JPH03279209A - Black silica grain and production thereof - Google Patents
Black silica grain and production thereofInfo
- Publication number
- JPH03279209A JPH03279209A JP22135590A JP22135590A JPH03279209A JP H03279209 A JPH03279209 A JP H03279209A JP 22135590 A JP22135590 A JP 22135590A JP 22135590 A JP22135590 A JP 22135590A JP H03279209 A JPH03279209 A JP H03279209A
- Authority
- JP
- Japan
- Prior art keywords
- silica particles
- black
- black silica
- alkali metals
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 238000004519 manufacturing process Methods 0.000 title claims 2
- 239000000377 silicon dioxide Substances 0.000 title abstract description 15
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 28
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 28
- 239000003960 organic solvent Substances 0.000 claims abstract description 17
- 239000012025 fluorinating agent Substances 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims description 38
- 239000004973 liquid crystal related substance Substances 0.000 claims description 19
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 239000002253 acid Substances 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 11
- 238000010828 elution Methods 0.000 abstract description 9
- 238000005406 washing Methods 0.000 abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 72
- 239000000243 solution Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- -1 or in other words Chemical compound 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910001415 sodium ion Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000012066 reaction slurry Substances 0.000 description 2
- ZICZZIRIRHGROF-UHFFFAOYSA-N 1-$l^{1}-oxidanyl-2,2,4,5,5-pentamethylimidazole Chemical compound CC1=NC(C)(C)N([O])C1(C)C ZICZZIRIRHGROF-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- LEMQFBIYMVUIIG-UHFFFAOYSA-N trifluoroborane;hydrofluoride Chemical compound F.FB(F)F LEMQFBIYMVUIIG-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、黒色シリカ粒子、特に、液晶表示素子用スペ
ーサーとして有用な黒色シリカ粒子に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to black silica particles, particularly black silica particles useful as spacers for liquid crystal display elements.
(従来技術及び発明が解決しようとする課題)シリカ粒
子は、セラミック原料、クロマト担体等に広(使用され
ている。液晶表示素子用スペーサーとしても使用されて
いるが、近年、画質の向上のために従来の白色シリカで
なく、黒色の、いい変えれば、光を透過しないシリカ粒
子が望まれるようになってきた。(Prior art and problem to be solved by the invention) Silica particles are widely used as ceramic raw materials, chromatography carriers, etc. They are also used as spacers for liquid crystal display elements, but in recent years, they have been used to improve image quality. Instead of the conventional white silica, black silica particles, or in other words, silica particles that do not transmit light, have become desirable.
黒色シリカを得る方法としては、シリカ粒子にアルカリ
金属と有機物を含ませ、その後熱処理する方法が考えら
れてきた。この方法は、アルカリ金属を含ませることで
シリカの焼結を早め、シリカ中の有機物を炭化し、黒色
化しようというものである。この方法により得られた黒
色シリカ粒子は当然アルカリ金属を含むためにアルカリ
の溶出による不都合があり、そのために液晶表示素子用
スペーサーとしては実質的には、使用できない。As a method for obtaining black silica, a method has been considered in which silica particles are impregnated with an alkali metal and an organic substance, and then heat-treated. This method involves adding an alkali metal to accelerate the sintering of silica, carbonizing the organic matter in the silica, and turning it black. Since the black silica particles obtained by this method naturally contain an alkali metal, they are disadvantageous due to alkali elution, and therefore cannot be practically used as a spacer for liquid crystal display elements.
アルカリ溶出の影響を少なくするために、熱処理時にア
ルカリを少なくすることも考えられるが、そうすると、
黒色の程度がうずくなり、光の遮蔽が不十分となる。In order to reduce the effect of alkali elution, it is possible to reduce the amount of alkali during heat treatment, but in that case,
The degree of blackness becomes dull and light shielding becomes insufficient.
(課題を解決するための手段)
本発明者らは、上記したアルカリ金属の溶出がなくしか
も十分に黒いシリカ粒子を得ることを目的として鋭意研
究を重ねてきた。その結果、上記目的を達成することに
成功し、本発明を提藁するに至った。(Means for Solving the Problems) The present inventors have conducted extensive research with the aim of obtaining silica particles that are free from elution of the above-mentioned alkali metals and are sufficiently black. As a result, we succeeded in achieving the above object and came to propose the present invention.
即ち、本発明は、平均粒子径が0.1〜50μ腸であり
、アルカリ金属を実質的に含まず、カーボンを0.1重
量%以上含有することを特徴とする黒色シリカ粒子であ
る。That is, the present invention provides black silica particles having an average particle diameter of 0.1 to 50 microns, substantially free of alkali metals, and containing 0.1% by weight or more of carbon.
本発明の黒色シリカ粒子の平均粒径は0.1〜50μ厘
である。上記範囲よりも小さい黒色シリカ粒子は製造し
難く、また、上記範囲よりも大きい黒色シリカ粒子は粒
子成長に時間がか力ごり過ぎるために実用的ではない。The average particle size of the black silica particles of the present invention is 0.1 to 50 μm. Black silica particles smaller than the above range are difficult to produce, and black silica particles larger than the above range are not practical because they require too much time and strain for particle growth.
本発明において黒色度が大きい黒色シリカ粒子を得よう
とすれば、平均粒径は2〜10μmであることが好まし
い。In the present invention, if black silica particles with high blackness are to be obtained, the average particle size is preferably 2 to 10 μm.
本発明の黒色シリカ粒子は、アルカリ金属を実質的に含
まないことを特徴とする。アルカリ金属を実質的に含ま
ないとは、液晶表示素子用スペーサーとして用いた時に
実質的に問題のないことで、通常1oopp−以下であ
ることを意味する。The black silica particles of the present invention are characterized in that they do not substantially contain alkali metals. "Substantially free of alkali metal" means that there is substantially no problem when used as a spacer for a liquid crystal display element, and usually the content is 1 oopp- or less.
本発明の黒色シリカ粒子の黒色の発現は、シリカ粒子内
で、有機物が炭化して出来たカーボンによる゛が、本発
明のシリカ粒子中のカーボン含有率は通常0.1重量%
以上である。この含有率が低くなれば、当然色が薄くな
り光の遮蔽が不十分となり好ましくない、カーボンの含
有量は、一般にば本発明の黒色シリカ粒子の黒色の程度
は、JIS 28701によるY値(%)で表示する
と、くは4%以下とすることができる。The black color of the black silica particles of the present invention is due to carbon produced by carbonizing organic matter within the silica particles, but the carbon content in the silica particles of the present invention is usually 0.1% by weight.
That's all. If this content is lower, the color will naturally become lighter and light shielding will be insufficient, which is not desirable. ), it can be reduced to 4% or less.
また、本発明の黒色シリカ粒子は、前述したようにカー
ボンを含有するにもかかわらず、高い電気抵抗を有する
0例えば、後述する体積固有抵抗は・一般に10”Ω・
1以上であり、さらには109Ω・口を超える高い電気
抵抗の黒色シリカ粒子を得ることもできる。Furthermore, although the black silica particles of the present invention contain carbon as described above, they have a high electrical resistance.For example, the volume resistivity described below is generally 10"Ω.
It is also possible to obtain black silica particles with a high electrical resistance of 1 or more, and even more than 109Ω.
さらにまた、本発明の黒色シリカ粒子の電子顕微鏡観察
による粒子形状は、長径と短径の比が0.8以上、さら
には0.9以上という球状であり、また、粒子径のバラ
ツキを示す変動係数(粒子径の標準偏差/平均粒径)が
5%以下、さらに3%以下であり、粒子径の均一性に優
れた粒子である。Furthermore, the particle shape of the black silica particles of the present invention observed by electron microscopy is spherical with a ratio of the major axis to the minor axis of 0.8 or more, and furthermore, 0.9 or more, and also shows variations in particle diameter. The coefficient (standard deviation of particle size/average particle size) is 5% or less, further 3% or less, and the particles have excellent uniformity in particle size.
本発明の黒色シリカ粒子は、下記の方法によって好適に
製造することができる。The black silica particles of the present invention can be suitably produced by the following method.
アルカリ金属を実質的に含まないシリカ粒子をフッ素化
剤及び有機溶媒と接触させた後、500℃以上の温度で
加熱する方法である。This is a method in which silica particles substantially free of alkali metal are brought into contact with a fluorinating agent and an organic solvent, and then heated at a temperature of 500° C. or higher.
原料であるアルカリ金属を実質的に含まないシリカ粒子
は、エチルシリケートに代表されるアルキルシリケート
の加水分解によって得られるシリカ粒子が、球状且つ粒
子径の変動係数が小さいために本発明で好適に用いられ
るが、他の方法により得られたシリカ粒子も用い得る。Silica particles that do not substantially contain an alkali metal as a raw material are preferably used in the present invention because silica particles obtained by hydrolysis of alkyl silicate, such as ethyl silicate, are spherical and have a small coefficient of variation in particle size. However, silica particles obtained by other methods can also be used.
アルキルシリケートの加水分解は、公知の方法が何ら制
限なく採用される0例えば、水−メタノール−アンモニ
アの混合溶媒、さらに必要に応じてアルカリ金属水酸化
物を加えた混合溶媒中にアルキルシリケートを添加して
加水分解を行なう方法が挙げられる0粒子径の大きい粒
子が必要となる場合は、反応を何段にも行ない、生成し
たシリカ粒子を更に成長させ、順次大きくする方法がと
られる。この反応でアルカリ金属水酸化物を使用すると
、生成したシリカ粒子中にはアルカリ金属が最大20%
迄含まれる。アルカリ金属が含まれたまま加熱すれば容
易に黒色シリカ粒子が得られるが、生成黒色シリカ粒子
中にアルカリ金属が混入したままとなるので好ましない
。For the hydrolysis of the alkyl silicate, known methods can be used without any restrictions. For example, the alkyl silicate is added to a mixed solvent of water, methanol, and ammonia, and an alkali metal hydroxide is added as necessary. If particles with a large zero particle diameter are required, a method is used in which the reaction is carried out in multiple stages to further grow the produced silica particles and sequentially increase the size. When an alkali metal hydroxide is used in this reaction, up to 20% of the alkali metal is present in the silica particles produced.
Included up to. Although black silica particles can be easily obtained by heating while the alkali metal is still contained, the alkali metal remains mixed in the produced black silica particles, which is not preferable.
そこで、このような場合にはまず反応により得られたア
ルカリ金属を含有するシリカ粒子を酸、通常は塩酸・硫
酸・硝酸等の鉱酸と接触させ、その後洗浄してアルカリ
金属を除去する方法を採用するとよい、こうすることで
容易にアルカリ金属の含有量が100ppa+以下のシ
リカ粒子とすることが出来る。Therefore, in such cases, we recommend a method in which the silica particles containing alkali metals obtained by reaction are first brought into contact with an acid, usually a mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid, and then washed to remove the alkali metals. By doing so, it is possible to easily obtain silica particles having an alkali metal content of 100 ppa+ or less.
上記の酸処理の条件は、酸の濃度・酸の量等を適宜選択
すればよいが、−船釣には、シリカ粒子中のアルカリ金
属に相当する化学量論量の酸があれば、アルカリ金属の
含有量を1100pp以下にすることが出来る。The conditions for the acid treatment described above may be determined by appropriately selecting the acid concentration, acid amount, etc.; The metal content can be reduced to 1100 pp or less.
但し、酸の濃度、酸の量は少ない程、酸処理の時間が長
くかかるので、酸濃度5%以上、酸の量は当量の2倍以
上とするのがよい。However, the lower the acid concentration and the amount of acid, the longer the acid treatment takes, so it is preferable that the acid concentration is 5% or more and the amount of acid is at least twice the equivalent amount.
アルカリ金属を実質的に含まないシリカ粒子は、フッ素
化剤及び有機溶媒との接触が行なわれる。The silica particles substantially free of alkali metal are contacted with a fluorinating agent and an organic solvent.
フッ素化剤及び有機溶媒との接触は同時に行なってもよ
く、また別個に行なってもよい。フッ素化剤との接触は
、水又は有機溶媒中にフッ素化剤を溶解した液にシリカ
粒子を浸漬することにより行なわれる。フッ素化剤を有
機溶媒に溶解した液を用いた場合は、フッ素化剤及び有
l!溶媒との接触が同時に行なえる。フッ素化剤の水又
は有機溶媒中の濃度は0.1〜10重量%、フッ素化剤
の量はシリカの当量の程度がシリカ粒子の溶解を低減し
、黒色化を十分に行うために良い、フッ素化剤としては
公知のものが何ら制限なく採用されるが、本発明におい
ては、特に酸が好適に用いられる0例えば、フッ化水素
酸、ケイフッ化水素酸及びホウフッ化水素酸等が好適で
ある。The contact with the fluorinating agent and the organic solvent may be carried out simultaneously or separately. Contact with the fluorinating agent is carried out by immersing the silica particles in a solution of the fluorinating agent in water or an organic solvent. When using a solution in which a fluorinating agent is dissolved in an organic solvent, the fluorinating agent and the liquid must be mixed together. Contact with the solvent can be carried out simultaneously. The concentration of the fluorinating agent in water or organic solvent is 0.1 to 10% by weight, and the amount of the fluorinating agent is preferably equivalent to the equivalent of silica to reduce dissolution of silica particles and sufficiently perform blackening. As the fluorinating agent, any known fluorinating agent may be employed without any restriction, but in the present invention, acids are particularly preferably used. For example, hydrofluoric acid, hydrofluorosilicic acid, hydrofluoroboric acid, etc. are preferably used. be.
有機溶媒の種類は黒色化の程度に影響を及ぼす。The type of organic solvent affects the degree of blackening.
黒色化の程度を大きくするためにはアルコールが好まし
く用いられ、メタノール、エタノール、イソプロパツー
ル等の1価アルコール;エチレングリコール、ジエチレ
ングリコール、トリエチレングリコール、プロピレング
リコール等の2価アルコニル;グリセリン等の3価アル
コール等を具体的に挙げることができる。これらの中で
も特に2価アルコールが黒色化の程度が大きいために好
適である。In order to increase the degree of blackening, alcohols are preferably used, including monohydric alcohols such as methanol, ethanol, and isopropanol; divalent alconyls such as ethylene glycol, diethylene glycol, triethylene glycol, and propylene glycol; and trihydric alcohols such as glycerin. Specific examples include alcohols and the like. Among these, dihydric alcohols are particularly suitable because they have a large degree of blackening.
シリカ粒子とフッ素化剤との接触を有機溶媒を用いずに
水中で行った場合には、フッ素化剤との接触の後にシリ
カ粒子と有機溶媒との接触が行われる。When the silica particles are brought into contact with the fluorinating agent in water without using an organic solvent, the silica particles are brought into contact with the organic solvent after the contact with the fluorinating agent.
フッ素化剤及び有機溶媒と接触させた後のシリカ粒子は
1通常、フッ素を1〜20重量%、有機溶媒を1〜10
重量を含む。After contacting the fluorinating agent and the organic solvent, the silica particles usually contain 1 to 20% by weight of fluorine and 1 to 10% by weight of the organic solvent.
Including weight.
こうして得られたシリカ粒子をsoo”c以上に加熱す
ることにより黒色シリカ粒子を得ることができる。加熱
の温度は、高すぎるとシリカ粒子間に昇温する際に、少
くとも200〜400’Cの温度範囲での昇温を急速に
行なうことにより、得られる黒色シリカ粒子の黒色の程
度を大きくすることができるために好ましい、この場合
の昇温速度は5℃/分以上であることが好ましく、通常
は5〜b
加熱時間は特に制限されないが、一般には8〜30時間
の範囲から採用される。こうして本発明の黒色シリカ粒
子が得られる。Black silica particles can be obtained by heating the silica particles thus obtained to temperatures above soo'c. It is preferable to increase the degree of blackness of the obtained black silica particles by rapidly increasing the temperature in the temperature range of , usually 5 to b.The heating time is not particularly limited, but is generally employed in the range of 8 to 30 hours.The black silica particles of the present invention are thus obtained.
(効果)
本発明の黒色シリカ粒子は、アルカリ金属を実質的に含
まなし、)ため、アルカリ金属の溶出が問題になること
はなく、しかも、優れた黒色を呈する。(Effects) Since the black silica particles of the present invention do not substantially contain alkali metals, elution of alkali metals does not become a problem, and moreover, they exhibit excellent black color.
この黒色は有機溶媒による洗浄によって退色することは
なく、また、実施例に示したように体積固有抵抗が大き
い、従って、本発明の黒色シリカ粒子中のカーボンは、
シリカ粒子の表面に存在するのではなく、シリカ粒子の
内部にとり込まれているものと推測される。This black color does not fade by washing with an organic solvent, and as shown in the examples, the carbon in the black silica particles of the present invention has a large volume resistivity.
It is presumed that it is not present on the surface of the silica particles but is incorporated inside the silica particles.
また、本発明の黒色シリカ粒子の黒色はカーボンにより
発現するものであるから、黒色染料のように光の照射に
より退色することはない。Further, since the black color of the black silica particles of the present invention is developed by carbon, the color does not fade due to light irradiation unlike black dyes.
さらに、粒子径の変動係数の小さい黒色シリカ粒子は、
粒子径の分布がシャープであることがら以下に実施例を
挙げ、本発明を更に具体的に説明するが、以下の実施例
に於けるシリカ粒子の平均粒子径および変動係数の測定
、アルカリ金属の含有量および溶出量の測定、シリカ粒
子中のフッ素量の測定、シリカ粒子の黒色の程度として
のY値の測定、シリカ粒子中のカーボンの含有量、さら
に、シリカ粉体の電導度としての体積固有抵抗の測定は
、以下に示す方法で行なった。Furthermore, black silica particles with a small coefficient of variation in particle size are
Since the particle size distribution is sharp, the present invention will be explained in more detail using Examples below. Measurement of content and elution amount, measurement of fluorine amount in silica particles, measurement of Y value as degree of blackness of silica particles, content of carbon in silica particles, and volume as electrical conductivity of silica powder. The specific resistance was measured by the method shown below.
(1)平均粒子径および変動係数
走査型電子顕微鏡を用いて、任意の粒子100個の粒子
径を測定し、以下の式より算出した。(1) Average particle diameter and coefficient of variation The particle diameter of 100 arbitrary particles was measured using a scanning electron microscope, and calculated from the following formula.
入 ただし、X、は粒子径の測定値で、n=100とする。Enter However, X is a measured value of particle diameter, and n=100.
(2)アルカリ金属の含有量
試料に過塩素酸およびフッ化水素酸を加え、蒸発乾固さ
せた後、加熱溶解し、原子吸光分析装置を月いて測定し
た。(2) Content of Alkali Metals Perchloric acid and hydrofluoric acid were added to the sample, evaporated to dryness, dissolved by heating, and measured using an atomic absorption spectrometer.
(3)アルカリ金属の溶出量
試料1.0gと蒸留水100gを、テフロン製オートク
レイブ内に入れ、90℃で5時間、加熱処理した後、上
澄み液中のアルカリ金属を原子吸光分析装置で測定した
。(3) Amount of alkali metal eluted: Put 1.0 g of the sample and 100 g of distilled water into a Teflon autoclave, heat treat at 90°C for 5 hours, and then measure the alkali metal in the supernatant using an atomic absorption spectrometer. did.
(4)フッ素量
試料を両面テープでセルに固定し、蛍光X線分析装置で
測定した。(4) Fluorine content The sample was fixed to a cell with double-sided tape and measured using a fluorescent X-ray analyzer.
(5)黒色の程度(Y値)
3Mカラーコンピューター(SM−4、スガ試験機■製
)を用いて、JIS Z 8701で定めるXYZ
系のY値を測定し、黒色の程度の指標とした。(5) Degree of blackness (Y value) XYZ specified by JIS Z 8701 using a 3M color computer (SM-4, manufactured by Suga Test Instruments)
The Y value of the system was measured and used as an index of the degree of blackness.
なお、測定は、粉体セルを用いて、45°反射法で行な
った。Note that the measurement was performed using a powder cell using a 45° reflection method.
(6)カーボン含有量
試料をめのう乳鉢で破砕した後、カーボン分析装置を用
いて測定した。(6) Carbon content After crushing the sample in an agate mortar, it was measured using a carbon analyzer.
(7)シリカ粉体の体積固有抵抗
試料を12″0℃、10時間乾燥させた後、室温(20
℃)、湿度50%、5 kg/、:ffl加圧下で測定
した。(7) Volume resistivity sample of silica powder was dried for 12 inches at 0°C for 10 hours, then at room temperature (20°C).
℃), humidity 50%, and 5 kg/:ffl pressure.
奥祷→→
(8)光遮蔽性(写真Y値)
ガラス板上に黒色シリカ粒子を各粒子が互いに接するよ
うに一層に並べた後に、露光装置付の偏光顕微鏡(50
0倍)を用いてガラス板の後方から露光しつつ写真撮影
し、得られた写真の黒色度を上記(5)と同様にして測
定した。Deep prayer →→ (8) Light shielding property (photo Y value) After arranging black silica particles in a layer on a glass plate so that each particle is in contact with each other, a polarizing microscope equipped with an exposure device (50
A photograph was taken while exposing the glass plate from the rear using a magnifying glass (0x), and the degree of blackness of the obtained photograph was measured in the same manner as in (5) above.
用いた装置及び条件は次のとおりである。The equipment and conditions used are as follows.
・偏光顕微*:OLYMPUS BHA(偏光板及び
フィルターなし)
・自動露光装置:ADシステム PMIO(専用カメラ
付)
フィルム特性補正 4
標本分布補正 ト
フィルム:フジFP400B (ISO400)・露光
補正:視野内の測定サークル内に、カーボボン量3重量
%以上の黒色シリカ粒子
を1個人れて、ADシステムの自動測
光で!光時間が2.46秒になるよう
に光源の光量を調節した。・Polarizing microscope*: OLYMPUS BHA (without polarizing plate and filter) ・Automatic exposure device: AD system PMIO (with dedicated camera) Film characteristic correction 4 Sample distribution correction Film: Fuji FP400B (ISO400) ・Exposure correction: Measurement circle within the field of view Insert one black silica particle with a carbon content of 3% or more by weight, and use the automatic photometry of the AD system! The light intensity of the light source was adjusted so that the light time was 2.46 seconds.
・露出時間:10秒
・現像時間:30秒±2秒(25℃)
j(k転 (テづ 1
攪拌機付きのガラス製反応器(内容積5Iりに、メタノ
ール、アンモニア水(25重量%)および5N−NaO
H水溶液をそれぞれ1600mf!。・Exposure time: 10 seconds ・Development time: 30 seconds ± 2 seconds (25°C) and 5N-NaO
H aqueous solution at 1600mf each! .
350m4!および81Illを仕込み良く混合して反
応液とした。350m4! and 81Ill were prepared and mixed well to prepare a reaction solution.
次に、メタノールII!に対してテトラエチルシリケー
) (Si(OCzHs)4、日本コルコート化学社製
、商品名:エチルシリケート28〕を205gの割合で
溶解させ原料溶液を調製した。Next, Methanol II! A raw material solution was prepared by dissolving 205 g of tetraethyl silicate (Si(OCzHs) 4, manufactured by Nihon Colcoat Chemical Co., Ltd., trade name: ethyl silicate 28).
また、メタノール、アンモニア水(25重量%)および
5N−NaOH水溶液を、それぞれ700mj!、20
0a+fおよび100IIlNの割合で混合して、添加
用アルカリ溶液を調製した。In addition, methanol, ammonia water (25% by weight) and 5N-NaOH aqueous solution were each added at 700 mj! , 20
An alkaline solution for addition was prepared by mixing 0a+f and 100IIIN.
反応液の温度を20℃に保ちながら、上記原料溶液を定
量ポンプを用いて、1o+4!/分の速度で反応液中に
清々添加した。添加開始後、約2時間でナトリウムイオ
ン濃度は5mmol/〜lまで低下し、これ以後、反応
液中のナトリウムイオン濃度が5mmoA/j!、水の
濃度が7.0〜8.5mol/ l、アンモニアの濃度
が2.5〜3. Omo l 、/ 7!で一定となる
ように反応を停止させるまで、上記の添加用アルカリ溶
液を適宜、清々添加した。While keeping the temperature of the reaction solution at 20°C, the above raw material solution was added to 1o+4! using a metering pump. It was added neatly to the reaction solution at a rate of 1/min. After about 2 hours after the addition started, the sodium ion concentration decreased to 5 mmol/~l, and from then on, the sodium ion concentration in the reaction solution decreased to 5 mmol/j! , the concentration of water is 7.0-8.5 mol/l, and the concentration of ammonia is 2.5-3. Omol, / 7! The above alkaline solution for addition was added as appropriate until the reaction was stopped at a constant value of .
反応開始後、約30時間で反応液中のシリカ粒子の粒径
は3.0μmとなり、原料溶液および添加用アルカリ溶
液の添加を停止させ、反応液を静置、粒子を沈降させ、
上澄み液を分離した。更に、メタノール中に再分散させ
、デカンテーション処理を行なった。Approximately 30 hours after the start of the reaction, the particle size of the silica particles in the reaction solution reached 3.0 μm, and the addition of the raw material solution and the alkaline solution for addition was stopped, the reaction solution was allowed to stand, and the particles were allowed to settle.
The supernatant was separated. Furthermore, it was redispersed in methanol and subjected to a decantation treatment.
上記のようにして得られたシリカ粒子50gをメタノー
ル1600mj!およびアンモニア水(25重量%)4
00allの混合溶液に再分散させ、反応後入ラリ−と
した。50 g of the silica particles obtained as above were mixed with 1600 mj of methanol! and ammonia water (25% by weight)4
It was redispersed in a mixed solution of 0.00all to prepare a post-reaction slurry.
また、メタノール800mj!、アンモニア水(25重
量%)200allおよび5N−NaOH水溶液水溶液
10モj!した添加用アンモニア溶液を調製した。なお
、原料溶液は、前記の原料溶液と同組成のものを使用し
た。Also, methanol 800mj! , 200 all of ammonia water (25% by weight) and 10 moj of 5N-NaOH aqueous solution! An ammonia solution for addition was prepared. The raw material solution used had the same composition as the raw material solution described above.
次に、該添加用アンモニア溶液を該反応液スラリー中に
2 trrl1分の速度で添加し、約30分後、該原料
溶液を111117分の速度で、該添加用アンモニア溶
液と並列して添加した。該添加用アンモニア溶液の添加
は反応停止まで続け、ナトリウムイオン濃度が3.5
m+++ol/ l、水の濃度が7.5〜B、5rno
l/l、アンモニア濃度が2.5〜3.0 mo I!
/!で一定となるようにした。Next, the ammonia solution for addition was added into the reaction slurry at a rate of 2 trrl 1 minute, and after about 30 minutes, the raw material solution was added at a rate of 111117 minutes in parallel with the ammonia solution for addition. . Addition of the ammonia solution for addition is continued until the reaction is stopped, and the sodium ion concentration is 3.5.
m+++ol/l, water concentration 7.5~B, 5rno
l/l, ammonia concentration is 2.5-3.0 mo I!
/! It was made to be constant.
原料溶液の添加開始後、約48時間でシリカ粒子の粒径
は4.6μmに成長した。The particle size of the silica particles grew to 4.6 μm in about 48 hours after starting addition of the raw material solution.
さらに、得られた粒径4.6μmの粒子を種粒子として
、上記の操作を2度くり返したところ、粒径は6.2μ
−となった。その後、反応液を静置、粒子を沈降させ、
上澄み液を分離した。更に、メタノール中に再分散させ
、デカンテーション処理を3回くり返し、エバポレータ
ーでメタノールを除き、120℃で減圧乾燥して、白色
シリカ粒子(A)を得た。Furthermore, when the above operation was repeated twice using the obtained particles with a particle size of 4.6 μm as seed particles, the particle size was 6.2 μm.
- became. After that, the reaction solution is allowed to stand still, the particles are allowed to settle,
The supernatant was separated. Furthermore, it was redispersed in methanol, the decantation treatment was repeated three times, the methanol was removed with an evaporator, and the mixture was dried under reduced pressure at 120° C. to obtain white silica particles (A).
得られた白色シリカ粒子(A)は、平均粒子径6.20
μm、粒径の変動係数0.9%で、ナトリウム含有量5
.2重量%であった。The obtained white silica particles (A) have an average particle diameter of 6.20
μm, particle size variation coefficient 0.9%, sodium content 5
.. It was 2% by weight.
次に、上記の白色シリカ粒子(A)50gをメタノール
500111中に入れ、スラリー化した後、硝酸水溶液
(61重量%)100o+1を添加し、室温下で16時
間、攪拌を続けた。その後、粒子を沈降・デカンテーシ
ョンさせ、メタノールで洗浄した。洗浄操作を3回行な
った後、120℃で10時間、減圧乾燥させ、白色シリ
カ粒子(B)を得た。Next, 50 g of the above white silica particles (A) were put into methanol 500111 to form a slurry, and then 100 o+1 of a nitric acid aqueous solution (61% by weight) was added, and stirring was continued for 16 hours at room temperature. Thereafter, the particles were sedimented and decanted, and washed with methanol. After performing the washing operation three times, it was dried under reduced pressure at 120° C. for 10 hours to obtain white silica particles (B).
得られた白色シリカ粒子(B)のナトリウム含有量は、
12ppmであった。The sodium content of the obtained white silica particles (B) is
It was 12 ppm.
上記の白色シリカ粒子(B)Logをメタノール50m
1でスラリー化した後、このスラリー中に、フッ化水素
酸水溶液(50重量%)2.3mj!、メタノール10
0mj!の混合溶液を、室温下で約1時間かけて添加し
、10時間攪拌を続けた。この後、メタノールで洗浄し
、120℃で減圧乾燥させて、白色シリカ粒子(C)を
得た。The above white silica particles (B) Log in methanol 50m
After slurrying in step 1, 2.3 mj! of hydrofluoric acid aqueous solution (50% by weight) was added to the slurry. , methanol 10
0mj! A mixed solution of was added over about 1 hour at room temperature, and stirring was continued for 10 hours. Thereafter, it was washed with methanol and dried under reduced pressure at 120°C to obtain white silica particles (C).
白色シリカ粒子(C)のナトリウム含有量は12ppm
で、蛍光X線分析によるフッ素量は7.7重量%であっ
た。The sodium content of white silica particles (C) is 12 ppm
The amount of fluorine determined by fluorescent X-ray analysis was 7.7% by weight.
次−に、上記の白色シリカ粒子(C)5gを、磁製ルツ
ボに入れ、空気雰囲気下、10℃/分で昇温し、600
℃で10時間加熱処理をし、黒色シリカ粒子を得た。Next, 5 g of the above white silica particles (C) were placed in a porcelain crucible, heated at a rate of 10°C/min in an air atmosphere, and heated to 600°C.
A heat treatment was performed at ℃ for 10 hours to obtain black silica particles.
った、また、ナトリウムの溶出および蛍光X線分析によ
るフッ素は、認められず、カラーコンピューターによる
Y値は0.77%であった。また、黒色シリカ粒子中の
カーボン含有量は、1.06重量%、5 kg/Ci加
圧下での体積固有抵抗は1.OX 10”Ω・値を超え
るものであった。Further, no sodium elution and no fluorine were observed by fluorescent X-ray analysis, and the Y value by color computer was 0.77%. Further, the carbon content in the black silica particles is 1.06% by weight, and the volume resistivity under a pressure of 5 kg/Ci is 1.06% by weight. The value exceeded OX 10”Ω.
得られた黒色シリカ粒子は、メタノール及びフロン−1
13中に分散させても退色することはなかった。The obtained black silica particles were mixed with methanol and Freon-1.
Even when dispersed in No. 13, the color did not fade.
実施例2
実施例1の白色シリカ粒子(A)の合成条件を変えて、
白色シリカ粒子(A)の平均粒子径を、2.47μ閣
、5.63μ閣 、9.25μm 、18.00μ瓢と
した。また、実施例1の硝酸水溶液の添加量、及び鉱酸
の種類を変えた。Example 2 The synthesis conditions for white silica particles (A) in Example 1 were changed,
The average particle diameter of the white silica particles (A) is 2.47 μm.
, 5.63 μm, 9.25 μm, and 18.00 μm. Further, the amount of the nitric acid aqueous solution added and the type of mineral acid in Example 1 were changed.
上記した以外は、実施例1と全く同様な条件で得られた
黒色シリカ粒子は、メタノール及びフロン−113中に
分散させても退色することはなかった。Except for the above, the black silica particles obtained under the same conditions as in Example 1 did not discolor even when dispersed in methanol and Freon-113.
実施例3
実施例1および実施例2の白色シリカ粒子(B)を用い
て、フッ化水素酸水溶°液の添加量を変えて、白色シリ
カ粒子(C)を調製した。また、得られた白色シリカ粒
子(C)の加熱処理条件を変えて黒色シリカ粒子を調製
した。Example 3 Using the white silica particles (B) of Examples 1 and 2, white silica particles (C) were prepared by changing the amount of the hydrofluoric acid aqueous solution added. Further, black silica particles were prepared by changing the heat treatment conditions of the obtained white silica particles (C).
上記した以外は、実施例1および実施例2と全得られた
黒色シリカ粒子は、メタノール及びフロン−113中に
分散させても退色することはなかった。Other than the above, the black silica particles obtained in Examples 1 and 2 did not discolor even when dispersed in methanol and Freon-113.
実施例4
実施例1および実施例2の白色シリカ粒子(B)を用い
て、フン化処理時の有機溶媒を変えて、白色シリカ粒子
(C)を調製した。Example 4 Using the white silica particles (B) of Examples 1 and 2, white silica particles (C) were prepared by changing the organic solvent used during the fluorination treatment.
上記した以外は、実施例1および実施例2と全得られた
黒色シリカ粒子は、メタノール及びフロン−113中に
分散させても退色することはなかった。Other than the above, the black silica particles obtained in Examples 1 and 2 did not discolor even when dispersed in methanol and Freon-113.
比較例1
実施例1の白色シリカ粒子(A)及び白色シリカ粒子(
B)を、加熱処理条件を変えて、加熱処理した。結果を
表4に示した。Comparative Example 1 White silica particles (A) and white silica particles (A) of Example 1
B) was heat treated under different heat treatment conditions. The results are shown in Table 4.
実施例5
実施例1で得られた白色シリカ粒子CB)101をメタ
ノール50―でスラリー化した後、このスラリー中に、
ケイフッ化水素撒水溶液(401亀襲)5−、メタノー
ル100―の混合溶液を加え、10時間攪拌を続けた。Example 5 After slurrying the white silica particles CB) 101 obtained in Example 1 with methanol 50-, in this slurry,
A mixed solution of hydrogen fluorosilicide water solution (401 Kametsu) 5- and methanol 100- was added, and stirring was continued for 10 hours.
この後、デカンテーションして120℃で減圧乾燥させ
て、白色シリカ粒子(C)を得た。Thereafter, it was decanted and dried under reduced pressure at 120°C to obtain white silica particles (C).
白色シリカ粒子(C)のナトリウム含有量は12−で、
螢光X!!分析によるフッ薫量は7.6重量襲であった
。The sodium content of the white silica particles (C) is 12-,
Fluorescent X! ! The amount of fluoride smoke determined by analysis was 7.6% by weight.
次に、上記の白色シリカ粒子(C)5gを、磁極ルツボ
に入れ、空気雰囲気下、30℃/分で昇温し、900℃
で30分加熱処理をし、黒色シリカ粒子を得た。Next, 5 g of the above white silica particles (C) were placed in a magnetic crucible, and the temperature was raised at 30°C/min in an air atmosphere to 900°C.
A heat treatment was performed for 30 minutes to obtain black silica particles.
得られた黒色シリカ粒子は、完全真球で、平均粒子径6
.0p雪、粒径の変動係数09≦であった。また、ナト
リウムの溶出および螢光X線分析によるフッ素は、詔め
られず、カラーコンピューターによるY値は0.62%
であった。また、黒色シリカ粒子中のカーボン含有量は
、5.0重1%、5V加圧下での体積固有抵抗は1.0
X10’Ω・国を超えるものであった。The obtained black silica particles were perfectly spherical and had an average particle diameter of 6.
.. For 0p snow, the coefficient of variation of particle size was 09≦. In addition, fluorine was not found in sodium elution and fluorescent X-ray analysis, and the Y value determined by a color computer was 0.62%.
Met. In addition, the carbon content in the black silica particles is 5.0% by weight, and the volume resistivity under 5V pressure is 1.0.
It was more than X10'Ω/country.
得られた黒色シリカ粒子は、メタノール及びフロン−1
13中に分散させても退色することはなかった。The obtained black silica particles were mixed with methanol and Freon-1.
Even when dispersed in No. 13, the color did not fade.
実施例6
実施例2の平均粒子径が様々な白色シリカ粒子(A)を
用い、実施例5の硝酸水溶液の添加量、及び鉱酸の種類
を変えた。Example 6 The white silica particles (A) of Example 2 having various average particle diameters were used, and the amount of the nitric acid aqueous solution added and the type of mineral acid of Example 5 were changed.
上記した以外は、実施例5と全く同様な条件で行ない、
完全真球状の黒色シリカ粒子を得た。結果を表5に示し
た。Except for the above, the process was carried out under the same conditions as in Example 5.
Completely spherical black silica particles were obtained. The results are shown in Table 5.
得られた黒色シリカ粒子は、メタノール及びフロン−1
13中に分散させても退色することはなかった。The obtained black silica particles were mixed with methanol and Freon-1.
Even when dispersed in No. 13, the color did not fade.
実施へ7
実施例5および実施eli6の白色シリカ粒子CB)を
用いて、ケイ7ツ化水素識水溶液の添加量を変えて、白
色シリカ粒子(C)を調製した。また、得られた白色シ
リカ粒子(C)の加熱処理条件を変えて黒色シリカ粒子
を調製した。Implementation 7 Using the white silica particles CB) of Example 5 and Example eli6, white silica particles (C) were prepared by changing the amount of the hydrogen 7tsilicate aqueous solution added. Further, black silica particles were prepared by changing the heat treatment conditions of the obtained white silica particles (C).
上記した以外は、実施例5および実施例6と全く同様な
条件で行ない、完全真球状の黒色シリカ粒子を得た。結
果を表6に示した。Except for the above, the same conditions as in Example 5 and Example 6 were used to obtain completely spherical black silica particles. The results are shown in Table 6.
得られた黒色シリカ粒子は、メタノール及びフロン−1
13中に分散させても退色することはなかった。The obtained black silica particles were mixed with methanol and Freon-1.
Even when dispersed in No. 13, the color did not fade.
実施例8
実施例5および実施例6の白色シリカ粒子CB)を用い
て、フッ化処理時の有機溶媒を変えて、白色シリカ粒子
(C)を調製した。Example 8 Using the white silica particles CB) of Examples 5 and 6, white silica particles (C) were prepared by changing the organic solvent used during the fluorination treatment.
上記した以外は、実施例5および実施例6と全く同様な
条件で行ない、完全真球状の黒色シリカ粒子を得た。結
果を表7に示した。Except for the above, the same conditions as in Example 5 and Example 6 were used to obtain completely spherical black silica particles. The results are shown in Table 7.
得られた黒色シリカ粒子は、メタノール及びフロン−1
13中に分散させても退色することはなかった。The obtained black silica particles were mixed with methanol and Freon-1.
Even when dispersed in No. 13, the color did not fade.
実施例9
実施帆5において、ケイ7ツ化水葉酸水溶液に代えて、
水ウフツ化水素豪水溶液を表8に示した量用い、また、
表8に示した条件で加熱したこと以外は実施例5と全く
同様にして黒色シリカ粒子を得た。得られた黒色シリカ
粒子の物性を表8に示した。Example 9 In Example 5, instead of the silicate hydrofolic acid aqueous solution,
Using an aqueous solution of hydrogen fluoride in the amount shown in Table 8,
Black silica particles were obtained in exactly the same manner as in Example 5, except that the heating was performed under the conditions shown in Table 8. Table 8 shows the physical properties of the obtained black silica particles.
実施@lO
実施@1.実施例2のA1実施例の46゜実施例5.実
施例6のAI、実施例7の&6゜実j1例9のAI及び
A2の黒色シリカ粒子をスペーサーとして用いて、液晶
表示装置を以下の方法で作成した。Implementation @lO Implementation @1. 46° Example 5 of A1 Example of Example 2. A liquid crystal display device was produced by the following method using the AI of Example 6, the AI of Example 7 and the black silica particles of A2 as spacers.
各黒色シリカ粒子250■を分散液(1゜1.2−トリ
クロロ−1−2,2−)リフルオロエタン900−士エ
タノール100WLt)ll中に分散させ、スペーサー
散布機を用いて、黒色シリカ粒子を、液晶表示セル用研
摩カラス基板(160mX230■)上に、散布密度2
5個/−となるように散布した。なお、上記のガラス基
板は、ITO(インジウム・スズ醸化物)透明電極パタ
ーン付で、ポリイミド配向膜塗布後、ラビング処理をし
たものを使用した。Disperse 250 μl of each black silica particle in a dispersion liquid (1°1.2-trichloro-1-2,2-)lifluoroethane 900 μl ethanol 100 WLt), and use a spacer scatterer to disperse the black silica particles. on a polished glass substrate for liquid crystal display cells (160m x 230cm) at a scattering density of 2.
It was distributed at a rate of 5/-. The glass substrate used above had an ITO (indium tin compound) transparent electrode pattern and was subjected to a rubbing treatment after coating with a polyimide alignment film.
また、上記各黒色シリカ粒子を散布した力゛ラス基板と
対のガラス基板には、同一の各黒色シリカ粒子とシール
用エボ牛シ系樹脂とを混合したソール用インキ(黒色シ
リカ粒子1.5I十エポキシ系樹脂100II)を用い
て、スクリーン印刷機でシール印刷を行なった。In addition, on the glass substrate paired with the glass substrate on which the black silica particles were sprinkled, an ink for soles (black silica particles 1.5 I Seal printing was performed using a screen printing machine using epoxy resin 100II).
次に、上記の一対のガラス基板を重ね合わせた後、α8
に!、!の加圧下で、150℃1時間加熱し℃、シール
部を硬化させて液晶表示用空セルを作成した。Next, after overlapping the above pair of glass substrates, α8
To! ,! The sealed portion was cured by heating at 150° C. for 1 hour under a pressure of 150° C. to prepare an empty cell for a liquid crystal display.
実施例1.5,6.7及び9の黒色シリカ粒子を用いて
作成した空セルには、5BE(スーパーツイスト複屈折
効果形)液晶(メルク社製)を実施例2のA1の黒色シ
リカ粒子を用いた空セルには、SmC” (カイラルス
メクテイツクC)液晶(強誘電性!晶、メルク社製)を
、また、実施@3046の黒色シリカ粒子を用いた空セ
ルにはTN(ツイストネマチック形)液晶(メルク社&
)を、液晶注入装置を用いてそれぞれ注入し、液晶表示
セルを作成した。In the empty cells created using the black silica particles of Examples 1.5, 6.7, and 9, 5BE (super twist birefringence effect type) liquid crystal (manufactured by Merck & Co., Ltd.) was added to the black silica particles of A1 of Example 2. SmC” (chiral smectic C) liquid crystal (ferroelectric! crystal, manufactured by Merck & Co., Ltd.) was used for the empty cell using SmC”, and TN (twisted liquid crystal) was used for the empty cell using black silica particles in the experiment Nematic type) liquid crystal (Merck & Co., Ltd.)
) were respectively injected using a liquid crystal injection device to create a liquid crystal display cell.
作成した液晶表示セルのセル厚、セル厚のばらつきを任
意の箇所50点について測定した。また、セルを点灯表
示させて、コントラストおよびセルの寿命を検査した。The cell thickness and variations in cell thickness of the produced liquid crystal display cell were measured at 50 arbitrary points. In addition, the contrast and life of the cell were inspected by lighting the cell.
結果を表9に示した。The results are shown in Table 9.
比較例2
比較例1のAI及びム3で得られたシリカ粒子をスペー
サーとして用いて、それぞれ液晶表示用空セルを作成し
た。空セルの作成方法は、実施例10と同一の方法によ
った。空セルには、SBE液晶を注入し、液晶表示セル
を作成した。Comparative Example 2 Using the silica particles obtained in AI and Mu3 of Comparative Example 1 as spacers, empty cells for liquid crystal display were prepared. The empty cells were created using the same method as in Example 10. SBE liquid crystal was injected into the empty cell to create a liquid crystal display cell.
作成した液晶表示セルのセル厚データおよび表示性能は
、表9に示した。Table 9 shows the cell thickness data and display performance of the produced liquid crystal display cell.
Claims (3)
金属を実質的に含まず、カーボンを0.1重量%以上含
有することを特徴とする黒色シリカ粒子。(1) Black silica particles having an average particle diameter of 0.1 to 50 μm, substantially free of alkali metals, and containing 0.1% by weight or more of carbon.
ッ素化剤及び有機溶媒と接触させた後、500℃以上の
温度で加熱することを特徴とする特許請求の範囲第(1
)項記載の黒色シリカ粒子の製造方法。(2) Claim No. 1, characterized in that silica particles substantially free of alkali metals are brought into contact with a fluorinating agent and an organic solvent, and then heated at a temperature of 500°C or higher.
) The method for producing black silica particles as described in item 2.
よりなる液晶表示素子用スペーサー。(3) A spacer for a liquid crystal display element comprising black silica particles according to claim (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-52644 | 1990-03-06 | ||
JP5264490 | 1990-03-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03279209A true JPH03279209A (en) | 1991-12-10 |
JP3061285B2 JP3061285B2 (en) | 2000-07-10 |
Family
ID=12920550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02221355A Expired - Fee Related JP3061285B2 (en) | 1990-03-06 | 1990-08-24 | Black silica particles and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3061285B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013369A (en) * | 1994-11-21 | 2000-01-11 | Ube Nitto Kasei Co., Ltd. | Process for the production of titanium oxide coated particles |
US6071614A (en) * | 1997-07-14 | 2000-06-06 | 3M Innovative Properties Company | Microporous fluorinated silica agglomerate and method of preparing and using same |
JP2000281430A (en) * | 1999-03-31 | 2000-10-10 | Kyocera Corp | Black silicon dioxide-based corrosion resistant member and its production |
JP2006078826A (en) * | 2004-09-10 | 2006-03-23 | Nippon Kayaku Co Ltd | Photosensitive resin composition |
WO2019044480A1 (en) * | 2017-08-31 | 2019-03-07 | 宇部エクシモ株式会社 | Black powder, and method for producing same |
JP2019151676A (en) * | 2018-02-28 | 2019-09-12 | 横浜ゴム株式会社 | Sealing material composition and exterior wall |
-
1990
- 1990-08-24 JP JP02221355A patent/JP3061285B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6013369A (en) * | 1994-11-21 | 2000-01-11 | Ube Nitto Kasei Co., Ltd. | Process for the production of titanium oxide coated particles |
US6194069B1 (en) | 1994-11-21 | 2001-02-27 | Ube Nitto Kasei Co., Ltd. | Process for the production of coated particles |
US6071614A (en) * | 1997-07-14 | 2000-06-06 | 3M Innovative Properties Company | Microporous fluorinated silica agglomerate and method of preparing and using same |
JP2000281430A (en) * | 1999-03-31 | 2000-10-10 | Kyocera Corp | Black silicon dioxide-based corrosion resistant member and its production |
JP2006078826A (en) * | 2004-09-10 | 2006-03-23 | Nippon Kayaku Co Ltd | Photosensitive resin composition |
JPWO2019044480A1 (en) * | 2017-08-31 | 2020-10-15 | 宇部エクシモ株式会社 | Black powder and its manufacturing method |
CN111032570A (en) * | 2017-08-31 | 2020-04-17 | 宇部爱科喜模株式会社 | Black powder and method for producing same |
KR20200044905A (en) * | 2017-08-31 | 2020-04-29 | 우베 에쿠시모 가부시키가이샤 | Black powder and its manufacturing method |
WO2019044480A1 (en) * | 2017-08-31 | 2019-03-07 | 宇部エクシモ株式会社 | Black powder, and method for producing same |
EP3677549A4 (en) * | 2017-08-31 | 2021-06-02 | Ube Exsymo Co., Ltd. | Black powder, and method for producing same |
TWI771478B (en) * | 2017-08-31 | 2022-07-21 | 日商宇部愛科喜模股份有限公司 | Black powder and method for producing the same |
JP2022186814A (en) * | 2017-08-31 | 2022-12-15 | 宇部エクシモ株式会社 | Black powder, and method for producing the same |
US11679985B2 (en) | 2017-08-31 | 2023-06-20 | Ube Exsymo Co., Ltd. | Black powder, and method for producing same |
JP2019151676A (en) * | 2018-02-28 | 2019-09-12 | 横浜ゴム株式会社 | Sealing material composition and exterior wall |
Also Published As
Publication number | Publication date |
---|---|
JP3061285B2 (en) | 2000-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Han et al. | Seed‐crystal‐induced cold sintering toward metal halide transparent ceramic scintillators | |
CN103097945B (en) | The manufacture method of liquid crystal indicator and liquid crystal indicator | |
JPH059027A (en) | Black fine particles and its production | |
Zhong et al. | Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles | |
Kasturi et al. | Trivalent rare‐earth activated hexagonal lanthanum fluoride (LaF3: RE3+, where RE= Tb, Sm, Dy and Tm) nanocrystals: Synthesis and optical properties | |
Qiu et al. | Sequential vacuum evaporated copper metal halides for scalable, flexible, and dynamic X‐ray detection | |
CN105487296B (en) | Aligning film material and preparation method thereof, alignment films, display base plate preparation method | |
JPH03279209A (en) | Black silica grain and production thereof | |
WO2019015281A1 (en) | Frame sealing adhesive and manufacturing method therefor, and liquid crystal display panel and display device | |
Chen et al. | Customizable Scintillator of Cs3Cu2I5: 2% In+@ Paper for Large‐Area X‐Ray Imaging | |
CN1150427C (en) | Nonlinear single crystal, method for producing same and use thereof | |
Babu et al. | Optical, emission, and excitation dynamics of Eu3+‐doped bismuth‐based phosphate glass for visible display laser applications | |
CN105319758B (en) | A kind of liquid crystal fluorescence light scattering display screen containing micro gelator | |
CN106423129A (en) | Hydrothermal method for preparing graphene supported titanium dioxide | |
Kasturi et al. | Europium‐activated rare earth fluoride (LnF3: Eu3+–Ln= La, Gd) nanocrystals prepared by using ionic liquid/NH4F as a fluorine source via hydrothermal synthesis | |
Rodrigues et al. | Impact of Tb3+ ion concentration on the morphology, structure and photoluminescence of Gd2O2SO4: Tb3+ phosphor obtained using thermal decomposition of sulfate hydrate | |
Gu et al. | Preparation and characterization of GdTaO 4: Eu 3+ sol-gel luminescence thin films | |
Ma et al. | Amorphous Mn3O4 Nanocages with High‐Efficiency Charge Transfer for Enhancing Electro‐Optic Properties of Liquid Crystals | |
KR20040066913A (en) | Liquid crystal display cell | |
Liu et al. | Preparation and fluorescence characterization of monodisperse core‐shell structure SiO2@ SiO2: Tb (1, 2‐BDC) 3phen microspheres by a sol‐seed method | |
Tian et al. | Structure and photoluminescence properties of SrWO4 3D microspheres synthesized by the surfactant‐assisted hydrothermal method | |
CN113337890A (en) | Preparation method and application of yttrium fluoiodate compound and crystal thereof | |
Al-Nidawi et al. | Er2O3 doped zinc borosilicate glass substrate: Impact of doping to the structural, optical and surface plasmon resonance performance | |
Wang et al. | Nanocrystalline Eu-doped PrB6 hexaborides with tunable optical absorption: A combined experimental and density functional theory study | |
Konishi et al. | Synthesis of ZrF4 BaF2 LnF3 glasses (Ln= La, Ce, Pr, Nd or Eu) by combined processes of sol-gel and fluorination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |