JPH03278064A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03278064A
JPH03278064A JP18908690A JP18908690A JPH03278064A JP H03278064 A JPH03278064 A JP H03278064A JP 18908690 A JP18908690 A JP 18908690A JP 18908690 A JP18908690 A JP 18908690A JP H03278064 A JPH03278064 A JP H03278064A
Authority
JP
Japan
Prior art keywords
phthalocyanine
binder polymer
layer
type
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18908690A
Other languages
Japanese (ja)
Inventor
Mutsuaki Murakami
睦明 村上
Soji Tsuchiya
土屋 宗次
Atsushi Omote
篤志 表
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18908690A priority Critical patent/JPH03278064A/en
Publication of JPH03278064A publication Critical patent/JPH03278064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity and stability and to facilitate manufacture by forming the electrophotographic sensitive body composed of a binder polymer and 2 kinds of metal-phthalocycnines molecularly and granularly dispersed into the binder polymer. CONSTITUTION:The electrophotographic sensitive body is composed of the binder polymer and the 2 kinds of metal-phthalocycnines molecularly and granularly dispersed into the binder polymer, thus permitting the electrophotographic sensitive body to be simplified in the manufacturing process by using a positively chargeable single layer type organic photosensitive body, to be high in sensitivity, especially, in the wavelength region of 550 - 800nm, and especially excellent in characteristics in the case of positive charging, superior in stability and chargeability and also in printing resistance and heat resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は実質的に電荷発生剤とバインダー高分子からな
る正帯電方式の電子写真に最適な電子写真用感光体に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor that is suitable for positive charging type electrophotography and is substantially composed of a charge generating agent and a binder polymer.

従来の技術 有機感光体(OPCと略す)は、無機感光体に比べ分子
設計により色々な波長に高感度な材料を合成できること
、無公害であること、生産性、経済性に優れ、安価であ
ること、等の特徴を有しており、現在活発な研究開発が
行われている。そして、従来、有機感光体の問題点とさ
れていた耐久性や感度の面でも著しい改良がなされ、そ
のいくつかは実用化に至っており、現在、電子写真用感
光体の主力となりつつある。
Conventional technologyOrganic photoreceptors (abbreviated as OPC) are capable of synthesizing materials with high sensitivity to various wavelengths through molecular design than inorganic photoreceptors, are non-polluting, have superior productivity, are more economical, and are cheaper. It has the following characteristics and is currently undergoing active research and development. In addition, remarkable improvements have been made in terms of durability and sensitivity, which were conventionally considered problems of organic photoreceptors, and some of these improvements have been put into practical use, and they are now becoming the mainstay of photoreceptors for electrophotography.

OPCは通常、光を吸収してキャリアを発生させる電荷
発生層(CGLと略す)と生成したキャリアを移動させ
る電荷移動層(CTLと略す)の2重層構造で使用され
、その高感度化が計られている。CGLに使用される材
料(CGMと略す)としては、各種ペリレン系化合物、
無金属フタロシアニン、各種金属フタロシアニン、チア
ピリリウム系化合物、アンスアンスロン系化合物、スク
アリリウム系化合物、ビスアゾ系化合物、トリスアゾ顔
料、アズレニウム色素、等のいろいろな有機材料が検討
されている。
OPC is usually used with a double layer structure consisting of a charge generation layer (abbreviated as CGL) that absorbs light and generates carriers and a charge transfer layer (abbreviated as CTL) that moves the generated carriers. It is being Materials used for CGL (abbreviated as CGM) include various perylene compounds,
Various organic materials are being investigated, such as metal-free phthalocyanines, various metal phthalocyanines, thiapyrylium compounds, anthanthrone compounds, squarylium compounds, bisazo compounds, trisazo pigments, and azulenium dyes.

一方、CTLに使用される材料(CTMと略す)として
は、各種ヒドラゾン系化合物、オキサゾール系化合物、
トリフェニルメタン系化合物、アリールアミン系化合物
、等が開発されている。
On the other hand, materials used for CTL (abbreviated as CTM) include various hydrazone compounds, oxazole compounds,
Triphenylmethane compounds, arylamine compounds, etc. have been developed.

更に、近年はレーザープリンター等のデジタル記録用の
感光体として、これらの有機感光体を半導体レーザー光
(780830ns)に対応した近赤外領域で使用した
い、と言う要望が高まり、この領域で高感度な特性をも
つ有機感光体の開発が盛んである。この様な領域の感光
体として有機感光体は無機感光体に比べ感度の点から有
利である。
Furthermore, in recent years, there has been an increasing desire to use these organic photoreceptors as photoreceptors for digital recording in laser printers and other devices in the near-infrared region, which is compatible with semiconductor laser light (780,830 ns). Development of organic photoreceptors with unique characteristics is active. As a photoreceptor in such a region, an organic photoreceptor has an advantage over an inorganic photoreceptor in terms of sensitivity.

これらの材料は、バインダー高分子とともに比較的簡単
な塗布法でドラムやベルト、等の基板上に形成される。
These materials are formed on a substrate such as a drum or belt by a relatively simple coating method together with a binder polymer.

この欅な目的に使用されるバインダー高分子としては、
ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹
脂、アクリル−スチレン樹脂、等がある。一般に、2重
層構造では高感度化のために00層は数ミクロンの厚さ
で塗布され、一方、CT層は数十ミクロンの厚さで塗布
される。このときその強度、耐刷性、等の理由から00
層は基板側に、CT層は表面側に形成されるのが普通で
ある。この様な構成においては、CTMが正孔の移動に
より作動するもののみ実用化されているので、その2重
層感光体は負帯電方式発明が解決しようとする課題 しかしながら、この様な負帯電方式では帯電に用いられ
る負電荷により空気中の酸素がオゾンになると言う問題
があった。オゾンは人体にとって有害であるばかりでな
く、しばしば感光体と反応して感光体の寿命を短くする
と言う問題があった。
The binder polymer used for this important purpose is
Examples include polyester resin, polycarbonate resin, acrylic resin, acrylic-styrene resin, and the like. Generally, in a double layer structure, the 00 layer is coated to a thickness of several microns to increase sensitivity, while the CT layer is coated to a thickness of several tens of microns. At this time, due to its strength, printing durability, etc.
The layer is usually formed on the substrate side and the CT layer on the surface side. In such a structure, only those in which the CTM is operated by the movement of holes have been put into practical use, so the dual layer photoreceptor has a negative charging method. There was a problem in that oxygen in the air turned into ozone due to the negative charge used for charging. Ozone is not only harmful to the human body, but also often reacts with photoreceptors, shortening the life of the photoreceptor.

更に、この欅な2層方式においては、(1)製造工程が
複雑になる、(2)層間の剥離等によりその安定性が問
題になる、等の問題があった。
Furthermore, this two-layer method has problems such as (1) the manufacturing process becomes complicated, and (2) stability becomes a problem due to peeling between layers.

この樟な問題点を解決するために現在では正帯電方式に
よる有機感光体の開発がさかんである。
In order to solve this serious problem, development of positively charged organic photoreceptors is currently underway.

従来、正帯電を実現するためには、(1) CG L層
とCTL層を負帯電の場合と逆構成にした逆2層構造、
(2)各種CGMとCTMをバインダー高分子中に分散
させた1層構造、(3)銅フタロシアニンをバインダー
中に粒子状分散したもの、が検討されてきた。逆2層構
造においては負帯電方式の場合と同様な製造工程の複雑
さや層間剥離の問題は解決されない、更に、本質的に薄
くする必要のあるCGL層が感光体の表面に置かれる事
による耐印刷性の減少、寿命特性の劣化、が問題となっ
ている。
Conventionally, in order to achieve positive charging, (1) an inverted two-layer structure in which the CG L layer and CTL layer are configured in the opposite way to the negative charging case;
(2) A one-layer structure in which various CGM and CTM are dispersed in a binder polymer, and (3) A structure in which copper phthalocyanine is dispersed in particulate form in a binder have been studied. The inverted two-layer structure does not solve the same manufacturing process complexity and delamination problems as the negative charging method, and furthermore, the CGL layer, which inherently needs to be thin, is placed on the surface of the photoreceptor, which increases the durability. Problems include decreased printability and deterioration of life characteristics.

一方、正帯電を目指した単層型感光体は2層型よりも感
度、帯電特性(帯電用の電荷が乗りにくい)、残留電位
の点で劣っていた。感度の点で劣っていたのは電荷の発
生と移動が単層中でランダムに起こるためであり、単層
型感光体の問題点は感度、帯電特性、残留電位、繰り返
し安定性にあった。
On the other hand, single-layer type photoreceptors aimed at positive charging were inferior to two-layer types in terms of sensitivity, charging characteristics (charging charges are difficult to carry), and residual potential. The reason for the poor sensitivity was that charge generation and movement occurred randomly within the single layer, and the problems with single-layer photoreceptors were sensitivity, charging characteristics, residual potential, and repetition stability.

この様に従来のoPCはいずれもなんらかの問題をかか
えたものであった。従って、単層型の正帯電感光体で2
層型と同様な高感度、残留電位、帯電特性が実現出来る
なら、それは理想的な感光体となると考えられる0本発
明の目的は、上記の様な従来のOPCのもつ欠点を解決
し、高性能でしかも高感度、耐久性に優れる正帯電単層
型有機感光体を提供することにある。とくに、本発明が
解決しようとする課題は従来の単層型正帯電感光体の欠
点であった残留電位と繰り返し安定性を向上させること
にある。
As described above, all conventional oPCs have some kind of problem. Therefore, with a single layer type positively charged photoreceptor, 2
If high sensitivity, residual potential, and charging characteristics similar to those of the layered type can be realized, it would be considered an ideal photoreceptor.The purpose of the present invention is to solve the above-mentioned drawbacks of conventional OPC The object of the present invention is to provide a positively charged single-layer organic photoreceptor that has high performance, high sensitivity, and excellent durability. In particular, the problem to be solved by the present invention is to improve residual potential and repetition stability, which are disadvantages of conventional single-layer positively charged photoreceptors.

課題を解決するための手段 我々は、上記の問題点を解決するために、種々の構成を
有する正帯電単層型OPCの検討を行った。その結果、
CGMとして各種の金属フタロシアニンを用い、これと
適当なバインダー高分子の組み合わせからなる単層型O
PCが正帯電方式で優れた感光特性を発揮することを発
明して、この発明を完成するに至った。
Means for Solving the Problems In order to solve the above problems, we investigated positively charged single-layer OPCs having various configurations. the result,
A single-layer O made of a combination of various metal phthalocyanines and an appropriate binder polymer as CGM.
This invention was completed by discovering that PC exhibits excellent photosensitivity when positively charged.

作用 この発明にかかる正帯電単層型OPCは、従来にない構
成を有し、感光体としての優れた特性を実現でき、従来
の感光体に比べて、次のような特徴を有している。
Function: The positively charged single-layer OPC according to the present invention has an unprecedented structure and can realize excellent characteristics as a photoreceptor, and has the following characteristics compared to conventional photoreceptors. .

■ 単層構造であるので、製造工程が簡単である。■ Since it has a single layer structure, the manufacturing process is simple.

■ 従来の単層構造OPCに比べて、高感度である。■Higher sensitivity than conventional single-layer OPC.

■ 特に、正帯電方式で優れた特性を示す。■ Shows excellent characteristics especially in the positive charging method.

■ 従来の単層構造opcに比べて、安定性、帯電性に
優れている。
■ Excellent stability and chargeability compared to conventional single-layer structure OPC.

■ 550〜8GOn−の波長範囲で優れた感度を示す
(2) Shows excellent sensitivity in the wavelength range of 550 to 8 GOn-.

■ 単層構造であるので耐印刷性に優れている。■ Since it has a single layer structure, it has excellent printing resistance.

■ 熱に弱いCT剤が含まれていないので、耐熱性に優
れている。
■ It has excellent heat resistance because it does not contain CT agents that are sensitive to heat.

実施例 以下に本発明の詳細な説明する。Example The present invention will be explained in detail below.

この発明は、バインダー高分子と、該バインダー高分子
中に分子状分散した金属フタロシアニンと粒子状に分散
した金属フタロシアニンとからなる電子写真用感光体を
要旨とする。
The gist of the present invention is an electrophotographic photoreceptor comprising a binder polymer, a metal phthalocyanine molecularly dispersed in the binder polymer, and a metal phthalocyanine dispersed in particulate form.

本発明に用いられる金属フタロシアニンとしては各種結
晶系の銅フタロシアニン(CuPcと略す)、鉛フタロ
シアニン(PbPc)、スズフタロシアニン(SnPc
)、シリコンフタロシアニン(SiPc)、バナジウム
フタロシアニン(■Pc)、クロロアルミニウムフタロ
シアニン(AICIPc)、チタニルフタロシアニン(
TiOPc)、クロロインジュウムフタロシアニン(I
ncIPc)、クロロガリウムフタロシアニン(Gac
IPc)、等をあげることが出来る。とくに銅フタロシ
アニンはすぐれた感光特性を示し、T型、ε型、β型、
α型、の銅フタロシアニンは特に優れた特性をしめす、
その感度は、1.0〜2,0Iux、secに達し、従
来の単層型OPCに比べ著しい高感度である。また本発
明のOPCは550〜8GOnwの広い波長範囲の光に
対し優れた感度を示す。
The metal phthalocyanine used in the present invention includes various crystalline copper phthalocyanine (abbreviated as CuPc), lead phthalocyanine (PbPc), and tin phthalocyanine (SnPc).
), silicon phthalocyanine (SiPc), vanadium phthalocyanine (■Pc), chloroaluminum phthalocyanine (AICIPc), titanyl phthalocyanine (
TiOPc), chloroindium phthalocyanine (I
ncIPc), chlorogallium phthalocyanine (Gac
IPc), etc. In particular, copper phthalocyanine exhibits excellent photosensitivity, and has T-type, ε-type, β-type,
α-type copper phthalocyanine exhibits particularly excellent properties.
Its sensitivity reaches 1.0 to 2.0 Iux, sec, which is significantly higher sensitivity than conventional single-layer OPC. Further, the OPC of the present invention exhibits excellent sensitivity to light in a wide wavelength range of 550 to 8 GOnw.

本発明の構成ではCTMが含まれない事がその第一の特
徴であって、この樟な構成は従来の単層型有機感光体が
CGMとCTMの混合体から形成されていたのと比較し
て本質的に異なる構成である。この様に本発明の構成で
は、従来必須であるとされてきたCTMを必要としない
The first feature of the structure of the present invention is that it does not contain CTM, and this unique structure is different from conventional single-layer organic photoreceptors that are formed from a mixture of CGM and CTM. They are essentially different configurations. In this manner, the configuration of the present invention does not require CTM, which has been considered essential in the past.

この事はCGMとして添加された金属フタロシアニンが
ある条件下では電荷移動の能力を有している事を示して
いる。我々はその欅な条件を種々検討し、その欅な電荷
の移動能力がバインダー高分子中に分子状に分散した金
属フタロシアニンによることを明らかにした。一方、電
荷発生の能力はバインダー高分子中に粒子状に分散した
金属フタロシアニンによっている。すなわち、本発明の
第二の特徴は単層中に分子状分散と粒子状分散した2種
類の金属フタロシアニンが存在することである。これは
金属フタロシアニンをバインダー中に粒子分散した正帯
電単層OPCとは本質的に異なる点である。
This shows that the metal phthalocyanine added as CGM has charge transfer ability under certain conditions. We investigated various key conditions and found that the key charge transfer ability is due to the metal phthalocyanine molecularly dispersed in the binder polymer. On the other hand, the ability to generate charges is due to the metal phthalocyanine particles dispersed in the binder polymer. That is, the second feature of the present invention is that two types of metal phthalocyanine exist in the monolayer, one in molecular dispersion and one in particulate dispersion. This is essentially different from positively charged single-layer OPC in which particles of metal phthalocyanine are dispersed in a binder.

この欅な構成になる有機感光体は従来の感光体に比べ次
のような特徴を有している。
This organic photoreceptor with a solid structure has the following characteristics compared to conventional photoreceptors.

■ 単層構造であるので製造工程が簡単である。■ The manufacturing process is simple because it has a single layer structure.

■ 従来の単層構造OPCに比べはるかに高感度である
■ Much higher sensitivity than conventional single-layer OPC.

■ 特に正帯電方式で優れた特性を示す。■ Shows excellent characteristics especially in positive charging method.

■ 従来の単層構造OPCに比べ安定性、帯電性に優れ
ている。
■ Superior stability and charging performance compared to conventional single-layer OPC.

■ 550〜800nmの広い範囲で優れた感光特性を
示す。
(2) Shows excellent photosensitivity over a wide range of 550 to 800 nm.

■ 単層構造であるので耐印刷性に優れている。■ Since it has a single layer structure, it has excellent printing resistance.

■ 熱に弱いCTMが含まれていないので耐熱性に優れ
ている。
■ Excellent heat resistance as it does not contain CTM, which is sensitive to heat.

以上述べたことから明らかであるように、この場合金属
フタロシアニンは少なくともその一部分が高分子バイン
ダー中に分子状に分散している事が必要である。その様
な分子状分散を実現するためには金属フタロシアニンを
適当な溶剤に溶解し、この溶剤に溶解するような高分子
をバインダーとして選択する必要がある0本発明の方法
では、この様に粒子状分散と分子状分散状態にある金属
フタロシアニンを単層中に実現しなければならない。
As is clear from the above, in this case, at least a portion of the metal phthalocyanine must be dispersed in the polymer binder in molecular form. In order to achieve such molecular dispersion, it is necessary to dissolve the metal phthalocyanine in an appropriate solvent and to select a polymer that dissolves in this solvent as a binder. The metal phthalocyanine in the state of morphological dispersion and molecular dispersion must be realized in a monolayer.

この欅な状態を実現するには一般に十分なバインダー樹
脂との混線を行う必要がある0通常の混線方法では安定
な分子状分散を実現するためには1日以上の混線が必要
である。
In order to achieve this stable state, it is generally necessary to conduct sufficient cross-mixing with the binder resin. In the usual cross-mixing method, cross-mixing for one day or more is required to achieve stable molecular dispersion.

この様な目的に合った金属フタロシアニンを溶解する溶
剤としては、その金属フタロシアニンの種類により溶解
度は異なるが、−船釣に、ニトロメンゼン、クロルベン
ゼン、ジクロルベンゼン、ジクロルメタン、トリクロル
エチレン、クロルナフタレン、メチルナフタレン、ベン
ゼン、トルエン、キシレン、テトラヒドロフラン、シク
ロヘキサノン、1.4−ジオキサン、Nメチルピロリド
ン、四塩化炭素、ブロムブタン、エチレングリコール、
スルホラン、エチレングリコールモノブチルエーテル、
アセトキシエトキシエタン、ピリジン、等を上げること
が出来る。
Solvents for dissolving metal phthalocyanine suitable for such purposes include nitromenzene, chlorobenzene, dichlorobenzene, dichloromethane, trichloroethylene, chlornaphthalene, Methylnaphthalene, benzene, toluene, xylene, tetrahydrofuran, cyclohexanone, 1,4-dioxane, N-methylpyrrolidone, carbon tetrachloride, bromobutane, ethylene glycol,
Sulfolane, ethylene glycol monobutyl ether,
Examples include acetoxyethoxyethane, pyridine, etc.

一方、アセトン、シクロヘキサン、石油エーテル、ニト
ロメタン、メトキシエタノール、アセトニトリル、ジメ
チルスルホキシド、酢酸エチル、イソプロピルアルコー
ル、ジエチルエーテル、メチルエチルケトン、エタノー
ル、ヘキサン、プロピレンカーボネート、ブチルアミン
、水、等の溶剤は一般的に金属フタロシアニンを溶解し
ない。
On the other hand, solvents such as acetone, cyclohexane, petroleum ether, nitromethane, methoxyethanol, acetonitrile, dimethyl sulfoxide, ethyl acetate, isopropyl alcohol, diethyl ether, methyl ethyl ketone, ethanol, hexane, propylene carbonate, butylamine, water, etc. are generally used for metal phthalocyanine. does not dissolve.

従って本発明においてはこれらの溶剤を単独で用いる事
は出来ない、これらの溶剤を用いる場合には、先に上げ
た金属フタロシアニンを溶解する溶剤と組み合わせて使
用する必要がある。
Therefore, in the present invention, these solvents cannot be used alone; when these solvents are used, they must be used in combination with the above-mentioned solvent that dissolves the metal phthalocyanine.

本発明になるバインダー高分子としては先に上げた金属
フタロシアニンを溶解する溶剤に溶解するものを用いる
と良い、これらの目的に適した高分子としては、ポリエ
ステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリ塩化ビ
ニリデン、ポリカーボネート、ポリビニルブチラール、
ポリビニルアセトアセタール、ポリビニルホルマール、
ポリアクリロニトリル、ポリメタアクリル酸メチル、ポ
リアクリレート、ポリビニルカルバゾール、及びこれら
の共重合体、ポリ(塩化ビニル/酢酸ビニル/ビニルア
ルコール)、ポリ(塩化ビニル/酢酸ビニル/マレイン
酸)、ポリ(エチレン/酢酸ビニル)、ポリ(塩化ビニ
ル/塩化ビニリデン)、セルロース系高分子、等が上げ
られる。これらの高分子は単独あるいは2種類以上の混
合体とじて使用される。もちろん、先に述べたように2
種類以上の溶剤を組合せ、一つの溶剤で金属フタロシア
ニンを溶解し、他の溶剤でバインダー高分子を溶解する
ことが可能であるので本発明になるバインダー高分子は
上記の高分子に限定されるものではない。
As the binder polymer used in the present invention, it is preferable to use one that dissolves in the solvent that dissolves the metal phthalocyanine listed above. Polymers suitable for these purposes include polyester, polyvinyl acetate, polyvinyl chloride, and polyvinyl chloride. vinylidene chloride, polycarbonate, polyvinyl butyral,
polyvinyl acetoacetal, polyvinyl formal,
Polyacrylonitrile, polymethyl methacrylate, polyacrylate, polyvinylcarbazole, and their copolymers, poly(vinyl chloride/vinyl acetate/vinyl alcohol), poly(vinyl chloride/vinyl acetate/maleic acid), poly(ethylene/ Examples include vinyl acetate), poly(vinyl chloride/vinylidene chloride), and cellulose polymers. These polymers may be used alone or as a mixture of two or more. Of course, as mentioned earlier, 2
It is possible to combine more than one type of solvent, dissolving the metal phthalocyanine with one solvent and dissolving the binder polymer with another solvent, so the binder polymer of the present invention is limited to the above-mentioned polymers. isn't it.

以上述べた金属フタロシアニンとバインダー高分子との
最適比率は、重量比で2:1から1:10の間である。
The optimal ratio of the metal phthalocyanine and the binder polymer described above is between 2:1 and 1:10 by weight.

この範囲より金属フタロシアニンの量が多い場合には感
光特性(光による電位の減衰特性)自体は優れたものと
なるが、帯電特性が悪くなり一般に300■以上の電位
を乗せる事が難しくなる。これに対し上記の範囲よりも
バインダー高分子の量が多い場合には感光特性が悪くな
る。
If the amount of metal phthalocyanine is greater than this range, the photosensitivity properties (potential attenuation properties due to light) will be excellent, but the charging properties will deteriorate and it will generally be difficult to apply a potential of 300μ or more. On the other hand, if the amount of the binder polymer is greater than the above range, the photosensitivity will deteriorate.

従来の単層OPCに用いられてきたCTMとしては、ヒ
ドラゾン系化合物、オキサゾール系化合物、トリフェニ
ルメタン系化合物、アリルアミン系化合物があるがこれ
らの材料のCGMに対する添加量が5%以上を添加する
と帯電の安定性が著しく悪くなる。すなわち本発明の構
成には従来のCTMは悪い影響を与え、本質的にそれを
必要としない事が分かる。
CTMs that have been used in conventional single-layer OPCs include hydrazone compounds, oxazole compounds, triphenylmethane compounds, and allylamine compounds, but if these materials are added in an amount of 5% or more to CGM, they will be charged. stability becomes significantly worse. In other words, it can be seen that the conventional CTM has a bad influence on the configuration of the present invention and is essentially unnecessary.

この樺に本発明の構成としてCTMを必要としないと言
うことは副次的な効果として感光体の耐熱安定性を向上
させる事になる。従来の構成では感光体の耐熱性は主に
CTMの耐熱性により決定されてきた。本発明ではこの
CTMを含まない上に、金属フタロシアニンが非常に耐
熱性に冨んでいるので事実上感光体の耐熱性にはバイン
ダー高分子の耐熱性により決定される。したがって通常
光にのべた高分子の場合150°C以上のすぐれた耐熱
性が達成される。
The fact that this birch does not require CTM as a component of the present invention improves the heat resistance stability of the photoreceptor as a side effect. In conventional configurations, the heat resistance of the photoreceptor has been mainly determined by the heat resistance of the CTM. In the present invention, CTM is not included and the metal phthalocyanine is extremely heat resistant, so the heat resistance of the photoreceptor is actually determined by the heat resistance of the binder polymer. Therefore, in the case of polymers exposed to normal light, excellent heat resistance of 150° C. or higher is achieved.

この欅な材料の組合せにより、例えば、銅フタロシアニ
ンとポリビニルブチラールを重量比1;3の割合で用い
た系(実施例1参照)では正帯電による半減露光量感度
で1.41ux、5ecO高感度(帯電電位530V)
が実現され、800n■での感度は2.0cd/μJで
あった。これに対し、負帯電による感度は201ux、
sec (帯電電位150V)であり、その特性は正帯
電に対し著しく劣るものであった。また、この系は非常
に安定で、正帯電による特性は1000回の繰り返し試
験でもほとんど変化しなかった。更に、この感光体は優
れた耐熱性を示し、180℃で48時間の処理によって
もその特性はほとんど変化しなかった。
With this key combination of materials, for example, a system using copper phthalocyanine and polyvinyl butyral at a weight ratio of 1:3 (see Example 1) has a half-reduced exposure sensitivity of 1.41 ux due to positive charging, and a high sensitivity of 5 ecO ( Charge potential 530V)
was realized, and the sensitivity at 800 n■ was 2.0 cd/μJ. On the other hand, the sensitivity due to negative charging is 201ux,
sec (charging potential of 150 V), and its characteristics were significantly inferior to those of positive charging. Moreover, this system was very stable, and the characteristics due to positive charging hardly changed even after repeated tests 1000 times. Furthermore, this photoreceptor exhibited excellent heat resistance, and its properties hardly changed even after treatment at 180° C. for 48 hours.

有機光導電層の基板となる導電性支持体としては、特に
限定はされず、使用用途等によって適宜選択することが
出来る。具体的には、アルミニウム等の金属や、ガラス
、紙あるいはプラスチック等の表面に金属蒸着等の方法
で導電層を形成したもの、などが好ましく用いられる。
The conductive support serving as the substrate of the organic photoconductive layer is not particularly limited, and can be appropriately selected depending on the intended use. Specifically, metals such as aluminum, glass, paper, or plastics on which a conductive layer is formed by a method such as metal vapor deposition are preferably used.

また、その形状についても、ドラム状、ベルト状、シー
ト状、などいろいろな形状を取ることが出来る。
Moreover, it can take various shapes such as a drum shape, a belt shape, and a sheet shape.

以上述べてきたこの発明にかかる電子写真用感光体は、
例えば、複写機、プリンター、ファクシミリ、等の種々
の記録方式に用いる事が出来、その用途は同等限定され
ない、なお、この発明にかかる電子写真用感光体は、上
記例に限定される事なく、例えば必要に応じて、有機感
光体層上に、さらに絶縁性樹脂による表面保護層を形成
したり、感光層と基板の間にブロッキング層を設けたり
することも出来る。
The electrophotographic photoreceptor according to the present invention described above is
For example, the electrophotographic photoreceptor according to the present invention can be used in various recording systems such as copying machines, printers, facsimile machines, etc., and its uses are not limited to the same. Note that the electrophotographic photoreceptor according to the present invention is not limited to the above examples. For example, if necessary, a surface protective layer made of an insulating resin may be further formed on the organic photoreceptor layer, or a blocking layer may be provided between the photosensitive layer and the substrate.

次に、この説明をさらに詳し〈実施例と比較例とを併せ
て説明する。
Next, this explanation will be explained in more detail (examples and comparative examples will be explained together).

[実施例11 ε型銅フタロシアニン(εCuPcと略ス、東洋インキ
■製、Liophoton−ERPC)とポリビニルブ
チラール(PVBと略す、接水化学工業■製エスレック
BM−2)をテトラヒドロフランとクロルナフタレンの
混合溶剤に溶解し、十分、混合混練したのち、得られた
溶液をアルミドラム上にデイツプ法により塗布し、真空
中、150℃で1時間処理して、OPC層(厚さ10〜
20μm)を形成した。
[Example 11] ε-type copper phthalocyanine (abbreviated as εCuPc, manufactured by Toyo Ink ■, Liopoton-ERPC) and polyvinyl butyral (abbreviated as PVB, S-LEC BM-2 manufactured by Suzui Kagaku Kogyo ■) were mixed in a mixed solvent of tetrahydrofuran and chlornaphthalene. After thorough mixing and kneading, the obtained solution was coated on an aluminum drum by the dip method and treated in vacuum at 150°C for 1 hour to form an OPC layer (thickness 10~
20 μm) was formed.

こうして得られた感光体の感光特性を、用ロ電機■製E
PA−8100型ペーパーアナライザーを用い、タング
ステンによる白色光を照射して、正帯電による光感度(
半減露光量、Elzx)を測定し、1000回の繰り返
−し試験後の光感度も同様に測定した。
The photosensitive characteristics of the photoreceptor obtained in this way were
Using a PA-8100 paper analyzer, irradiate white light from tungsten to measure photosensitivity due to positive charging (
The half-life exposure amount (Elzx) was measured, and the photosensitivity after 1000 repeated tests was also measured in the same manner.

更に、400〜1000n−の範囲での波長特性を測定
した。εCuPcとポリビニルブチラールの重量比をい
ろいろ変化させたときの特性を表1に示す。
Furthermore, wavelength characteristics in the range of 400 to 1000 n- were measured. Table 1 shows the properties when the weight ratio of εCuPc and polyvinyl butyral was varied.

表 この結果より明かであるようにCuPcとPVBの比は
2: 1から1 =10の間が適当でこの範囲 の組成では帯電特性、感度特性共に良好な特性を得る事
が出来る。
As is clear from the results in the table, the ratio of CuPc to PVB is suitably between 2:1 and 1=10, and in this range of compositions, good charging and sensitivity characteristics can be obtained.

[比較例1] 比較のため、実施例1と同じ構成で溶剤としてアセトン
とDMFの混合溶媒を使用した場合の特性をしめす。ア
セトン及びDMFはPVBを溶解するがCuPcを溶解
しない、従ってこの様な製造方法ではPVB中にCuP
cは粒子状で混合されており、分子状に分散したCuP
cは存在しないと考えられる。その結果を表2に示す。
[Comparative Example 1] For comparison, the characteristics when the same configuration as in Example 1 is used but a mixed solvent of acetone and DMF is used as the solvent are shown. Acetone and DMF dissolve PVB but not CuPc, so this manufacturing method does not dissolve CuPc in PVB.
c is mixed in the form of particles, and CuP is dispersed in the form of molecules.
It is considered that c does not exist. The results are shown in Table 2.

表    2 この結果に示すように、 正帯電による感度、 El/□ は表1の結果と比較して著しく悪くなっており、本発明
にとってXPcの一部が分子状にバインダー高分子中に
分散している事が必要である事がわかる。
Table 2 As shown in this result, the sensitivity due to positive charging, El/□, is significantly worse than the results in Table 1, and for the present invention, part of the XPc is dispersed in the binder polymer in molecular form. I understand that it is necessary to

[実施例2] 実施例1と同し方法でγ型、β型、α型、の銅フタロシ
アニンを用いてその特性を評価した。CuPcとPVB
の比率をl:3とした時の感度を表3に示す。
[Example 2] The properties of γ-type, β-type, and α-type copper phthalocyanine were evaluated in the same manner as in Example 1. CuPc and PVB
Table 3 shows the sensitivity when the ratio of 1:3.

表   3 この結果からT型、β型、α型、の銅フタロシアニンε
型フタロシアニンと同様に優れた感光特性を示す事が明
かとなった。
Table 3 From these results, T-type, β-type, α-type copper phthalocyanine ε
It has become clear that it exhibits excellent photosensitivity properties similar to type phthalocyanine.

[実施例31 実施例1と同様の方法で各種金属PcとPVBよりなる
感光体(重量比1:3)を作成し、その感光特性を測定
した。得られた特性を表4に示す。
[Example 31 Photoreceptors made of various metals Pc and PVB (weight ratio 1:3) were prepared in the same manner as in Example 1, and their photosensitive characteristics were measured. The obtained properties are shown in Table 4.

表   4 この結果より明かであるように金属Pcが分子状に分散
されたものと粒子状に分散されたものよりなる場合には
金属の種類によらず優れた特性の感光体を形成すること
が出来る。
Table 4 As is clear from these results, a photoreceptor with excellent characteristics can be formed regardless of the type of metal when the metal Pc is dispersed in molecular form or in particulate form. I can do it.

[実施例+1 実施例1の方法で作成した感光体の内CuPcとPVB
の比率が1=4のものを選択し、連続的な耐印刷性の試
験を行った。A4試験紙を用いて試験を行ったが、3万
枚の連続試験に対し安定に作動することが分かった。こ
の欅に本発明の方法は従来の2層型感光体、あるいは単
層型感光体に比べ耐剛性の面でも優れている事が分かっ
た。
[Example +1 CuPc and PVB of the photoconductor produced by the method of Example 1
A sample with a ratio of 1=4 was selected and a continuous printing resistance test was conducted. A test was conducted using A4 test paper, and it was found that it operated stably even after continuous testing of 30,000 sheets. It has been found that the method of the present invention is also superior in terms of rigidity compared to conventional two-layer type photoreceptors or single-layer type photoreceptors.

発明の効果 以上述べてきたように、この発明にかかる電子写真用感
光体は、正帯電単層型感光体であって、従来の感光体に
比べ、高感度でかつ安定性にも優れたものとなっており
、更に製造方法も著しく容易であると言う特徴を有して
おり、電子写真感光体として、いろいろな記録機器等へ
の応用が期待される。
Effects of the Invention As described above, the electrophotographic photoreceptor according to the present invention is a positively charged single-layer photoreceptor, and has higher sensitivity and excellent stability than conventional photoreceptors. Furthermore, it is characterized by an extremely easy manufacturing method, and is expected to be applied as an electrophotographic photoreceptor to various recording devices.

Claims (4)

【特許請求の範囲】[Claims] (1)バインダー高分子と、前記バインダー高分子中に
分子状分散した金属フタロシアニンと粒子状に分散した
金属フタロシアニンとからなる電子写真用感光体。
(1) An electrophotographic photoreceptor comprising a binder polymer, a metal phthalocyanine molecularly dispersed in the binder polymer, and a metal phthalocyanine dispersed in particulate form.
(2)請求項1記載の金属フタロシアニンが銅フタロシ
アニン、鉛フタロシアニン、スズフタロシアニン、シリ
コンフタロシアニン、バナジウムフタロシアニン、クロ
ロアルミニウムフタロシアニン、チタニルフタロシアニ
ン、クロロインジュウムフタロシアニン、クロロガリウ
ムフタロシアニン、の内から選ばれた少なくとも1種類
で有ることを特徴とする電子写真用感光体。
(2) The metal phthalocyanine according to claim 1 is at least one selected from copper phthalocyanine, lead phthalocyanine, tin phthalocyanine, silicon phthalocyanine, vanadium phthalocyanine, chloroaluminum phthalocyanine, titanyl phthalocyanine, chloroindium phthalocyanine, and chlorogallium phthalocyanine. A photoreceptor for electrophotography, characterized in that it is of a type.
(3)請求項1記載の金属フタロシアニンとバインダー
高分子の重量比が2:1から1:10の範囲にある電子
写真用感光体。
(3) An electrophotographic photoreceptor in which the weight ratio of the metal phthalocyanine and binder polymer according to claim 1 is in the range of 2:1 to 1:10.
(4)請求項2記載の銅フタロシアニンの結晶型がγ型
、ε型、β型、α型、から選択された少なくとも1種で
ある電子写真用感光体。
(4) A photoreceptor for electrophotography, wherein the crystal type of the copper phthalocyanine according to claim 2 is at least one selected from γ type, ε type, β type, and α type.
JP18908690A 1989-08-05 1990-07-16 Electrophotographic sensitive body Pending JPH03278064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18908690A JPH03278064A (en) 1989-08-05 1990-07-16 Electrophotographic sensitive body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20338489 1989-08-05
JP1-203384 1989-08-05
JP2-76038 1990-03-26
JP18908690A JPH03278064A (en) 1989-08-05 1990-07-16 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03278064A true JPH03278064A (en) 1991-12-09

Family

ID=26505300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18908690A Pending JPH03278064A (en) 1989-08-05 1990-07-16 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03278064A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437748A (en) * 1977-08-31 1979-03-20 Dainippon Ink & Chemicals Electrophotographic light sensitive material
JPS58193550A (en) * 1982-05-07 1983-11-11 Fujitsu Ltd Electrophotographic receptor
JPS59105649A (en) * 1982-12-10 1984-06-19 Toyo Ink Mfg Co Ltd Photoconductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5437748A (en) * 1977-08-31 1979-03-20 Dainippon Ink & Chemicals Electrophotographic light sensitive material
JPS58193550A (en) * 1982-05-07 1983-11-11 Fujitsu Ltd Electrophotographic receptor
JPS59105649A (en) * 1982-12-10 1984-06-19 Toyo Ink Mfg Co Ltd Photoconductive material

Similar Documents

Publication Publication Date Title
JP3139126B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2004045996A (en) Method of electrophotography and electrophotographic image forming device
JP2007219522A (en) Electrophotographic photoreceptor and electrophotographic imaging apparatus
JP5096931B2 (en) Electrophotographic photoreceptor
US5424158A (en) Photosensitive material for electrophotography comprising metal free phthalocyanine molecularly dispersed in the binder polymer
JP2643465B2 (en) Electrophotographic photoreceptor
JPH07271062A (en) Electrophotographic photoreceptor
EP0470729A1 (en) Photosensitive materials for electrophotography and method for making the same
JP2004045997A (en) Method of electrophotography and electrophotographic image forming device
JPH03278064A (en) Electrophotographic sensitive body
JP2748660B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2600916B2 (en) Electrophotographic photoreceptor
JP5028265B2 (en) Electrophotographic photoreceptor
JPH03155557A (en) Production of electrophotographic sensitive body
JP2600993B2 (en) Electrophotographic photoreceptor
JPH0675408A (en) Electrophotographic sensitive body
JPH03274572A (en) Electrophotographic sensitive body
JP2001166508A (en) Electrophotographic photoreceptor
JPH0365959A (en) Electrophotographic sensitive body
JP2643465C (en)
JP2000347431A (en) Electrophotographic photoreceptor
JPH0365960A (en) Electrophotographic sensitive body
JPH03274562A (en) Electrophotographic sensitive body
JPH03129358A (en) Electrophotographic sensitive body
JPS63210943A (en) Photosensitive body