラスチックフィルムが
複屈折光の進相軸と遅相軸を有するためである。また斜
め透過光の透過角度により位相差が相違する点は、積層
板の厚さ方向の屈折率が作用するためである。前記にお
いて延伸プラスチックフィルムの積層により面内におけ
る各方位の屈折率を平均化することは、等方性に近ずけ
ることを意味し、従って理論的には光軸の交差角度が小
さいほど等方性に近(なる。なお延伸プラスチックフィ
ルムの積層において、屈折率特性が実質的に同一なもの
を用いることにより、光軸の交差角度が一定となるよう
な関係の積層で当該平均化の実現を達成でき、屈折率の
相違に応じて光軸の交差角度を変化させつつ積層する必
要を回避できる。
By laminating stretched plastic films, it is possible to superimpose or adjust the phase difference of birefringent light due to each stretched plastic film, and it is possible to have an effect equivalent to controlling the refractive index in the laminate. In that case, by laminating the stretched plastic films so that their optical axes intersect, the refractive index in each direction within the plane of the laminate can be averaged. If there is anisotropy in the refractive index in each direction within the plane, the light that passes obliquely through the laminate will have different vertical and horizontal path components depending on the azimuth, for example, as shown in Figure 4 (, However, in the case of isotropy, it is not affected by the vertical and horizontal path components, so as shown in Figure 3, the phase difference will be the same in each direction in the plane. The reason why a difference in phase difference appears as either the upper or lower curve is that the stretched plastic film has a fast axis and a slow axis for birefringent light.Also, the phase difference is caused by the transmission angle of obliquely transmitted light. The difference is that the refractive index in the thickness direction of the laminate acts.In the above, averaging the refractive index in each direction in the plane by laminating stretched plastic films does not approach isotropy. Therefore, theoretically, the smaller the angle of intersection of the optical axes, the closer to isotropy. This averaging can be achieved by stacking layers such that the angle of intersection of the optical axes is constant, and it is possible to avoid the need to stack layers while changing the angle of intersection of the optical axes depending on the difference in refractive index.

実施例 本発明の積層位相差板は、屈折率特性が実質的に同一な
2枚以上の延伸プラスチックフィルムの積層体からなる
。第1図にその例を示した。これは、透明な延伸プラス
チックフィルム1の4枚を透明な接着層2を介し接着し
て、積層したものである。
EXAMPLE The laminated retardation plate of the present invention is composed of a laminate of two or more stretched plastic films having substantially the same refractive index characteristics. An example is shown in Figure 1. This is made by laminating four sheets of transparent stretched plastic film 1 by bonding them together via a transparent adhesive layer 2.

屈折率特性が実質的に同一な延伸プラスチックフィルム
は例えば、プラスチックフィルムを同じ延伸条件で処理
する方式により形成することができる。延伸条件は一軸
や、二軸等、適宜に決定してよい。屈折率特性が高精度
に同一な延伸プラスチックフィルムは例えば、−枚の延
伸プラスチックフィルムを所定の寸法に裁断し、その裁
断体として得ることができる。
Stretched plastic films having substantially the same refractive index characteristics can be formed, for example, by processing plastic films under the same stretching conditions. The stretching conditions may be determined as appropriate, such as uniaxial or biaxial. A stretched plastic film having precisely the same refractive index characteristics can be obtained, for example, by cutting two stretched plastic films into predetermined dimensions.

用いるプラスチックフィルムの種類については特に限定
はない。透明性に優れるもの就中、可視光領域の光透過
率が80%以上のものが好ましい。
There are no particular limitations on the type of plastic film used. Among those having excellent transparency, those having a light transmittance of 80% or more in the visible light region are preferred.

その例としては酢酸セルロース、ポリカーボネート、ポ
リビニルアルコール、ポリスチレン、ポリメタクリル酸
メチル、ポリエーテルサルフォン、それらの変性体の如
きプラスチックからなるフィルムなどがあげられる。積
層する延伸プラスチックフィルムの厚さは、30〇−以
下が一般的であるが、これに限定されず積層数や光透過
率などに応じ適宜に決定してよい。
Examples include films made of plastics such as cellulose acetate, polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polyethersulfone, and modified products thereof. The thickness of the stretched plastic films to be laminated is generally 300 mm or less, but is not limited to this and may be determined as appropriate depending on the number of laminated layers, light transmittance, etc.

延伸プラスチックフィルムの積層数は2枚以上の任意数
である。上記したように面内の各方位における屈折率の
平均化の程度、ないし精度の点よりは積層数を多くする
ほど有利であるが、光の透過率の点よりは積層数が少な
いほど有利である。
The number of stretched plastic films laminated is an arbitrary number of two or more. As mentioned above, from the point of view of the degree of averaging or accuracy of the refractive index in each direction within the plane, it is advantageous to increase the number of laminated layers, but from the point of view of light transmittance, it is advantageous to have a smaller number of laminated layers. be.

従って、積層数は要求される当該屈折率の平均化の程度
、ないし精度と光の透過率の点より適宜に決定される。
Therefore, the number of layers to be laminated is appropriately determined based on the required degree of averaging of the refractive index, accuracy, and light transmittance.

一般には、−軸延伸フィルムの如く面内の各方位におけ
る屈折率の違いが大きいものの場合には4〜20枚の偶
数枚が積層され、同時二軸延伸フィルムの如く面内にお
ける直交方向の屈折率が実質的に同じものの場合には2
〜20枚が積層される。
Generally, in the case of a film with a large difference in refractive index in each direction in the plane, such as a -axially stretched film, an even number of 4 to 20 films are laminated, and in the case of a film that is simultaneously biaxially stretched, refraction in orthogonal directions in the plane is stacked. 2 if the rates are substantially the same.
~20 sheets are stacked.

積層は、形成積層体の面内の各方位における屈折率を平
均化すべ(、各延伸プラスチックフィルムの光軸が交差
関係となるよう行われる。光軸の交差角度は積層数など
により適宜に決定される。
The lamination should be performed so that the refractive index in each direction within the plane of the formed laminate is averaged (the optical axes of each stretched plastic film intersect with each other. The intersecting angle of the optical axes is determined as appropriate depending on the number of laminated layers, etc.) be done.

一般には、面内の各方位における屈折率の違いが大きい
ものの場合、式:ψ=180/Mを満足する交差角度(
ψ)、面内における直交方向の屈折率が実質的に同じも
のの場合、式:ψ=90/Mを満足する交差角度とされ
る。なお式中のMは積層する延伸プラスチックフィルム
の枚数である。
In general, in the case of objects with large differences in refractive index in each direction within the plane, the intersection angle (
ψ), and when the refractive indices in orthogonal directions within the plane are substantially the same, the intersection angle is set to satisfy the formula: ψ=90/M. Note that M in the formula is the number of stretched plastic films to be laminated.

延伸プラスチックフィルムの好ましい積層処理方法は、
第2図に例示の如く、2枚の延伸プラスチックフィルム
1を光軸〈矢印)が直交するよう積層してペアパネル3
を形成し、そのペアパネル3を単位に任意な光軸を基準
に所定の交差角度で積層する方法である。なおペアパネ
ルを積層する際、その先軸の交差角度(ψ)が、式:ψ
−90/N(ただし、Nは用いるペアパネルの枚数であ
る。〉を満足するよう積層することが好ましい。
A preferred method for laminating stretched plastic films is as follows:
As illustrated in FIG. 2, a pair panel 3 is made by laminating two stretched plastic films 1 so that their optical axes (arrows) are perpendicular to each other.
This is a method in which the paired panels 3 are stacked at a predetermined crossing angle based on an arbitrary optical axis. When stacking paired panels, the intersection angle (ψ) of their leading axes is calculated using the formula: ψ
-90/N (where N is the number of paired panels to be used) is preferably laminated.

前記の式は、−軸延伸フィルムの如く面内の各方位にお
ける屈折率の違いが大きいものの場合で、同時二軸延伸
フィルムの如く面内における直交方向の屈折率が実質的
に同じものの場合には、式:ψ=45/Nを満足するよ
う積層することが好ましい。
The above formula applies to a film with large differences in refractive index in each direction within the plane, such as a -axially stretched film, and when the refractive index in orthogonal directions in the plane is substantially the same, such as a simultaneously biaxially stretched film. It is preferable that the layers are stacked so as to satisfy the formula: ψ=45/N.

延伸プラスチックフィルムの積層には通常、接着剤ない
し粘着剤が用いられる。その場合、限定するものではな
いがアクリル系の接着剤ないし粘着剤の如く透明性の良
好なものが好ましく用いられる。また、延伸プラスチッ
クフィルムの光学特性の変化防止等の点より硬化や乾燥
等の際に高温プロセスを要しないものが好ましく用いら
れる。
Adhesives or pressure-sensitive adhesives are usually used for laminating stretched plastic films. In that case, a material with good transparency such as, but not limited to, an acrylic adhesive or pressure-sensitive adhesive is preferably used. In addition, from the viewpoint of preventing changes in the optical properties of the stretched plastic film, those that do not require high-temperature processes during curing, drying, etc. are preferably used.

セパレータ上に設けた粘着層を移着する方式なども光学
特性の変化防止等の点より好ましい。
A method of transferring an adhesive layer provided on a separator is also preferable from the viewpoint of preventing changes in optical properties.

なお、積層位相差板における厚さ方向の屈折率の制御は
、用いる延伸プラスチックフィルムの厚さや屈折率等に
基づく方式のほか、フィルムの積層に用いる接着剤等の
厚さや屈折率等に基づいても行うことができる。
The refractive index in the thickness direction of a laminated retardation plate can be controlled by methods based on the thickness and refractive index of the stretched plastic film used, as well as the thickness and refractive index of the adhesive used for laminating the films. can also be done.

本発明の液晶パネルは、前記の積層位相差板からなる視
角補償板を、液晶セルの片側又は両側に配置したもので
ある。第5図にその構成を例示した。これは片側にのみ
視角補償板を設けたタイプであり、4,7が偏光板、5
が視角補償板、6が液晶セルである。なお、51は透明
な接着層であり、偏光板4側が視認側である。
In the liquid crystal panel of the present invention, a viewing angle compensation plate made of the above-mentioned laminated retardation plate is arranged on one side or both sides of a liquid crystal cell. FIG. 5 shows an example of its configuration. This is a type that has a viewing angle compensation plate only on one side, with polarizing plates 4 and 7 and 5
is a viewing angle compensation plate, and 6 is a liquid crystal cell. Note that 51 is a transparent adhesive layer, and the polarizing plate 4 side is the viewing side.

液晶パネルの形成に用いる視角補償板は、液晶セルにお
ける複屈折光の位相差の方位角によるズレ(第4図参照
)を補償するものである。これにより、視野角の狭さが
改善され、視野角の変化により生じるコントラストの低
下が補償される。
The viewing angle compensator used in forming a liquid crystal panel compensates for the shift in the phase difference of birefringent light in a liquid crystal cell due to the azimuth angle (see FIG. 4). This improves the narrowness of the viewing angle and compensates for the reduction in contrast caused by changes in the viewing angle.

なお使用対象の液晶パネルについては、特に限定はない
。例えば、ネマチック(TN)型、スーパーツィステッ
ドネマチック(STN)型、スーパーホメオトロピック
型、単純マトリクス型、アクティブマトリクス型など、
種々の液晶や配列方式、駆動方式等の液晶パネルに対し
て使用することができる。
Note that there are no particular limitations on the liquid crystal panel to be used. For example, nematic (TN) type, super twisted nematic (STN) type, super homeotropic type, simple matrix type, active matrix type, etc.
It can be used for liquid crystal panels of various liquid crystals, arrangement systems, drive systems, etc.

実施例1 厚さ50μIのポリカーボネートフィルムを160℃で
20%−軸延伸し−Cなる延伸プラスチックフィルム(
nx:1.585、ny : 1.578、nz: 1
.578、ただしnXXnyは面内の縦又は横方向の屈
折率、Hzは厚さ方向の屈折率である。以下同じ)の2
枚を、それらの光軸を直交させてアクリル系粘着剤を介
し積層してペアパネルを形成し、そのペアパネルの2枚
を任意なフィルムの光軸が45度で交差するようアクリ
ル系粘着剤を介しさらに積層して、厚さ方向の屈折率が
1.578の積層位相差板を得た。
Example 1 A polycarbonate film with a thickness of 50 μI was axially stretched by 20% at 160°C to obtain a stretched plastic film (-C).
nx: 1.585, ny: 1.578, nz: 1
.. 578, where nXXny is the refractive index in the in-plane vertical or horizontal direction, and Hz is the refractive index in the thickness direction. (same below) 2
A pair of panels is formed by laminating the films using an acrylic adhesive with their optical axes perpendicular to each other, and two of the paired panels are laminated using an acrylic adhesive so that the optical axes of the films intersect at 45 degrees. Further lamination was performed to obtain a laminated retardation plate having a refractive index of 1.578 in the thickness direction.

実施例2 延伸倍率30%の一軸延伸ポリカーボネートフィルム(
nx: 1.589、ny : 1.576、nz:1
.576)を用いたほかは実施例1に準じて、厚さ方向
の屈折率が1.576の積層位相差板を得た。
Example 2 Uniaxially stretched polycarbonate film with a stretching ratio of 30% (
nx: 1.589, ny: 1.576, nz: 1
.. A laminated retardation plate having a refractive index in the thickness direction of 1.576 was obtained in the same manner as in Example 1 except that 576) was used.

実施例3 実施例1で得たペアパネルの3枚を任意なフィルムの光
軸が30度で交差するようアクリル系粘着剤を介して積
層し、厚さ方向の屈折率が1.578の積層位相差板を
得た。
Example 3 Three of the paired panels obtained in Example 1 were laminated via an acrylic adhesive so that the optical axes of arbitrary films intersected at 30 degrees, and the laminated layer had a refractive index of 1.578 in the thickness direction. A retardation plate was obtained.

実施例4 実施例1で得たペアパネルの3枚を任意なフィルムの光
軸が60度で交差するようアクリル系粘着剤を介して積
層し、厚さ方向の屈折率が1.578の積層位相差板を
得た。
Example 4 Three of the paired panels obtained in Example 1 were laminated via an acrylic adhesive so that the optical axes of arbitrary films intersected at 60 degrees, and the lamination position had a refractive index of 1.578 in the thickness direction. A retardation plate was obtained.

実施例5 厚さ80μmのポリビニルアルコールフィルムを100
℃で50%−軸延伸してなる延伸プラスチックフィルム
(nx: 1.561、ny : 1.555、n z
 : 1.555 )を用いたほかは実施例1に準じて
、厚さ方向の屈折率が1.555の積層位相差板を得た
Example 5 100 pieces of polyvinyl alcohol film with a thickness of 80 μm
Stretched plastic film obtained by axially stretching 50% at °C (nx: 1.561, ny: 1.555, nz
A laminated retardation plate having a refractive index of 1.555 in the thickness direction was obtained in the same manner as in Example 1, except that 1.555) was used.

実施例6 厚さ75μ■のポリスチレンフィルムを85℃で50%
−軸延伸してなる延伸プラスチックフィルム(nx:1
.584、ny :1.592、nz:1.592)を
用いたほかは実施例1に準じ厚さ方向の屈折率が1.5
92の積層位相差板を得た。
Example 6 Polystyrene film with a thickness of 75μ■ is heated to 50% at 85℃
- Stretched plastic film formed by axial stretching (nx: 1
.. 584, ny: 1.592, nz: 1.592) was used, except that the refractive index in the thickness direction was 1.5.
92 laminated retardation plates were obtained.

実施例7 厚さ100μ−のポリメタクリル酸メチルフィルムを1
10℃で50%同時二軸延伸してなる延伸プラスチック
フィルム(nx:1.4900、ny :1.4900
、l”12:1.4905)の2枚を、それらの光軸を
直交させてアクリル系粘着剤を介し積層して、厚さ方向
の屈折率が1.4905の積層位相差板を得た。
Example 7 One polymethyl methacrylate film with a thickness of 100 μ-
Stretched plastic film obtained by simultaneous biaxial stretching of 50% at 10°C (nx: 1.4900, ny: 1.4900
, l"12:1.4905) were laminated with their optical axes perpendicular to each other via an acrylic adhesive to obtain a laminated retardation plate with a refractive index of 1.4905 in the thickness direction. .

比較例1 実施例1で得た一軸延伸ポリカーボネートフィルムをそ
のまま位相差板として用いた。
Comparative Example 1 The uniaxially stretched polycarbonate film obtained in Example 1 was used as it was as a retardation plate.

比較例2 実施例7で得た同時二軸延伸ポリメタクリル酸メチルフ
ィルムをそのまま位相差板として用いた。
Comparative Example 2 The simultaneously biaxially stretched polymethyl methacrylate film obtained in Example 7 was used as it was as a retardation plate.

評価試験 実施例1〜7、比較例1,2で得た(積層)位相差板に
つき、透過角度30度、波長550ng+の条件で任意
なフィルムにおける光軸を基準(0度)に方位角90度
(面内で基準光軸に直交する角度)までの間における位
相差を調べた。その位相差のバラツキが小さいほど、面
内における屈折率の均一性、ないし平均化の程度が高い
ことを意味する。
For the (laminated) retardation plates obtained in Evaluation Test Examples 1 to 7 and Comparative Examples 1 and 2, the azimuth angle was 90 with respect to the optical axis of an arbitrary film (0 degrees) under the conditions of a transmission angle of 30 degrees and a wavelength of 550 ng+. We investigated the phase difference between degrees (angle perpendicular to the reference optical axis in the plane). The smaller the variation in the phase difference, the higher the degree of uniformity or averaging of the refractive index within the plane.

結果を表に示した。The results are shown in the table.

(単位:nm) 実施例8 実施例1で得た積層位相差板からなる視角補償板をアク
ティブマトリクス方式のネマチック液晶パネルの片面に
接着して液晶パネルを得た。
(Unit: nm) Example 8 A viewing angle compensation plate made of the laminated retardation plate obtained in Example 1 was adhered to one side of an active matrix type nematic liquid crystal panel to obtain a liquid crystal panel.

前記のものは、正面からの表示色は変化せず、斜め方向
からのコントラスト、ないし視認性が向上し、全方位に
おいて約60度の斜め方向からも表示内容を判別できた
In the case of the above-mentioned display, the displayed color did not change when viewed from the front, but the contrast or visibility improved when viewed from an oblique direction, and the displayed content could be determined in all directions even from an approximately 60 degree oblique direction.

比較例3 視角補償板として比較例1で得た位相差板(−軸延伸ポ
リカーボネートフィルム)を用いたほかは実施例8に準
じて液晶パネルを得た。
Comparative Example 3 A liquid crystal panel was obtained according to Example 8, except that the retardation plate (-axis stretched polycarbonate film) obtained in Comparative Example 1 was used as the viewing angle compensator.

前記のものは、フィルムの光軸方向以外の方位における
斜め方向からの視点において改善効果が認められずにそ
のコントラストや視認性に劣り、特に光軸から約30度
、及び約60度ずれた方位において、表示内容が判別で
きる斜め角度は約20度であった。
The above-mentioned film shows no improvement effect when viewed from an oblique direction in a direction other than the optical axis direction of the film, and its contrast and visibility are poor, especially in directions deviated from the optical axis by about 30 degrees and about 60 degrees. In this case, the oblique angle at which the display contents could be distinguished was about 20 degrees.

実施例9 実施例6で得た積層位相差板からなる視角補償板をスー
パーツィステッドネマチック方式の液晶パネルの片面に
接着して液晶表示装置を得た。
Example 9 A viewing angle compensation plate made of the laminated retardation plate obtained in Example 6 was adhered to one side of a super twisted nematic type liquid crystal panel to obtain a liquid crystal display device.

前記のものは、斜め方向からのコントラスト、ないし視
認性が向上し、全方位において約50度の斜め方向から
も表示内容を判別できた。
The above-mentioned display has improved contrast or visibility from an oblique direction, and the display contents could be distinguished from an oblique direction of approximately 50 degrees in all directions.

実施例10 実施例5で得た積層位相差板からなる視角補償板をアク
ティブマトリクス方式のネマチック液晶パネルの片面に
接着して液晶パネルを得た。
Example 10 A viewing angle compensation plate made of the laminated retardation plate obtained in Example 5 was adhered to one side of an active matrix nematic liquid crystal panel to obtain a liquid crystal panel.

前記のものは、正面からの表示色は変化せず、斜め方向
からのコントラスト、ないし視認性が向上し、全方位に
おいて約60度の斜め方向からも表示内容を判別できた
In the case of the above-mentioned display, the displayed color did not change when viewed from the front, but the contrast or visibility improved when viewed from an oblique direction, and the displayed content could be determined in all directions even from an approximately 60 degree oblique direction.

発明の効果 本発明によれば、面内の各方位における屈折率のバラツ
キが小さい大判の積層位相差板を容易に得ることができ
、それよりなる視角補償板を用いて、視野角やコントラ
ストに優れて高視認性の液晶パネルを得ることができる
Effects of the Invention According to the present invention, it is possible to easily obtain a large-sized laminated retardation plate with small variations in refractive index in each direction within the plane, and by using a viewing angle compensator made of the same, the viewing angle and contrast can be adjusted. A liquid crystal panel with excellent high visibility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層位相差板を例示した断面図、第2図は積層
位相差板の形成部材を例示した斜視図、第3図、第4図
は透過角度と位相差と方位角の関係を示したグラフ、第
5図は液晶パネルを例示した断面図である。 1:延伸プラスチックフィルム 2:接着層 3:ベアパネル 4.7:偏光板 5:視角補償板 6:液晶セル
Fig. 1 is a cross-sectional view illustrating a laminated retardation plate, Fig. 2 is a perspective view illustrating the forming members of the laminated retardation plate, and Figs. 3 and 4 show the relationship between the transmission angle, phase difference, and azimuth angle. The graph shown in FIG. 5 is a cross-sectional view illustrating a liquid crystal panel. 1: Stretched plastic film 2: Adhesive layer 3: Bare panel 4.7: Polarizing plate 5: Viewing angle compensation plate 6: Liquid crystal cell

Claims (1)

【特許請求の範囲】 1、屈折率特性が実質的に同一な2枚以上の延伸プラス
チックフィルムをそれらの光軸が交差するよう積層して
、積層体の面内における各方位の屈折率を平均化させる
と共に、厚さ方向の屈折率が前記面内の屈折率と異なる
よう形成してなることを特徴とする積層位相差板。 2、請求項1に記載の積層位相差板からなる視角補償板
を液晶セルの少なくとも片側に配置してなることを特徴
とする液晶パネル。
[Claims] 1. Two or more stretched plastic films having substantially the same refractive index characteristics are laminated so that their optical axes intersect, and the refractive index in each direction within the plane of the laminate is averaged. A laminated retardation plate characterized in that the retardation plate is formed so that the refractive index in the thickness direction is different from the refractive index in the plane. 2. A liquid crystal panel characterized in that a viewing angle compensation plate made of the laminated retardation plate according to claim 1 is disposed on at least one side of a liquid crystal cell.
JP2080263A 1990-03-28 1990-03-28 Laminated phase difference plate and liquid crystal panel Pending JPH03279903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080263A JPH03279903A (en) 1990-03-28 1990-03-28 Laminated phase difference plate and liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080263A JPH03279903A (en) 1990-03-28 1990-03-28 Laminated phase difference plate and liquid crystal panel

Publications (1)

Publication Number Publication Date
JPH03279903A true JPH03279903A (en) 1991-12-11

Family

ID=13713426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080263A Pending JPH03279903A (en) 1990-03-28 1990-03-28 Laminated phase difference plate and liquid crystal panel

Country Status (1)

Country Link
JP (1) JPH03279903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998010328A1 (en) * 1996-09-05 1998-03-12 Seiko Epson Corporation Display and its manufacturing method
KR980010506A (en) * 1996-07-30 1998-04-30 손욱 Plastic liquid crystal display panel and manufacturing method thereof
JP2008224843A (en) * 2007-03-09 2008-09-25 Stanley Electric Co Ltd Liquid crystal display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980010506A (en) * 1996-07-30 1998-04-30 손욱 Plastic liquid crystal display panel and manufacturing method thereof
WO1998010328A1 (en) * 1996-09-05 1998-03-12 Seiko Epson Corporation Display and its manufacturing method
US6147726A (en) * 1996-09-05 2000-11-14 Seiko Epson Corporation Reflective display using multiple liquid crystal layers for controlable reflection
JP2008224843A (en) * 2007-03-09 2008-09-25 Stanley Electric Co Ltd Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100805504B1 (en) Laminated quarter-wave plate or circularly polarizing plate, liquid-crystal display device using the same and method for producing the same
TW451071B (en) Composite retarder plate, optically compensatory polarizing plate and liquid-crystal display device
KR100979863B1 (en) Liquid crystal display unit
JP4790890B2 (en) Retardation film and continuous production method thereof
US20070091229A1 (en) Vertically aligned liquid crystal display
US9933654B2 (en) Polarising plate for a planar-switch mode LCD, and a planar-switch mode LCD comprising the same
JPH04305602A (en) Polarizing plate and liquid crystal display device
KR20160117176A (en) Liquid crystal panel and liquid crystal display device
JPWO2009098804A1 (en) Manufacturing method of liquid crystal display device and liquid crystal display device
JPH04371903A (en) Polarization plate and liquid crystal display device
JP6858206B2 (en) Liquid crystal display device
JP2609139B2 (en) Laminated retarder
JP3004782B2 (en) Polarizing plate and liquid crystal display
JP2003015134A (en) Liquid crystal display device
KR102280835B1 (en) Liquid crystal panel and liquid crystal display device
JP3028844B2 (en) Liquid crystal display
JP3165175B2 (en) Polarizing plate and liquid crystal display
JPH03279903A (en) Laminated phase difference plate and liquid crystal panel
JPH04215602A (en) Phase difference film and liquid crystal display device using it
JPH0442202A (en) Laminate phase difference plate, elliptical polarizing plate, liquid crystal panel, and display device
JP2695671B2 (en) Liquid crystal display
JP2659810B2 (en) Liquid crystal display
KR20090101871A (en) In-plane switching liquid crystal display comprising biaxial retardation film with negative refractive property and protective film with negative c-plate property
JPH0451101A (en) Colored compensation plate and elliptically polarizing plate as well as liquid crystal panel and display device
JPH0456803A (en) Laminated phase difference plate and elliptical polarizing plate as well as liquid crystal panel and liquid crystal display device