JPH0327932A - Organic thin film material - Google Patents

Organic thin film material

Info

Publication number
JPH0327932A
JPH0327932A JP16267689A JP16267689A JPH0327932A JP H0327932 A JPH0327932 A JP H0327932A JP 16267689 A JP16267689 A JP 16267689A JP 16267689 A JP16267689 A JP 16267689A JP H0327932 A JPH0327932 A JP H0327932A
Authority
JP
Japan
Prior art keywords
molecular
layer
thin film
trough
molecular layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16267689A
Other languages
Japanese (ja)
Other versions
JPH0675945B2 (en
Inventor
Takashi Namikata
尚 南方
Masaru Ozaki
勝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP16267689A priority Critical patent/JPH0675945B2/en
Publication of JPH0327932A publication Critical patent/JPH0327932A/en
Publication of JPH0675945B2 publication Critical patent/JPH0675945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the molecular orientation and film thickness of a laminated film uniform by laminating on a substrate the monomolecular film of a long- chained organic molecule containing hydrophilic radical in the molecular chains and molecular ends and a compound molecular layer consisting of the molecular layer of a hydrophobic molecule. CONSTITUTION:A mixed solution is adjusted in solving a long-chained organic molecule containing hydrophilic radical in the molecular chains and molecular ends and hydrophobic molecule in a soluble organic solvent. After the mixed solution is dropped on the water, the solid film of a compound molecular layer consisting of the two-layer structure of long-chained organic molecule monomolecular layer and hydrophobic molecular layer is formed by increasing the surface pressure of the water surface. The hydrophobic molecular layer is a monomolecular layer or multimolecular layer. The mixing rate of the long- chained organic molecule/hydrophobic molecule for forming the compound molecular layer is 0.01-10, and more preferably, 0.1-5. Thus, the molecular orientation and film thickness of the laminated film can be made uniform.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は有機薄膜材料に関し、さらに詳しくは疎水性有
機分子を含有する有機薄膜材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to organic thin film materials, and more particularly to organic thin film materials containing hydrophobic organic molecules.

〔従来技術及び問題点〕[Prior art and problems]

水面上に有機分子を展開して得た有機単分子層を基板上
に積層したラングミュアー・ブロージェット膜(以下r
LB膜」という。)は良く知られている。このLB膜の
分子層中に導電性、発光性、非線形光学性、スイッチン
グ性、メモリー性などの機能性分子を導入して導電性材
料、発光素子材料、非線形光学材料、スイッチング素子
、メモリー材料などのエレクトロニクス、オプトエレク
トロニクス分野に応用する研究が盛んに進められている
。この機能性分子は、LB膜形或のための長鎖アルキル
基を導入した分子構造の分子が広く用いられている。
A Langmuir-Blodgett film (hereinafter referred to as r
It is called LB membrane. ) is well known. Functional molecules such as conductivity, luminescence, nonlinear optical properties, switching properties, and memory properties are introduced into the molecular layer of this LB film to produce conductive materials, light emitting element materials, nonlinear optical materials, switching elements, memory materials, etc. Research is actively underway to apply this technology to the electronics and optoelectronics fields. As this functional molecule, molecules having a molecular structure into which a long chain alkyl group is introduced for the LB film type are widely used.

しかし、機能性分子に長鎖アルキル基を導入することに
よって元来有する分子の機能性が減少あるいは希釈され
るという問題点がある。また、長鎖アルキル基を導入し
た分子を合成することが困難である場合、希望の機能性
分子がLB膜中に導人できないという問題がある。
However, there is a problem that introducing a long-chain alkyl group into a functional molecule reduces or dilutes the functionality of the molecule. Furthermore, if it is difficult to synthesize a molecule into which a long-chain alkyl group is introduced, there is a problem that a desired functional molecule cannot be introduced into the LB film.

また、長鎖アルキル基を持たない機能性分子のみを水面
上に展開した膜を基板上に積層する試みも行なわれてい
る。しかしこの場合、機能性分子は水面上で凝集するた
め基板上に積層することが難しく、仮に積層した場合で
も積層した膜の分子配向はランダムで、膜厚は不均一で
ある。
Attempts have also been made to stack on a substrate a film in which only functional molecules without long-chain alkyl groups are developed on the water surface. However, in this case, it is difficult to stack the functional molecules on the substrate because they aggregate on the water surface, and even if they are stacked, the molecular orientation of the stacked films is random and the film thickness is non-uniform.

〔問題を解決するための手段〕[Means to solve the problem]

前記問題点につき本発明者らは機能性分子が規則正しく
層状に導入された有機薄膜材料を得るべく鋭意検討を重
ねた結果、親水性基を分子末端及び分子鎖中に有する長
鎖有機分子と機能性分子としての疎水性分子との混合分
子が水面上で二層構造の固体膜複合分子層を形成するこ
とを見出し、本発明の有機薄膜材料を得るに至った。
Regarding the above-mentioned problems, the present inventors have conducted intensive studies to obtain an organic thin film material in which functional molecules are introduced in an orderly layered manner. The present inventors have discovered that a mixed molecule with a hydrophobic molecule as a hydrophobic molecule forms a two-layered solid membrane composite molecular layer on the water surface, and the organic thin film material of the present invention has been obtained.

すなわち、本発明は分子鎖中及び分子末端に親水性基を
含有する長鎖有機分子の単分子膜と疎水性分子の分子層
からなる複合分子層が基板上に積層された有機薄膜材料
に関する。また本発明は、分子鎖中及び分子末端に親水
性基を含有する長鎖有機分子の単分子膜と疎水性分子の
分子層からなる複合分子層の二種類以上が基板上に積層
された有機薄膜材料に関する。
That is, the present invention relates to an organic thin film material in which a composite molecular layer consisting of a monomolecular film of long-chain organic molecules containing hydrophilic groups in the molecular chains and at the molecular ends and a molecular layer of hydrophobic molecules is laminated on a substrate. Further, the present invention provides an organic film in which two or more types of composite molecular layers consisting of a monomolecular film of long-chain organic molecules containing hydrophilic groups in the molecular chain and at the molecular ends and a molecular layer of hydrophobic molecules are laminated on a substrate. Regarding thin film materials.

さらに、本発明は2種類の複合分子層が交互に積層され
た有機薄膜材料に関するものである。また本発明は、複
合分子層中の2種類の疎水性分子がそれぞれ電子供与性
有機分子、電子受容性有機分子であることを特徴とする
有機薄膜材料に関する。
Furthermore, the present invention relates to an organic thin film material in which two types of composite molecular layers are alternately laminated. The present invention also relates to an organic thin film material characterized in that two types of hydrophobic molecules in the composite molecular layer are an electron-donating organic molecule and an electron-accepting organic molecule, respectively.

以下本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の有機薄膜材料の基板上への積層方法はたとえば
、ラングミュアー・ブロージェット法(以下rLB法」
という。)に基づいて水面上の複合分子層を基板上に積
層する方法を用いることができる。
A method for laminating the organic thin film material of the present invention on a substrate is, for example, the Langmuir-Blodgett method (hereinafter referred to as rLB method).
That's what it means. ) can be used to stack a composite molecular layer on a water surface on a substrate.

まずLB法による積層方法について説明する。First, a stacking method using the LB method will be explained.

分子鎖中及び分子末端に親水性基を含有する長鎖有機分
子と疎水性分子とを可溶性有機溶媒に溶解して混合溶液
を調整する。水面上にこの混合溶液を滴下した後、水面
の表面圧を増加させることにより長鎖有機分子単分子層
と疎水性分子層との二層構造からなる複合分子層の固体
膜が形成される。
A mixed solution is prepared by dissolving a long-chain organic molecule containing a hydrophilic group in the molecular chain and at the end of the molecule and a hydrophobic molecule in a soluble organic solvent. After dropping this mixed solution onto the water surface, by increasing the surface pressure of the water surface, a solid film of a composite molecular layer consisting of a two-layer structure of a monolayer of long-chain organic molecules and a layer of hydrophobic molecules is formed.

この疎水性分子層は単分子層または多分子層である。こ
の複合分子層は垂直浸漬法、水平付着法などの方法によ
り基板上に積層させることができる。
This hydrophobic molecular layer is a monolayer or a multilayer. This composite molecular layer can be laminated on a substrate by a method such as a vertical dipping method or a horizontal deposition method.

この複合分子層を形成するための長鎖有機分子/疎水性
分子の混合比は、0.01−10であり、さらに好まし
くは0. 1〜5である。この混合比が10以上では疎
水性分子層中に長鎖有機分子が取り込むまれるため複合
分子層は形成されない。
The mixing ratio of long chain organic molecules/hydrophobic molecules to form this composite molecular layer is 0.01-10, more preferably 0.01-10. 1 to 5. When this mixing ratio is 10 or more, long chain organic molecules are incorporated into the hydrophobic molecular layer, so that a composite molecular layer is not formed.

一方混合比が0.01以下では、長鎖有機分子中に疎水
性分子が取り込まれやすいため複合分子層は形成されな
い。2種以上の複合分子層を含有する有機薄膜材料の製
造方法は、たとえば複数の水槽(トラフ)の水面に長鎖
有機分子と疎水性分子を可溶性有機溶媒に溶解した混合
分子溶液を展開し、それぞれの水槽上に複合分子層を形
成させた後、基板をそれぞれの水槽に浸漬させて複合分
子層を積層させることができる。この場合、各水槽に展
開する混合分子溶液中の長鎖有機分子、疎水性分子のい
ずれか一方または両者とも異なった分子を使用する。
On the other hand, if the mixing ratio is 0.01 or less, hydrophobic molecules are likely to be incorporated into long-chain organic molecules, so that a composite molecular layer is not formed. A method for producing an organic thin film material containing two or more types of composite molecular layers includes, for example, spreading a mixed molecular solution in which long-chain organic molecules and hydrophobic molecules are dissolved in a soluble organic solvent on the water surface of a plurality of water tanks (troughs), After forming the composite molecular layer on each water tank, the substrate can be immersed in each tank to stack the composite molecular layer. In this case, one or both of long-chain organic molecules and hydrophobic molecules in the mixed molecule solution developed in each water tank is used.

次に交互に複合分子層が積層された有機薄膜材料の製造
方法(交互積層法)について説明する。
Next, a method for producing an organic thin film material in which composite molecular layers are alternately laminated (alternate lamination method) will be described.

前記と同様にして2個の水槽(トラフ)にそれぞれの複
合分子層を形成した後、2個のトラフのうち一方のトラ
フ(トラフl)に基板を浸漬する。
After forming respective composite molecular layers in two water tanks (troughs) in the same manner as described above, the substrate is immersed in one of the two troughs (trough 1).

次に水面下で基板をトラフ1から他方のトラフ(トラフ
2)に移動させた後、トラフ2の水面上に基板を引き上
げる。このように基板をトラフ1→トラフ2→トラフl
を繰り返し移動させることによって、基板上に2種類の
複合分子層が交互に積層された有機薄膜材料を得ること
が出来る。
Next, the substrate is moved from trough 1 to the other trough (trough 2) under the water surface, and then the substrate is pulled up above the water surface of trough 2. In this way, move the board from trough 1 → trough 2 → trough l
By repeatedly moving , it is possible to obtain an organic thin film material in which two types of composite molecular layers are alternately laminated on a substrate.

本発明に用いる分子鎖中及び分子末端に親水性基を有す
る長鎖有機分子について説明する。
The long-chain organic molecule having a hydrophilic group in the molecular chain and at the end of the molecule used in the present invention will be explained.

本発明に用いる長鎖有機分子は、下記一般式H−(CH
2)−7R二(CHI}−R2(1)(式中m+nは8
以上28以下の整数、RlおよびR′は親水性基を表わ
す。) 分子鎖中の親水性基Rlとしては、飽和アルキル基より
親水性の強い官能基およびこれらの誘導体を用いること
ができる。たとえば、−(:=C−−C=C− SS 1 −c=c−c =c −  −c=c−c=c−, −
c−s−,一c 一〇 − so2−,−s−,−c−o − 0 −O−,−C−  ,−NHCS−,  −NHCO−
,  −NHCOO−−NHCSS−,−NH−,−N
=N −などを挙げることができる。
The long-chain organic molecule used in the present invention has the following general formula H-(CH
2)-7R2(CHI}-R2(1) (where m+n is 8
The integers above and below 28, Rl and R' represent hydrophilic groups. ) As the hydrophilic group Rl in the molecular chain, functional groups and derivatives thereof that are more hydrophilic than saturated alkyl groups can be used. For example, -(:=C--C=C- SS1-c=c-c=c--c=c-c=c-,-
c-s-, 1c 10- so2-, -s-, -c-o - 0 -O-, -C-, -NHCS-, -NHCO-
, -NHCOO- -NHCSS-, -NH-, -N
=N −, etc. can be mentioned.

R2として、たとえば−SO.H.−COOH,−ど−
,−OHなどのイオン性の官能基及びこれらの金属塩、
ハロゲン塩を用いることができる。
As R2, for example -SO. H. -COOH, -do-
, -OH and other ionic functional groups and their metal salts,
Halogen salts can be used.

さらに本発明の長鎖有機分子として、下記一般式(2)
の構造の二本鎖の長鎖有機分子を用いることができる。
Furthermore, as a long chain organic molecule of the present invention, the following general formula (2)
A double-stranded long-chain organic molecule with the structure can be used.

〔式中m’+n’(またはn”)は8以上28以下の整
数を、Rl’およびR2は親水性基を表わす。〕Rzは
前記のものと同じ基を、またR1  としては、=N−
,  =NCO  .  =NCS  ,   (OC
O)2cH 一−(SCS)!CI{−.  =NCO
O−,  =NCSS−OCO  (CHz)i  C
H  (CH!)l  Coo−(k,lはそれぞれ1
から5の整数)などの親水性基を用いることができる。
[In the formula, m'+n' (or n'') represents an integer of 8 to 28, Rl' and R2 represent a hydrophilic group.] Rz is the same group as above, and R1 is =N −
, =NCO. =NCS, (OC
O)2cH -(SCS)! CI{-. =NCO
O-, =NCSS-OCO (CHz)i C
H (CH!)l Coo-(k and l are each 1
to 5) can be used.

また分子鎖中の親水性基R1が分子鎖中に複数涸存在す
る長鎖有機分子も本発明に用いることができる。この場
合長鎖有機分子がLB膜になるために分子鎖中の飽和炭
化水素の炭素数は8以上28以下の整数であることが好
ましい。
Furthermore, long-chain organic molecules in which a plurality of hydrophilic groups R1 are present in the molecular chain can also be used in the present invention. In this case, since long-chain organic molecules form the LB film, the number of carbon atoms in the saturated hydrocarbon in the molecular chain is preferably an integer of 8 or more and 28 or less.

本発明の長鎖有機分子として、たとえばH−(CH2)
TTCミC−C三C − (CHz )「COOHH−
C三C−C三C − (CH! )r COOHH−C
三C−C三C − (CH.)l′TCOOHH − 
(CH,)TT C三C−C三C   (CHz)a 
 COOHH − (CH.)TT C三C−C三C 
− (C}I. )r OHH−(CHt)TTC三C
−C三C   (CHz)s   C5H5N” Br
(H  (CHt)+a Coo  (CHt)行1N
CO  CH2 N(CH3)”Cl〔H−(CH,)
TTC三C−C三C  (CH2)rCoo (CHz
)−rFTN(C}Is)”BrH−(CI−12)=
CミC−C三C−(CH2). COO−(CI{2)
2  N(CH)”Brなどを挙げることができる。
As the long chain organic molecule of the present invention, for example, H-(CH2)
TTCMiC-C3C- (CHz) "COOHH-
C3C-C3C - (CH!)r COOHH-C
3C-C3C - (CH.)l'TCOOHH -
(CH,)TT C3C-C3C (CHz)a
COOHH - (CH.)TT C3C-C3C
- (C}I.)r OHH-(CHt)TTC3C
-C3C (CHz)s C5H5N” Br
(H (CHt)+a Coo (CHt) row 1N
CO CH2 N(CH3)”Cl[H-(CH,)
TTC3C-C3C (CH2)rCoo (CHz
)-rFTN(C}Is)"BrH-(CI-12)=
CmiC-C3C-(CH2). COO-(CI{2)
2N(CH)"Br and the like.

また親水性基Rlとして−C三C−,  一CミC−C
二C一などの不飽和結合を有する官能基が含有された長
鎖有機分子を用いた場合、得られた有機薄膜材料を光、
電子、イオンなどのエネルギー照射によってパターニン
グすることが可能である。
In addition, as a hydrophilic group Rl, -C3C-, 1CmiC-C
When a long chain organic molecule containing a functional group having an unsaturated bond such as 2C1 is used, the obtained organic thin film material can be exposed to light.
Patterning can be performed by irradiating energy such as electrons and ions.

このように親水性基が感光性の機能を有している場合に
は、本発明の有機薄膜材料はエネルギー照射、現像の両
過程を経て任意の形状に薄膜をバタニングできる特徴を
持つ。
When the hydrophilic group has a photosensitive function as described above, the organic thin film material of the present invention has the characteristic that the thin film can be patterned into any shape through both energy irradiation and development processes.

本発明に用いる疎水性分子について説明する。The hydrophobic molecules used in the present invention will be explained.

本発明の複合分子層を形成するためには、疎水性分子が
親水性の強い官能基(たとえば前記R1で示される官能
基)を含有しないことが好ましい。
In order to form the composite molecular layer of the present invention, it is preferable that the hydrophobic molecule does not contain a highly hydrophilic functional group (for example, the functional group represented by R1 above).

また疎水性分子が長鎖アルキル基を含有している場合、
その疎水性分子は前記長鎖有機分子を混合分子層を形成
し本発明の複合分子層が得られないため好ましくない。
In addition, when the hydrophobic molecule contains a long-chain alkyl group,
Such hydrophobic molecules are not preferred because they form a mixed molecular layer with the long-chain organic molecules, making it impossible to obtain the composite molecular layer of the present invention.

本発明に用いる疎水性分子の分子構造は、得られる有機
薄膜材料の用途(導電性材料、非線形光学材料、スイッ
チング素子、メモリー材料など)によって異なるため特
に限定されない。
The molecular structure of the hydrophobic molecule used in the present invention is not particularly limited because it varies depending on the use of the obtained organic thin film material (conductive material, nonlinear optical material, switching element, memory material, etc.).

たとえば、疎水性分子として電子供与性分子と電子受容
性分子を用いて前記の交互積層法によって導電性有機薄
膜材料を得ることが出来る。
For example, a conductive organic thin film material can be obtained by the above-mentioned layer-by-layer method using electron-donating molecules and electron-accepting molecules as hydrophobic molecules.

導電性有機薄膜材料用として用いられる電子供与性有機
分子としては、たとえばテトラチアフルバレン、テトラ
メチルテトラチアフルバレン、ビスエチレンジチオテト
ラチアフルバレン、テトラセレナフルバレン、テトラメ
チルテトラセレナフルバレン、アニリン、チオフェン、
ピロール、フェロセン、フタロシアニン、フェニレンジ
アミンN−メチルフェナジン、アントラセン、ペリレン
、ヘキサメチルベンゼンなどの疎水性分子を挙げること
ができる。また電子受容性有機分子としては、テトラシ
アノキノジメタン、テトラシアノナフトキノジメタン、
クロラニル、テトラフルオロテトラジアノキノジメタン
、ジメチルジシアノキノジメタン、テトラジアノエチレ
ンなどの疎水性分子を挙げることが出来る。
Examples of electron-donating organic molecules used for conductive organic thin film materials include tetrathiafulvalene, tetramethyltetrathiafulvalene, bisethylenedithiotetrathiafulvalene, tetraselenafulvalene, tetramethyltetraselenafulvalene, aniline, and thiophene. ,
Mention may be made of hydrophobic molecules such as pyrrole, ferrocene, phthalocyanine, phenylenediamine N-methylphenazine, anthracene, perylene, hexamethylbenzene. Examples of electron-accepting organic molecules include tetracyanoquinodimethane, tetracyanonaphthoquinodimethane,
Mention may be made of hydrophobic molecules such as chloranil, tetrafluorotetradianoquinodimethane, dimethyldicyanoquinodimethane, and tetradianoethylene.

また非線形光学材料用として用いられる疎水性分子とし
てニトロアニリン、ニトロメチルアニリン、ニトロアニ
リン誘導体、尿素誘導体、メチル−(2.4−ジニトロ
フェニル)一アミノプロパネート、4−メトキシーニト
ロトラン、N〔5一(2−ニトロ)ピリジル〕プロリモ
ール、5−ニトロインドール、N一(4−ニトロフヱニ
ル)N−メチルアミノアセトニトリル等を挙げることが
できる。メモリー材料用として用いられる疎水性分子と
しては、ポルフィリン、ポルフィリン誘導体、アゾベン
ゼン誘導体、フルギド、スピロピラン、キニザリン、フ
タ口シアニン、フタ口シアニン誘導体などを挙げること
ができる。発光材料用として用いられる疎水性分子とし
ては、ナフタレン、アントラセン、アントラセン誘導体
、ペリレン、フタロシアニン、フタロシアニン誘導体、
チオインジゴ誘導体、スチルベン誘導体などを挙げるこ
とが出来る。
In addition, hydrophobic molecules used for nonlinear optical materials include nitroaniline, nitromethylaniline, nitroaniline derivatives, urea derivatives, methyl-(2,4-dinitrophenyl) monoaminopropanate, 4-methoxynitrotran, N[ Examples include 5-(2-nitro)pyridyl]prolimol, 5-nitroindole, N-(4-nitrophenyl)N-methylaminoacetonitrile, and the like. Examples of hydrophobic molecules used for memory materials include porphyrin, porphyrin derivatives, azobenzene derivatives, fulgide, spiropyran, quinizarin, futacyanine, and futacyanine derivatives. Hydrophobic molecules used for luminescent materials include naphthalene, anthracene, anthracene derivatives, perylene, phthalocyanine, phthalocyanine derivatives,
Examples include thioindigo derivatives and stilbene derivatives.

本発明で用いられる基板としては、たとえば石英、Ca
b.、MgF 2、サファイア、MgO、アルミナなど
のセラミックス基板、Au, Pt, Cu, Niな
どの金属基板、ポリスチレン、ポリエチレンテレフタレ
ート、ポリエチレン、アントラセン結晶などの有機物基
板を挙げることができる。
Examples of substrates used in the present invention include quartz, Ca
b. , MgF 2 , sapphire, MgO, alumina and other ceramic substrates, Au, Pt, Cu, Ni and other metal substrates, and polystyrene, polyethylene terephthalate, polyethylene, anthracene crystal and other organic substrates.

次に導電性有機薄膜材料の製造方法について説明する。Next, a method for manufacturing the conductive organic thin film material will be explained.

電子供与性有機分子と前記長鎖有機分子及び電子受容性
有機分子を前記長鎖有機分子をそれぞれ有機溶媒に渇合
した2種類の溶液を調整する。前記交互積層法に従って
2個のトラフに電子供与性有機分子と長鎖有機分子を含
む溶液及び電子受容性有機分子と長鎖有機分子を含む溶
液をそれぞれのトラフ(前者の溶液をトラフ1、後者の
溶液をトラフ2)に展開し、固体膜になるまで表面圧を
加えて2種類の複合分子層を形成する。
Two types of solutions are prepared in which an electron-donating organic molecule, the long-chain organic molecule, and an electron-accepting organic molecule are each fused to an organic solvent. According to the layer-by-layer method, a solution containing an electron-donating organic molecule and a long-chain organic molecule and a solution containing an electron-accepting organic molecule and a long-chain organic molecule were placed in two troughs (the former solution was placed in trough 1, the latter solution was placed in trough 1, The solution is spread in trough 2) and surface pressure is applied until it becomes a solid film, forming two types of composite molecular layers.

次いで基板をトラフ1で浸漬し、トラフ2で引き上げる
ことを繰り返し行なうことにより基板上に電子供与性有
機分子・長鎖有機分子の複合分子層と電子受容性有機分
子・長鎖有機分子の複合分子層とが交互の積層した有機
薄膜材料を得ることが出来る。
Next, by repeatedly immersing the substrate in trough 1 and lifting it up in trough 2, a composite molecular layer of electron-donating organic molecules and long-chain organic molecules and a composite molecule layer of electron-accepting organic molecules and long-chain organic molecules are formed on the substrate. An organic thin film material having alternating layers can be obtained.

前記の分子鎖中及び分子末端に親水性基を含有する長鎖
有機分子と前記の疎水性分子の混合分子を水面上に展開
し固体膜になるまで表面圧を加えた膜は該長鎖有機分子
単分子膜と該疎水性分子の分子層とが層状に形或された
複合分子層の構造をとる。
The mixed molecules of the above-mentioned long-chain organic molecules containing hydrophilic groups in the molecular chain and at the molecular ends and the above-mentioned hydrophobic molecules are spread on the water surface and surface pressure is applied until it becomes a solid film. It has a composite molecular layer structure in which a monolayer of molecules and a molecular layer of the hydrophobic molecules are formed into layers.

この複合分子層の構造は、水面上に展開した膜の表面圧
−1分子占有断面積曲線(π−八曲線)基板上に積層さ
れた膜の膜厚、X線回折パターン、FT−IRスペクト
ルなどにより確認することができる。
The structure of this composite molecular layer is determined by the surface pressure-1 molecule occupied cross-sectional area curve (π-8 curve) of the film developed on the water surface, the film thickness of the film stacked on the substrate, the X-ray diffraction pattern, and the FT-IR spectrum. It can be confirmed by etc.

π−AJ線の結果では、疎水性分子の混合によって長鎖
有機分子1分子当りの水面上の占有断面積が変化しない
。このことは、長鎖有機分子と疎水性分子の混合分子が
それぞれ別々に層状に形成された2層構造をとること(
複合分子層)を示している。
According to the results of the π-AJ line, the occupied cross-sectional area on the water surface per long-chain organic molecule does not change due to the mixture of hydrophobic molecules. This means that a mixture of long-chain organic molecules and hydrophobic molecules has a two-layer structure, each formed in separate layers (
composite molecular layer).

また、水面上に形成されたこと複合分子層を基板上に積
層した該有機薄膜材料の膜厚は、疎水性分子を含有しな
い長鎖有機分子単分子膜のみを基板上に積層した膜の膜
厚に比べ増加することからも該有機薄膜材料が本発明で
いう複合分子層構造をとることがわかる。
In addition, the film thickness of the organic thin film material in which a composite molecular layer formed on a water surface is laminated on a substrate is the same as that of a film in which only a monomolecular film of long-chain organic molecules that does not contain hydrophobic molecules is laminated on a substrate. The increase in thickness compared to the thickness also indicates that the organic thin film material has a composite molecular layer structure as referred to in the present invention.

さらに、X線回折パターンより(00n)回折ピーク位
置が変化し、疎水性分子を混合しない膜に比べ分子層間
距離が変化する。このことも長鎖有機分子単分子層と疎
水性分子の分子層とが層状に複合分子層を形或している
ことを示している。
Furthermore, the (00n) diffraction peak position changes from the X-ray diffraction pattern, and the distance between molecular layers changes compared to a film that does not contain hydrophobic molecules. This also indicates that a monomolecular layer of long-chain organic molecules and a molecular layer of hydrophobic molecules form a layered composite molecular layer.

一方、長鎖有機分子として分子鎖中に親水性基を持たず
分子末端にのみ親水性基を有する長鎖有機分子を用いて
疎水性分子との混合分子を水面上に展開した膜では、疎
水性分子が長鎖有機分子層中に取り込まれて混合した1
層構造をとり本発明の複合分子層は形成されない。
On the other hand, in a membrane in which a long-chain organic molecule that does not have a hydrophilic group in its molecular chain and has a hydrophilic group only at the end of the molecule is used and a mixture of hydrophobic molecules is spread on the water surface, 1, in which sexual molecules are incorporated into a layer of long-chain organic molecules and mixed.
It has a layered structure and the composite molecular layer of the present invention is not formed.

このことは、前記π一A曲線において確認される。即ち
長鎖有機分子層中2疎水性分子を取り込むことによって
長鎖有機分子1分子当りの占有断面積が増加することか
らわかる。また基板上に積層した膜の膜厚、X線回折パ
ターンの(OOn)回折ピーク位置も変化しないことか
らも本発明でいう複合分子層構造が形成されていないこ
とがわかる。
This is confirmed in the π-A curve. That is, it can be seen that by incorporating two hydrophobic molecules into the long-chain organic molecule layer, the occupied cross-sectional area per molecule of the long-chain organic molecule increases. Furthermore, the fact that the film thickness of the film laminated on the substrate and the (OOn) diffraction peak position of the X-ray diffraction pattern do not change also indicates that a composite molecular layer structure as defined in the present invention is not formed.

従って本発明の複合分子層が基板上に積層した有機薄膜
材料を得るためには、長鎖有機分子として分子鎖中及び
分子末端に親水性基を含有することが必要である。
Therefore, in order to obtain an organic thin film material in which the composite molecular layer of the present invention is laminated on a substrate, it is necessary that the long-chain organic molecules contain hydrophilic groups in the molecular chains and at the molecular ends.

この分子鎖中及び分子末端に親水性基を含有する長鎖有
機分子と疎水性分子の混合分子が、水面上でそれぞれが
分離した層状構造をとる原因は明かではないが、長鎖有
機分子の分子鎖中に含有された親水性基が長鎖有機分子
層中に入り込んだ疎水性分子を長鎖有機分子層外にはじ
きだすためと考えられる。
It is not clear why this mixture of long-chain organic molecules and hydrophobic molecules that contain hydrophilic groups in the molecular chain or at the end of the molecule forms a layered structure in which they are separated from each other on the water surface. This is thought to be because the hydrophilic groups contained in the molecular chain repel hydrophobic molecules that have entered the long-chain organic molecule layer to the outside of the long-chain organic molecule layer.

該有機薄膜材料は必要に応じて膜の安定化のための保護
層や電極層を設けることが出来る。
The organic thin film material can be provided with a protective layer or an electrode layer for stabilizing the film, if necessary.

さらに必要があれば分子の積層構造の欠陥を低減するた
めのアニール処理や光、電子、イオンなどのエネルギー
照射によって回路、レジスト層形成などのためのパター
ニング処理を施すことができる。
Furthermore, if necessary, patterning treatment for forming circuits, resist layers, etc. can be performed by annealing treatment to reduce defects in the laminated structure of molecules or by energy irradiation with light, electrons, ions, etc.

本発明の有機薄膜材料は疎水性有機分子と長鎖有機分子
がそれぞれ層状に積層された構造を有し、機能性分子と
しての疎水性分子が含有されているため導電性材料、発
光素子材料、非線形光学材料、スイッチング素子材料、
メモリー材料などのエレクトロニクス材料に応用するこ
とができ工業上極めて有用である。
The organic thin film material of the present invention has a structure in which hydrophobic organic molecules and long-chain organic molecules are stacked in layers, and contains hydrophobic molecules as functional molecules, so it can be used as a conductive material, a light emitting element material, Nonlinear optical materials, switching element materials,
It can be applied to electronic materials such as memory materials and is extremely useful industrially.

〔実施例〕〔Example〕

以下実施例により本発明をさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 10.12−ペンタコサジイン酸(PDA),テトラジ
アノキノジメタン(TCNQ)をそれぞれクロロホルム
に溶解して2mmol/Aの濃度の溶液をそれぞれ調整
した。PDA溶液10−とTCNQ溶液5−を混合して
PDA−TCNQ混合溶液としたのち、該混合溶液0.
 1 5−をCdClz  5 x1 0 −’mol
/C  2 0°Cに調整したトラフ(西独ラウダ社製
)上に展開してトラフ水面上に混合分子層を形成せしめ
た。次いで、トラフ水面を圧縮して混合分子層固体膜を
形威させ表面圧を25mN/mに保持しながら垂直浸漬
法によってCaF ,基板の浸漬、引き上げを繰り返し
Cab2基板上に複合分子層を39層積層した有機薄膜
材料を得ることができた。
Example 1 10.12-Pentacosadiynoic acid (PDA) and tetradianoquinodimethane (TCNQ) were each dissolved in chloroform to prepare solutions with a concentration of 2 mmol/A. After mixing PDA solution 10- and TCNQ solution 5- to form a PDA-TCNQ mixed solution, the mixed solution 0.
1 5- to CdClz 5 x1 0 -'mol
/C 2 The mixture was spread on a trough (manufactured by Lauda, West Germany) adjusted to 0°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and while maintaining the surface pressure at 25 mN/m, the CaF substrate was repeatedly immersed and pulled up using the vertical immersion method to form 39 layers of composite molecular layers on the Cab2 substrate. A stacked organic thin film material could be obtained.

PDA−TCNQ混合溶液をトラフ上に展開したのちト
ラフ水面を圧縮する際のトラフ面積(PDAI分子あた
り占有断面積に換算)一表面圧変化(π一A曲線)をP
DA溶液のみをトラフ上に展開したP D A単分子膜
のπ−A曲線と合わせて第l図に示す。これよりPDA
−TCNQ混合分子層のπ一A曲線とPDA単分子層の
π−A曲線が一致することがわかる。従って水面上のP
DA・TCNQ複合分子層は、PDA単分子層とTCN
Q分子層がそれぞれ層状に形成された2層構造であるこ
とを示している。
The trough area (converted to the occupied cross-sectional area per PDAI molecule) and surface pressure change (π-A curve) when the PDA-TCNQ mixed solution is spread on the trough and the trough water surface is compressed is P
This is shown in FIG. 1 together with the π-A curve of a PDA monomolecular film in which only the DA solution is spread on the trough. From now on PDA
It can be seen that the π-A curve of the -TCNQ mixed molecular layer and the π-A curve of the PDA monolayer match. Therefore, P on the water surface
DA/TCNQ composite molecular layer consists of PDA monolayer and TCN
It shows that each Q molecular layer has a two-layer structure formed in a layered manner.

得られた有機薄膜の膜厚は1500人でありPDA単分
子膜のみを39層積層した膜厚(1100人)に比べ増
加した。またX線回折パターンは(00n)(n=1〜
6)面の回折点が認められ該有機薄膜材料が層状構造で
あることがわかった。
The thickness of the obtained organic thin film was 1,500 layers, which was increased compared to the film thickness (1,100 layers) obtained by laminating 39 layers of PDA monolayers only. Moreover, the X-ray diffraction pattern is (00n) (n=1~
6) Surface diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形或す
ることができた。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

実施例2 10. 12−ペンタコサジイン酸(PDA),クロラ
ニル(TCQ)をそれぞれクロロホルムに溶解して2m
mof/lの濃度の溶液をそれぞれ調整した。PDA溶
液107nlとTCNQ溶液57nlを混合してPDA
 − TCQ U合溶液としたのち、該混合溶液0.1
5−をCdi25X 1 0−’moA/17,  2
 0℃に調整したトラフ(西独ラウダ社製)上に展開し
てトラフ水面上に混合分子層を形成せしめた。次いでト
ラフ水面を圧縮して混合分子層固体膜を形成させ表面圧
を25mN/mに保持しながら垂直浸積法によってCa
b,基板の浸漬、引き上げを繰り返しCaF.基板上に
複合分子層を39層積層した有機薄膜材料を得ることが
できた。
Example 2 10. Dissolve 12-pentacosadiynoic acid (PDA) and chloranil (TCQ) in chloroform and add 2 m
Solutions with a concentration of mof/l were prepared respectively. Mix 107nl of PDA solution and 57nl of TCNQ solution and make PDA
- After making the TCQU mixture solution, the mixed solution 0.1
5- to Cdi25X 1 0-'moA/17, 2
The mixture was spread on a trough (manufactured by Lauda, West Germany) adjusted to 0°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and Ca was added by vertical immersion method while maintaining the surface pressure at 25 mN/m.
b. CaF. An organic thin film material in which 39 composite molecular layers were laminated on a substrate could be obtained.

PDA − TCQ混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(PDA 1分子
あたりの占有断面積に換算)一表面圧変化(π一A曲線
)をPDA溶液のみをトラフ上に展開したPDA単分子
膜のπ−A曲線と合わせて第1図に示す。これより P
DA − TCQ混合分子層のπ−A曲線とPDA単分
子層のπ−A曲線が一致することがわかる。従って水面
上のPDA − TCQ複合分子層は、PDA単分子層
とTCQ分子層がそれぞれ層状に形成された2層構造で
あることを示している。
After spreading the PDA-TCQ mixed solution on the trough, the trough area (converted to the occupied cross-sectional area per PDA molecule) and surface pressure change (π-A curve) when compressing the trough water surface are measured when only the PDA solution is spread on the trough. This is shown in FIG. 1 along with the π-A curve of the PDA monomolecular film developed. From this P
It can be seen that the π-A curve of the DA-TCQ mixed molecular layer and the π-A curve of the PDA monolayer match. Therefore, the PDA-TCQ composite molecular layer on the water surface has a two-layer structure in which a PDA monolayer and a TCQ molecular layer are each formed in layers.

得られた有機薄膜の膜厚は1400人でありPDA単分
子膜を39層積層した膜厚( 1100人)に比べ増加
した。またX線回折パターンは(00n)(n= 1〜
8)面の回折点が認められ該有機薄膜材料が層状構造で
あることがわかった。
The thickness of the obtained organic thin film was 1,400 layers, which was increased compared to the film thickness of 39 layers of PDA monolayer (1,100 layers). In addition, the X-ray diffraction pattern is (00n) (n = 1~
8) Diffraction points on the surface were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
ることができた。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

実施例3 22. 24−ペンタコサジイン酸(ω−PDY), 
 テトラシアノキノジメタン(TCNQ)をそれぞれク
ロロホルムに溶解して2mmof/ffの濃度の溶液を
それぞれ調整した。ω一PDY溶液lO7nlとTCN
Q溶液5一を混合してω一PDY−TCNQ屡合溶液と
したのち、該混合溶液0. 157nlをCdCj2z
 5 x 1 0−’moI2/ff,20℃に調整し
たトラフ(西独ラウダ社製)上に展開してトラフ水面上
に混合分子層を形威せしめた。次いでトラフ水面を圧縮
してd合分子層固体膜を形成させ表面圧を2 5 mN
/mに保持しながら垂直浸積法によってCaF2基板の
浸漬、引き上げを繰り返しCab2基板上に複合分子層
を39層積層した有機薄膜材料を得ることができた。
Example 3 22. 24-pentacosadiynoic acid (ω-PDY),
Tetracyanoquinodimethane (TCNQ) was dissolved in chloroform to prepare a solution having a concentration of 2 mmof/ff. ω-PDY solution lO7nl and TCN
After mixing 5 parts of the Q solution to obtain a combined solution of ω1 PDY-TCNQ, the mixed solution 0. 157nl to CdCj2z
The mixture was spread on a trough (manufactured by Lauda, West Germany) adjusted to 5 x 10-'moI2/ff and 20°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a polymer layer solid film, and the surface pressure was increased to 25 mN.
By repeating dipping and pulling up of the CaF2 substrate by the vertical dipping method while maintaining the temperature at /m, it was possible to obtain an organic thin film material in which 39 composite molecular layers were laminated on the CaF2 substrate.

ω−PDY − TCNQ混合溶液をトラフ上に展開し
たのちトラフ水面を圧縮する際のトラフ面積(ωPDY
 1分子あたりの占有断面積に換算)一表面圧変化(π
−A曲線)をω一PDY溶液のみをトラフ上に展開した
ω一PDY単分子膜のπ一八曲線と合わせて第2図に示
す。これよりω一PDY−TCNQ混合分子層のπ−A
曲線とPDA単分子層のπ一A曲線が一致することがわ
かる。従って水面上のω一PDY − TCNQ複合分
子層は、ω−PDY単分子層とTCNQ分子層がそれぞ
れ層状に形成された2層構造であることを示している。
The trough area (ωPDY
Change in surface pressure (converted to occupied cross-sectional area per molecule) (π
-A curve) is shown in FIG. 2 together with the π18 curve of the ω1 PDY monomolecular film in which only the ω1 PDY solution is spread on the trough. From this, ω-PDY-TCNQ mixed molecular layer π-A
It can be seen that the curve matches the π-A curve of the PDA monolayer. Therefore, the ω-PDY-TCNQ composite molecular layer on the water surface has a two-layer structure in which the ω-PDY monolayer and the TCNQ molecular layer are each formed in a layered manner.

得られた有機薄膜の膜厚は1500人でありω一PDY
単分子膜を39層積層した膜厚(1100人)に比べ増
加した。またX線回折パターンは(00n)(n= 1
〜5)面の回折点が認められ該有機薄膜材料が層状構造
であることがわかった。
The thickness of the obtained organic thin film was 1500 mm and ω-PDY
This increased compared to the film thickness of 39 monolayers (1,100 people). Also, the X-ray diffraction pattern is (00n) (n= 1
-5) Diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆い1
00W低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形或す
ることができた。
Cover this organic thin film material with a photoresist mask 1
After exposure with a 00W low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

実施例4 ソジウム−1.2−ビス(ドデシルオキシカルボニル)
一エタン−1〜スルホナート(BDS),テトラメチル
テトラチアフルバレン(T)JT)をそれぞれクロロホ
ルムに溶解して2mmo6/nの濃度の溶液をそれぞれ
調整した。BDS溶液10−とTMT溶液57nlを混
合してBDS−TMT混合溶液としたのち、該混合溶液
0. 157nlを20℃に調整した純水トラフ(西独
ラウダ社製)上に展開してトラフ水面上に混合分子層を
形威せしめた。次いでトラフ水面を圧縮して混合分子層
固体膜を形成させ表面圧を25mN/mに保持しながら
垂直浸積l去によってポリエチレンテレフタレート基板
の浸漬、引き上げを繰り返しポリエチレンテレフタレー
ト基板上に複合分子層を40層積層した有機薄膜材料を
得ることができた。BDS − TMT混合溶液をトラ
フ上に展開したのちトラフ水面を圧縮する際のトラフ面
積( BD31分子あたりの占有断面積に換算)一表面
圧変化(π一A曲線)を調べた。その結果BDS − 
TMT 脛合分子層のπ一A曲線とBDS単分子層のπ
−A曲線か一致することがわかった。従って水面上のB
DS − TMT複合分子層は、BDS単分子層とTM
T分子層がそれぞれ層状に形成された2層構造であるこ
とを示している。
Example 4 Sodium-1,2-bis(dodecyloxycarbonyl)
Monoethane-1-sulfonate (BDS) and tetramethyltetrathiafulvalene (T) JT) were each dissolved in chloroform to prepare solutions with a concentration of 2 mmo6/n. After mixing 10-nl of BDS solution and 57 nl of TMT solution to obtain a BDS-TMT mixed solution, 0.0-nl of the mixed solution was prepared. 157 nl was spread on a pure water trough (manufactured by Lauda, West Germany) adjusted to 20°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and while maintaining the surface pressure at 25 mN/m, the polyethylene terephthalate substrate was repeatedly immersed and pulled up by vertical dipping and removal to form a composite molecular layer on the polyethylene terephthalate substrate for 40 minutes. A layered organic thin film material could be obtained. After the BDS-TMT mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per molecule of BD3) and surface pressure change (π-A curve) when the trough water surface was compressed was investigated. As a result, BDS-
π-A curve of TMT monolayer and π of BDS monolayer
- It was found that the A curves matched. Therefore, B on the water surface
DS-TMT composite molecular layer consists of BDS monolayer and TM
This shows that the T molecule layer has a two-layer structure in which each layer is formed in a layered manner.

得られた有機薄膜の膜厚は1500人でありBDS単分
子膜を39層積層した膜厚( 1000人〉に比べ増加
した。またX線回折パターン(O O n)  (n=
1〜8)面の回折点が認められた該有機薄膜材料が層状
構造であることがわかった。
The thickness of the obtained organic thin film was 1,500 layers, which is increased compared to the film thickness of 39 layers of BDS monolayer (1,000 layers).
It was found that the organic thin film material in which diffraction points of planes 1 to 8) were observed had a layered structure.

実施例5 10. 12−ペンタコサジイン酸(PDA) .テト
ラシアノキノジメタン(TCNQ)およびテトラチアフ
ルバレン(TTF)をそれぞれクロロホルムに溶解して
2mmol/j’の濃度の溶液を調整した。PDA溶液
l〇一とTCNQ溶液5−を混合したPDA − TC
NQ混合溶液とPDA溶液10−とTTF溶液5−を混
合したPDA・TTF混合溶液を調整した。これらの混
合溶液を交互積層膜作製装置(英国ジョイスレープル社
製)の2藺のトラフ(CdCi’ t  2 5 x 
1 0−’mol/I!、20℃に調整)上にそれぞれ
展開してそれぞれのトラフ水面上に混合分子層を形成せ
しめた。次いで、トラフ水面を圧縮して混合分子層固体
膜を形成させ表面圧を25+nN/mに保持しながら交
互積層法によってCaF.基板をTTF − PDA複
合分子層が形威されたトラフで浸漬、TCNQ − P
DA複合分子層が形或されたトラフで引き上げることを
繰り返しCab.基板上にTTF − PDA複合分子
層とTCNQ − PDA複合分子層を39層積層した
有機薄膜材料を得ることができた。
Example 5 10. 12-pentacosadiynoic acid (PDA). Tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) were each dissolved in chloroform to prepare a solution with a concentration of 2 mmol/j'. PDA-TC mixed with PDA solution 1〇1 and TCNQ solution 5-
A PDA/TTF mixed solution was prepared by mixing the NQ mixed solution, PDA solution 10-, and TTF solution 5-. These mixed solutions were transferred to two troughs (CdCi' t 2 5 x
1 0-'mol/I! , adjusted to 20° C.) to form a mixed molecular layer on the water surface of each trough. Next, the trough water surface is compressed to form a mixed molecular layer solid film, and CaF. The substrate was immersed in a trough shaped with TTF-PDA composite molecular layer, TCNQ-P
Cab. We were able to obtain an organic thin film material in which 39 TTF-PDA composite molecular layers and TCNQ-PDA composite molecular layers were laminated on a substrate.

得られた有機薄膜材料の膜厚は1800人であり、PD
A単分子膜を39層積層した膜厚(1100人)に比べ
増加した。また、X線回折パターンは(00n)(n=
1〜10)面の回折点が認められ、該有機薄膜材料が2
層層状構造であることがわかった。
The thickness of the obtained organic thin film material was 1800 mm, and the PD
This increased compared to the film thickness of 39 layers of A monolayer (1,100 people). Also, the X-ray diffraction pattern is (00n) (n=
Diffraction points on planes 1 to 10) were observed, and the organic thin film material
It was found that it has a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆い1
00W低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
ることができた。
Cover this organic thin film material with a photoresist mask 1
After exposure with a 00W low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

このネガ型のパターンを有する該有機薄膜材料を金(A
u)蒸着により電極をもうけ電導度を測定した結果、l
 X I O−’S/cmであった。
The organic thin film material having this negative pattern is made of gold (A
u) As a result of forming electrodes by vapor deposition and measuring the conductivity, l
XIO-'S/cm.

実施例6 10. 12−ペンタコサジイン酸(PDA),  テ
トラシアノキノジメタン(TCNQ)およびテトラチア
フルバレン(TTF)をそれぞれクロロホルムに溶解し
て2 mmon / 1の濃度の溶液を調整した。PD
A溶液5mlとTCNQ溶液51rI.を混合したPD
A − TCNQ混合溶液とPDA溶液5−とTTF溶
液57nlを混合したPDA・TTF混合溶液を調整し
た。これらの混合溶液を交互積層膜作製装置(英国ジョ
イスレープル社製)の2個のトラフ(CdCf 2 5
 X 1 0 −’mob / (! , 200Cに
調整)上にそれぞれ展開してそれぞれのトラフ水面上に
混合分子層を形威せしめた。次いで、トラフ水面を圧縮
して混合分子層固体膜を形成させ表面圧を2 5 mN
/mに保持しながら交互積層広によって石英基板をTT
F − PDA複合分子層が形成されたトラフで浸漬、
TCNQ − PDA複合分子層が形或されたトラフで
引き上げることを繰り返し石英基板上にTTF − P
DA複合分子層とTCNQ−PDA複合分子層を39層
積層した有機薄膜材料を得ることができた。
Example 6 10. 12-pentacosadiynoic acid (PDA), tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) were each dissolved in chloroform to prepare a solution with a concentration of 2 mmon/1. P.D.
A solution 5ml and TCNQ solution 51rI. PD mixed with
A - A PDA/TTF mixed solution was prepared by mixing the TCNQ mixed solution, PDA solution 5-, and TTF solution 57 nl. These mixed solutions were poured into two troughs (CdCf 2 5
X 10 -'mob / (!, adjusted to 200C), respectively, to form a mixed molecular layer on the water surface of each trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and the surface pressure was increased to 25 mN.
TT of the quartz substrate by alternating lamination while maintaining the
Immersed in the trough in which the F-PDA composite molecular layer was formed;
TTF-P was deposited on a quartz substrate by repeatedly pulling up the TCNQ-PDA composite molecular layer using the formed trough.
An organic thin film material in which 39 DA composite molecular layers and TCNQ-PDA composite molecular layers were laminated could be obtained.

得られた有機薄膜材料の膜厚は2200人でありPDA
単分子膜を39層積層した膜厚(1100人)に比べ増
加した。また、X線回折パターンは(00n)(n=1
〜8)面の回折点が認められ該有機薄膜材料が層状構造
であることがわかった。
The film thickness of the obtained organic thin film material was 2200 mm, and PDA
This increased compared to the film thickness of 39 monolayers (1,100 people). Also, the X-ray diffraction pattern is (00n) (n=1
-8) Diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
ることができた。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

このネガ型のパターンを有する該有機薄膜材料を金(A
u)蒸着により電極をもうけ電導度を測定した結果、5
 X 1 0−’S/cmであった。
The organic thin film material having this negative pattern is made of gold (A
u) As a result of forming electrodes by vapor deposition and measuring the conductivity, 5
X 10-'S/cm.

実施例7 10. 12−ペンタコサジイン酸(PDA).  2
−メチル−4−ニトロアニリン(MNA)をそれぞれク
ロロホルムに溶解して2mma6/fの濃度の溶液をそ
れぞれ調整した。PDA溶液10−とMNA溶液5一を
混合してPDA − MNA混合溶液としたのち、該混
合溶液0.l5−をCdC1 2 5 X 1 0 −
’man / (1、20℃に調整したトラフ(西独ラ
ウダ社製)上に展開してトラフ水面上に混合分子層を形
成せしめた。
Example 7 10. 12-pentacosadiynoic acid (PDA). 2
-Methyl-4-nitroaniline (MNA) was dissolved in chloroform to prepare a solution having a concentration of 2 mma6/f. After mixing PDA solution 10- and MNA solution 5-1 to obtain a PDA-MNA mixed solution, the mixed solution 0. l5- to CdC125X10-
'man/(1) was developed on a trough (manufactured by Lauda, West Germany) adjusted to 20°C to form a mixed molecular layer on the water surface of the trough.

次いでトラフ水面を圧縮して混合分子層固体膜を形成さ
せ表面圧を2 5 mN/mに保持しながら垂直浸積法
によってCaF 2基板の浸漬、引き上げを繰り返しC
aF.基板上に複合分子層を39層積層した有機薄膜材
料を得ることができた。
Next, the trough water surface was compressed to form a mixed molecular layer solid film, and the CaF2 substrate was repeatedly immersed and pulled up using the vertical immersion method while maintaining the surface pressure at 25 mN/m.
aF. An organic thin film material in which 39 composite molecular layers were laminated on a substrate could be obtained.

PDA − MNA混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(PDA 1分子
あたりの占有断面積に換算)一表面圧変化(π−A曲線
)を測定した。その結果PDA − NMA混合分子層
のπ−A曲線とPDA単分子層のπ一A曲線が一致する
ことがわかった。従って水面上のPDA・MNA複合分
子層は、PDA単分子層とMNA分千層がそれぞれ層状
に形成された2層構造であることを示している。
After the PDA-MNA mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per PDA molecule) and surface pressure change (π-A curve) when the trough water surface was compressed were measured. As a result, it was found that the π-A curve of the PDA-NMA mixed molecular layer and the π-A curve of the PDA monolayer matched. This indicates that the PDA/MNA composite molecular layer on the water surface has a two-layer structure in which a PDA monolayer and a 1,000-layer MNA layer are each formed in a layered manner.

得られた有機薄膜の膜厚は1300人でありPDA単分
子膜のみを39層積層した膜厚(1100人)に比べ増
加した。また、X線回折パターンは(00n)(n=1
〜6)面の回折点が認められ該有機薄膜材料が層状構造
であることがわかった。
The thickness of the obtained organic thin film was 1,300 layers, which was increased compared to the thickness of 39 layers of PDA monolayer (1,100 layers). Also, the X-ray diffraction pattern is (00n) (n=1
-6) Diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
るこーとができた。また、この材料は、非線形性(χ”
=5 x l O−”esu)を示した。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed. This material also exhibits nonlinearity (χ”
=5 x l O-"esu).

実施例8 0.0′−ジドデカノイルーN−(α一トリメチルアン
モニオアセチル)一ジエタノールアミンクロライド(O
DA).アントラセン(ANT)をそれぞれクロロホル
ムに溶解して2mmoj’/j’の濃度の溶液をそれぞ
れ調整した。DDA溶液IO−とANT溶液201nl
を混合してODA − ANT混合溶液としたのち、該
混合溶液0. 15dをCdCj2 2 5 X 1 
0 −’mon/Il,20℃に調整したトラフ(西独
ラウダ社製)上に展開してトラフ水面上に混合分子層を
形成せしめた。次いでトラフ水面を圧縮して混合分子層
固体膜を形成させ表面圧を2 5 mN/mに保持しな
がら垂直浸積法によってInSnOx被覆した石英基板
の浸積、引き上げを繰り返し該石英基板上に複合分子層
を39層積層した有機薄膜材料を得ることができた。
Example 8 0.0'-Didodecanoyl N-(α-trimethylammonioacetyl)-diethanolamine chloride (O
DA). Anthracene (ANT) was dissolved in chloroform to prepare a solution having a concentration of 2 mmoj'/j'. DDA solution IO- and ANT solution 201nl
After mixing to obtain an ODA-ANT mixed solution, 0.0% of the mixed solution was prepared. 15d as CdCj2 2 5 X 1
The mixture was spread on a trough (manufactured by Lauda, West Germany) adjusted to 0 -'mon/Il and 20°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and while the surface pressure was maintained at 25 mN/m, the InSnOx-coated quartz substrate was repeatedly immersed and pulled up by the vertical immersion method, and the composite was deposited on the quartz substrate. It was possible to obtain an organic thin film material in which 39 molecular layers were laminated.

ODA − ANT混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(DDA 1分子
あたりの占有断面積に換算)一表面圧変化(π−A曲線
)を測定した。その結果ODA−ANT混合分子層のπ
−A曲線とODA単分子層のπ−A曲線が一致すること
がわかった。従って水面上のODA・ANT複合分子層
は、ODA単分子層とANT分子層がそれぞれ層状に形
威された2層構造であることを示している。
After the ODA-ANT mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per DDA molecule) and surface pressure change (π-A curve) when the trough water surface was compressed were measured. As a result, π of the ODA-ANT mixed molecular layer
It was found that the -A curve and the π-A curve of the ODA monolayer matched. Therefore, the ODA/ANT composite molecular layer on the water surface has a two-layer structure in which the ODA monolayer and the ANT molecular layer are each layered.

得られた有機薄膜の膜厚は1500人でありDDA単分
子膜のみを39層積層した膜厚(1100人)に比べ増
加した。またX線回折パターンは(0 0 n)(n=
1〜6)面の回折点が認められ該有機薄膜材料が層状構
造であることがわかった。
The thickness of the obtained organic thin film was 1,500 layers, which was increased compared to the film thickness (1,100 layers) obtained by laminating 39 layers of DDA monolayer only. Moreover, the X-ray diffraction pattern is (0 0 n) (n=
Diffraction points on planes 1 to 6) were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料上にA1電極を蒸着したものは、両電
極間に電界を印加することにより発光を示した(0.0
1W/rrI′)。
The A1 electrode deposited on this organic thin film material emitted light when an electric field was applied between both electrodes (0.0
1W/rrI').

実施例9 9,11−ノナコサジインアミドトリメチレングリシン
(NAG),テトラチアフルバレン(TTF)をそれぞ
れクロロホルムに溶解して2 mmol/ 1の濃度の
溶液をそれぞれ調整した。NAG溶液107nlとTT
F溶液l一を混合してNAG − TTF混合溶液とし
たのち、該l昆合溶液0. 157nlをCdCj22
 5 X 1 0−’rno(1/1、20°Cに調整
したトラフ(西独ラウダ社製)上に展開してトラフ水面
上に混合分子層を形威せしめた。次いでトラフ水面を圧
縮して混合分子層固体膜を形成させ表面圧を2 5 m
N/mに保持しながら垂直浸積法によってCaF2基板
の浸漬、弓き上げを繰り返しCaF.基板上に複合分子
層を39層積層した有機薄膜材料を得ることができた。
Example 9 9,11-nonacosadiinamide trimethylene glycine (NAG) and tetrathiafulvalene (TTF) were each dissolved in chloroform to prepare solutions with a concentration of 2 mmol/1. 107nl of NAG solution and TT
After mixing 1 l of the F solution to obtain a NAG-TTF mixed solution, 0. 157nl to CdCj22
5 X 10-'rno (1/1, developed on a trough (manufactured by Lauda, West Germany) adjusted to 20 °C to form a mixed molecular layer on the trough water surface.Then, the trough water surface was compressed. A mixed molecular layer solid film is formed with a surface pressure of 25 m.
The CaF2 substrate was repeatedly immersed and raised using the vertical dipping method while maintaining the CaF2 substrate at N/m. An organic thin film material in which 39 composite molecular layers were laminated on a substrate could be obtained.

NAG − TTF混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(NAG 1分子
あたりの占有断面積に換算)一表面圧変化(π−A曲線
)を測定した。その結果NAG − TTF混合分子層
のπ−A曲線とNAG単分子層のπ一A曲線が一致する
ことがわかった。従って水面上のNAG・TTF複合分
子層は、NAG単分子層とTTF分子層がそれぞれ層状
に形成された2層構造であることを示している。
After the NAG-TTF mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per molecule of NAG) and surface pressure change (π-A curve) when the trough water surface was compressed were measured. As a result, it was found that the π-A curve of the NAG-TTF mixed molecular layer and the π-A curve of the NAG monolayer matched. This indicates that the NAG/TTF composite molecular layer on the water surface has a two-layer structure in which a NAG monolayer and a TTF molecular layer are each formed in layers.

得られた有機薄膜の膜厚は1200人でありNAG単分
子膜のみを39層積層した膜厚(1070人)に比べ増
加した。またX線回折パターンは(OOn)(n−1〜
6)面の回折点が認められ該有機薄膜材料が層状構造で
あることがわかった。
The thickness of the obtained organic thin film was 1,200 layers, which was increased compared to the thickness of 39 layers of NAG monolayer (1,070 layers). Moreover, the X-ray diffraction pattern is (OOn)(n-1~
6) Surface diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆い1
00W低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
ることができた。
Cover this organic thin film material with a photoresist mask 1
After exposure with a 00W low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

実施例10 10.12−トリデカジイン酸(TDY), テトラシ
アノナフトキノジメタン( TNAQ )をそれぞれク
ロロホルムに溶解して2mmof/41’の濃度の溶液
をそれぞれ調整した。TDY溶液l一とTNAQ溶液1
0Jを混合してTDY − TNAQ混合溶液としたの
ち、該混合溶液0.15−をCdlJ’ 2 5 x 
1 0 −’mol / l、20℃に調整したトラフ
(西独ラウダ社製)上に展開してトラフ水面上に混合分
子層を形成せしめた。
Example 10 10.12-Tridecadiynoic acid (TDY) and tetracyanonaphthoquinodimethane (TNAQ) were each dissolved in chloroform to prepare solutions with a concentration of 2 mmof/41'. One TDY solution and one TNAQ solution
After mixing 0J to make a TDY-TNAQ mixed solution, 0.15- of the mixed solution was mixed with CdlJ' 2 5 x
10-'mol/l, and was spread on a trough (manufactured by Lauda, West Germany) adjusted to 20°C to form a mixed molecular layer on the water surface of the trough.

次いでトラフ水面を圧縮して混合分子層固体膜を形成さ
せ表面圧を2 5 mN/mに保持しながら垂直浸積法
によってCab.基板の浸漬、引き上げを繰り返しCa
b,基板上に複合分子層を39層積層した有機薄膜材料
を得ることができた。
Next, the trough water surface was compressed to form a mixed molecular layer solid film, and Cab. The substrate is repeatedly immersed and pulled up.
b. An organic thin film material in which 39 composite molecular layers were laminated on a substrate could be obtained.

TDY − TCNQ混合溶液をトラフ上に展開したの
ちトラフ水面を圧縮する際のトラフ面積(TDY 1分
子あたりの占有断面積に換算)一表面圧変化(π−A曲
線)を測定した。その結果TDY − TNAQ混合分
子層のπ−A曲線とTDY単分子層のπ−A曲線が一致
することがわかった。従って水面上のTDY・TNAQ
複合分子層は、TDY単分子層とTNAQ分子層がそれ
ぞれ層状に形或された2層構造であることを示している
After the TDY-TCNQ mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per TDY molecule) and surface pressure change (π-A curve) when the trough water surface was compressed were measured. As a result, it was found that the π-A curve of the TDY-TNAQ mixed molecular layer and the π-A curve of the TDY monolayer matched. Therefore, TDY/TNAQ on the water surface
The composite molecular layer has a two-layer structure in which a TDY monolayer and a TNAQ molecular layer are each formed into layers.

得られた有機薄膜の膜厚は2300人でありTDY単分
子膜のみを39層積層した膜厚( 800人)に比べ増
加した。またX線回折パターンは(0 0 n)(n=
1〜6)面の回折点が認められ該有機薄膜材料が層状構
造であることがわかった。
The thickness of the obtained organic thin film was 2,300 layers, which was increased compared to the thickness of 39 layers of TDY monolayer (800 layers). Moreover, the X-ray diffraction pattern is (0 0 n) (n=
Diffraction points on planes 1 to 6) were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形成す
ることができた。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

実施例11 ビス(エチレン−9,l1−ペンタコサジイノエート)
ジメチルアンモニウムプロマイド(BPA),  ビス
エチレンジチオテトラチアフルバレン(BET)をそれ
ぞれクロルベンゼンに溶解して2 mmar1 / 4
1’の濃度の溶液をそれぞれ調整した。BPA溶液5一
とBET溶液lOrnlを混合してBPA − BET
混合溶液としたのち、該混合溶液0.15mlを20°
Cに調整した純水トラフ(西独ラウダ社製)上に展開し
てトラフ水面上に混合分子層を形成せしめた。次いでト
ラフ水面を圧縮して混合分子層固体膜を形成させ表面圧
を2 5 mN/mに保持しながら垂直浸積法によって
石英基板の浸積、引き上げを繰り返し石英基板上に複合
分子層を39層積層した有機薄膜材料を得ることができ
た。
Example 11 Bis(ethylene-9,l1-pentacosadiinoate)
Dimethylammonium bromide (BPA) and bisethylene dithiotetrathiafulvalene (BET) were each dissolved in chlorobenzene to a concentration of 2 mmar1/4.
Solutions with a concentration of 1' were prepared respectively. BPA-BET by mixing BPA solution 5 and BET solution
After making a mixed solution, 0.15 ml of the mixed solution was heated at 20°
The mixture was spread on a pure water trough (manufactured by Lauda, West Germany) adjusted to a water temperature of C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and while the surface pressure was maintained at 25 mN/m, the quartz substrate was repeatedly immersed and pulled up by the vertical immersion method to form a composite molecular layer on the quartz substrate for 39 mN/m. A layered organic thin film material could be obtained.

BPA − BET混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(BPA l分子
あたりの占有断面積に換算)一表面圧変化(π−A曲線
)を測定した。その結果BPA−BET混合分子層のπ
一八曲線とBPA単分子層のπ−A曲線が一致すること
がわかった。従って水面上のBPA・BET複合分子層
は、BPA単分子層とBET分子層がそれぞれ層状に形
或された2層構造であることを示している。
After the BPA-BET mixed solution was spread on the trough, the trough area (converted to the occupied cross-sectional area per molecule of BPA) and surface pressure change (π-A curve) when the trough water surface was compressed were measured. As a result, π of the BPA-BET mixed molecular layer
It was found that the 18 curve and the π-A curve of the BPA monolayer matched. Therefore, the BPA/BET composite molecular layer on the water surface has a two-layer structure in which the BPA monolayer and the BET molecular layer are each formed into layers.

得られた有機薄膜の膜厚は2300人であり BPA単
分子膜のみを39層積層した膜厚(1150人)に比べ
増加した。またX線回折パターンは(00n)(n=1
〜6)面の回折点が認められ該有機薄膜材料が層状構造
であることがわかった。
The thickness of the obtained organic thin film was 2,300 layers, which was increased compared to the thickness of 39 layers of BPA monolayer (1,150 layers). The X-ray diffraction pattern is (00n) (n=1
-6) Diffraction points were observed, indicating that the organic thin film material had a layered structure.

この有機薄膜材料をフォトレジスト用のマスクで覆いI
OOW低圧水銀灯で露光した後エタノールで現像した結
果、未露光部分のみが溶解しネガ型のパターンを形或す
ることができた。
This organic thin film material is covered with a photoresist mask.
After exposure with an OOW low-pressure mercury lamp and development with ethanol, only the unexposed portions were dissolved and a negative pattern could be formed.

比較例1 アラキジン酸(ARA) 、クロラニル(TCQ)をそ
れぞれクロロホルムに溶解して2mmoA/j2、の濃
度の溶液をそれぞれ調整した。AR,A溶液107nl
とTCQ溶液57nlを混合してARA − TCQ混
合溶液としたのち、該混合溶液0.15−をCdCl2
 2 5 X 10−’man/1、20℃に調整した
トラフ(西独ラウダ社製)上に展開してトラフ水面上に
混合分子層を形成せしめた。次いでトラフ水面を圧縮し
て混合分子層固体膜を形成させ表面圧を2 5 mN/
mに保持しながら垂直浸積法によってCaF2基板の浸
積、引き上げを繰り返しCab2基板上に複合分子層を
39層積層した膜を得ることができた。
Comparative Example 1 Arachidic acid (ARA) and chloranil (TCQ) were each dissolved in chloroform to prepare solutions with a concentration of 2 mmoA/j2. AR,A solution 107nl
After mixing 57 nl of TCQ solution and ARA-TCQ mixed solution, 0.15-nl of the mixed solution was mixed with CdCl2.
25 x 10-'man/1 and spread on a trough (manufactured by Lauda, West Germany) adjusted to 20°C to form a mixed molecular layer on the water surface of the trough. Next, the trough water surface was compressed to form a mixed molecular layer solid film, and the surface pressure was increased to 25 mN/
By repeating dipping and pulling up of the CaF2 substrate by the vertical dipping method while maintaining the temperature at m, a film in which 39 composite molecular layers were laminated on the CaF2 substrate could be obtained.

ARA − TCQ混合溶液をトラフ上に展開したのち
トラフ水面を圧縮する際のトラフ面積(ARA 1分子
あたりの占有断面積に換算)一表面圧変化(π一A曲線
)をARA溶液のみをトラフ上に展開したARA単分子
膜のπ一A曲線と合わせて第3図に示す。これよりAR
A − TCQ混合分子層のπ一八曲線のARA分子当
りの占有断面積はARA単分子層のπ−A曲線の占有断
面積に比べ増加していることがわかる。
After spreading the ARA-TCQ mixed solution on the trough, the trough area (converted to the occupied cross-sectional area per ARA molecule) and surface pressure change (π-A curve) when compressing the trough water surface are measured when only the ARA solution is spread on the trough. Fig. 3 shows the π-A curve of the ARA monolayer developed in Figure 3. AR from this
It can be seen that the occupied cross-sectional area per ARA molecule of the π-18 curve of the A-TCQ mixed molecular layer is increased compared to the occupied cross-sectional area of the π-A curve of the ARA monolayer.

得られた膜の膜厚は1050人でありARA単分子膜を
39層積層した膜厚(1050人)に一致した。
The thickness of the obtained membrane was 1,050 layers, which corresponded to the thickness (1,050 layers) of laminating 39 layers of ARA monolayers.

またX線回折パターンは(OOn)(n=1〜6)面の
回折点が認められた。
Further, in the X-ray diffraction pattern, diffraction points on the (OOn) (n=1 to 6) plane were observed.

従ってこれらの結果より水面上のARA − TCQ複
合分子層は、ARA単分子層中にTCQ分子が取り込ま
れた構造であることがわかった。
Therefore, these results revealed that the ARA-TCQ composite molecular layer on the water surface has a structure in which TCQ molecules are incorporated into the ARA monolayer.

比較例2 アラキジン酸(ARA) 、テトラシアノキノジメタン
(TCNQ)をそれぞれクロロホルムに溶解して2nm
off/N、の濃度の溶液をそれぞれ調整した。
Comparative Example 2 Arachidic acid (ARA) and tetracyanoquinodimethane (TCNQ) were each dissolved in chloroform to a size of 2 nm.
Solutions with a concentration of off/N were prepared.

ARA溶液10mA’とTCNQ溶液57nlを屈合し
てARATCNQ混合溶液としたのち、該混合溶液0.
 157nlをCdCfl2 2 5 X 10−’m
ob / (1、20°Cに調整したトラフ(西独ラウ
ダ社製)上に展開してトラフ水面上に混合分子層を形成
せしめた。次いでトラフ水面を圧縮して混合分子喘固体
膜を形或させ表面圧を2 5 mN/mに保持しながら
垂直浸積法によって(aF,基板の浸積、引き上げを繰
り返しCaF 2基板上に複合分子層を39層積層した
膜を得ることができた。
After combining 10 mA' of ARA solution and 57 nl of TCNQ solution to obtain an ARATCNQ mixed solution, 0.0 mA' of the mixed solution was prepared.
157nl to CdCfl2 2 5 x 10-'m
ob / (1, developed on a trough (manufactured by Lauda, West Germany) adjusted to 20°C to form a mixed molecular layer on the trough water surface.Then, the trough water surface was compressed to form a mixed molecular gas solid film. A film in which 39 composite molecular layers were laminated on a CaF 2 substrate was obtained by repeating dipping and pulling up of the CaF 2 substrate using a vertical immersion method while maintaining the surface pressure at 25 mN/m.

ARA − TCNQ混合溶液をトラフ上に展開したの
ちトラフ水面を圧縮する際のトラフ面積(ARA 1分
子あたりの占有断面積に換算)一表面圧変化(π−A曲
線)を第3図に示す。これより ARA − TCNQ
屏合分子層のπ一A曲線のARA分子当りの占有断面積
はARA単分子層のπ一A曲線の占有断面積に比べ増加
していることがわかる。
FIG. 3 shows the trough area (converted to occupied cross-sectional area per ARA molecule) and surface pressure change (π-A curve) when compressing the trough water surface after spreading the ARA-TCNQ mixed solution on the trough. From this ARA-TCNQ
It can be seen that the occupied cross-sectional area per ARA molecule of the π-A curve of the folded molecular layer is increased compared to the occupied cross-sectional area of the π-A curve of the ARA monolayer.

得られた膜の膜厚は1050人でありARA単分子膜を
39層積層した膜厚(1050人)に一致した。
The thickness of the obtained membrane was 1,050 layers, which corresponded to the thickness (1,050 layers) of laminating 39 layers of ARA monolayers.

またX線回折パターンは(00n)(n=1〜3)面の
回折点が認められた。
Further, in the X-ray diffraction pattern, diffraction points on the (00n) (n=1 to 3) plane were observed.

従ってこれらの結果より水面上のARA − TCNQ
複合分子層は、ARA単分子層中にTCNQ分子が取り
込まれた構造であることがわかった。
Therefore, from these results, ARA-TCNQ on the water surface
The composite molecular layer was found to have a structure in which TCNQ molecules were incorporated into the ARA monolayer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPDA − TCQd合分子層、PDA − 
TCNQ混合分子層およびPDA単分子層のπ一八曲線
、第2図はω−PDY − TCNQ混合分子層、ω一
PDY − TCQ混合分子層およびω−PDY単分子
層のπ一A曲線、第3図はARA−TCNQ混合分子層
、ARA − TCQ混合分子層およびARA単分子層
のπ−A曲線をそれぞれ示す。
Figure 1 shows PDA-TCQd composite layer, PDA-
The π-A curves of the TCNQ mixed molecular layer and the PDA monolayer, Figure 2 are the π-A curves of the ω-PDY-TCNQ mixed molecular layer, the ω-PDY-TCQ mixed molecular layer, and the ω-PDY monolayer. Figure 3 shows the π-A curves of ARA-TCNQ mixed molecular layer, ARA-TCQ mixed molecular layer and ARA monolayer, respectively.

Claims (4)

【特許請求の範囲】[Claims] (1)分子鎖中及び分子末端に親水性基を含有する長鎖
有機分子の単分子膜と疎水性分子の分子層からなる複合
分子層が基板上に積層された有機薄膜材料。
(1) An organic thin film material in which a composite molecular layer consisting of a monomolecular film of long-chain organic molecules containing hydrophilic groups in the molecular chain and at the molecular ends and a molecular layer of hydrophobic molecules is laminated on a substrate.
(2)分子鎖中及び分子末端に親水性基を含有する長鎖
有機分子の単分子膜と疎水性分子の分子層からなる複合
分子層の二種類以上が基板上に積層された有機薄膜材料
(2) Organic thin film material in which two or more types of composite molecular layers consisting of a monomolecular film of long-chain organic molecules containing hydrophilic groups in the molecular chain and at the molecular ends and a molecular layer of hydrophobic molecules are laminated on a substrate. .
(3)請求項(2)の有機薄膜材料において、二種類の
複合分子層が交互に積層された有機薄膜材料。
(3) The organic thin film material according to claim (2), in which two types of composite molecular layers are alternately laminated.
(4)請求項(3)の有機薄膜材料において、複合分子
層中の二種類の疎水性分子がそれぞれ電子供与性有機分
子、電子受容性有機分子であることえを特徴とする有機
薄膜材料。
(4) The organic thin film material according to claim (3), wherein the two types of hydrophobic molecules in the composite molecular layer are an electron-donating organic molecule and an electron-accepting organic molecule, respectively.
JP16267689A 1989-06-27 1989-06-27 Organic thin film material Expired - Fee Related JPH0675945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16267689A JPH0675945B2 (en) 1989-06-27 1989-06-27 Organic thin film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16267689A JPH0675945B2 (en) 1989-06-27 1989-06-27 Organic thin film material

Publications (2)

Publication Number Publication Date
JPH0327932A true JPH0327932A (en) 1991-02-06
JPH0675945B2 JPH0675945B2 (en) 1994-09-28

Family

ID=15759175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16267689A Expired - Fee Related JPH0675945B2 (en) 1989-06-27 1989-06-27 Organic thin film material

Country Status (1)

Country Link
JP (1) JPH0675945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501758A (en) * 2001-08-28 2005-01-20 ポレックス,コーポレーション Multilayer porous material and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501758A (en) * 2001-08-28 2005-01-20 ポレックス,コーポレーション Multilayer porous material and method for producing the same

Also Published As

Publication number Publication date
JPH0675945B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
JP4412812B2 (en) Preparation method of organic ammonium / inorganic layered perovskite compound thin film
Miller et al. Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence
KR100416165B1 (en) Layered organic-inorganic perovskites having metal-deficient inorganic frameworks
EP0506368A2 (en) Organic functional thin film, fabrication and use thereof
JP2009006548A (en) Organic/inorganic layer-shaped perovskite compound thin film, and method for producing the same
US11557440B2 (en) Layered hybrid organic-inorganic perovskite materials
Arroyo-Villan et al. Poly (n-(3-thienyl) alkanesulfonates): synthesis, regioregularity, morphology, and photochemistry
Lefevre et al. Chemical reactivity in organized medium: building up a two-dimensional polymer
US20100184936A1 (en) Diamine compound, polyamic acid, soluble polyimide, composition, wettability changing film, electrode, and method of manufacturing a wettability changing film
JPH0327932A (en) Organic thin film material
Niu et al. Multifunctional, photochromic, acidichromic, electrochromic molecular switch: Novel aromatic poly (azomehine) s containing triphenylamine Group
EP0077577B1 (en) Photographic articles comprising a compound having acetylenic bonds and methods for producing the articles
JP3542077B2 (en) Organic ammonium / inorganic layered perovskite compound and production method thereof
Yokoyama et al. Preparation and in-plane anisotropic photobleaching properties of polyimide Langmuir-Blodgett films having a photoresponsive p-nitroazobenzene pendant group
JPH01243025A (en) Liquid crystal oriented film formed by using patterned high-polymer film and production thereof
JPH04229807A (en) Optical waveguide and manufacture thereof
JP4000836B2 (en) Method for forming a film pattern
Okada et al. New amphiphilic diacetylene compounds for non-linear optics
JP2502155B2 (en) Method for producing conjugated organic polymer
Murase et al. Refractive index changes of doped polymer films induced by the photoelimination of meso-ionic heterocyclic compounds with and without a sulfur atom
Barraud Supermolecular engineering by the Langmuir-Blodgett method
WO2024011464A1 (en) Quantum dot material, light-emitting device and preparation method therefor, and display device
JPH03220243A (en) Functional thin film, and material and method for producing same
Čík et al. Copolymer of alkylated oligothiophene with polyethylene oxide: synthesis and properties
del Pilar Carreón et al. Langmuir-Blodgett membranes of m-Alca-1, 3-diynylbenzoic acids

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees