JPH03278020A - Polarizer - Google Patents

Polarizer

Info

Publication number
JPH03278020A
JPH03278020A JP2317583A JP31758390A JPH03278020A JP H03278020 A JPH03278020 A JP H03278020A JP 2317583 A JP2317583 A JP 2317583A JP 31758390 A JP31758390 A JP 31758390A JP H03278020 A JPH03278020 A JP H03278020A
Authority
JP
Japan
Prior art keywords
polarized light
polarization
liquid crystal
light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2317583A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2317583A priority Critical patent/JPH03278020A/en
Publication of JPH03278020A publication Critical patent/JPH03278020A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To allow the conversion from random polarized light to specific linearly polarized light with high efficiency by spacially separating the randomly polarized light from a light source to two linearly polarized light rays which intersect orthogonally with each other in polarization directions and then synthesizing the polarized light rays by using two TN liquid crystal elements and one reflecting mirror in such a manner that the polarization directions are equaled. CONSTITUTION:This element has the means for spacially separating the randomly polarized light 15 from the light source 21 mainly to the two linearly polarized light components (P polarized light 24 and S polarized light 23) having the planes of polarization intersecting orthogonally with each other and the two twisted nematic liquid crystal elements which are the means for rotating the planes of polarization of the two linearly polarized light components 23, 24. The element is constituted by having also the reflecting mirror which is the means for symmetrically inverting the plane of polarization of either of the two linearly polarized light components 23, 24. The randomly polarized light is converted to the unidirectionally polarized light with the high efficiency in this way with substantially no losses by light absorption and reflection.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ランダム偏光を一方向の偏光面を持つ直線偏
光に変換する偏光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarizing element that converts randomly polarized light into linearly polarized light having a plane of polarization in one direction.

〔従来の技術〕[Conventional technology]

従来、ランダム偏光から一方向性偏光を得るためには、
偏光子や複屈折性結晶を用いて、特定の偏光面を有する
直線偏光のみを選択的に取り出す方法が一般的であった
。その代表例が偏光板である。これはお互いに直交する
偏光成分を持つランダム偏光である入射光のうち、片方
の直線偏光成分のみを選択的に吸収し、他方の直線偏光
成分のみを透過させることにより、一方向の偏光成分の
みを有する出射光に変換するものである。また、他には
複屈折性結晶を用いたものとしてローションプリズムや
ニコルプリズムが挙げられる。さらに、多層蒸着膜をガ
ラスで挟み込み、入射光を偏光面が互いに直交した2つ
の直線偏光として取り出す偏光ビームプリッタがある。
Conventionally, to obtain unidirectionally polarized light from random polarized light,
A common method has been to use a polarizer or birefringent crystal to selectively extract only linearly polarized light having a specific plane of polarization. A typical example is a polarizing plate. This is by selectively absorbing only one linearly polarized component of the incident light, which is randomly polarized light with polarization components orthogonal to each other, and transmitting only the other linearly polarized component. This converts the output light into output light having the following values. Other examples of prisms using birefringent crystals include Rochon prisms and Nicol prisms. Furthermore, there is a polarizing beam splitter in which a multilayer deposited film is sandwiched between glasses, and the incident light is extracted as two linearly polarized lights whose polarization planes are orthogonal to each other.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の偏光板では光吸収の二色性を利用してい
るため一方向性偏光への変換効率が最大でも約45%と
低く、また、光吸収による発熱作用により偏光板自体が
熱破壊を生じる危険性を有していた。また、複屈折性結
晶等を用いたものでは偏光方向の異なる不必要な偏光成
分を反射等の手段により除去しているため、やはりこの
方式においても一方向性偏光への交換効率が最大50%
以下と低いことが問題となっている。
However, since conventional polarizing plates utilize dichroism of light absorption, the conversion efficiency to unidirectionally polarized light is low at about 45% at maximum, and the polarizing plate itself is destroyed by heat due to the heat generation effect caused by light absorption. There was a risk that this would occur. In addition, with devices using birefringent crystals, unnecessary polarized light components with different polarization directions are removed by means such as reflection, so even with this method, the exchange efficiency for unidirectional polarized light is up to 50%.
The problem is that it is as low as below.

そこで、本発明は以上のような問題点を解決するもので
、その目的とするとこをは、光吸収や反射によるロスを
ほとんど伴うことなく、ランダム偏光を一方向性偏光に
高効率で変換するコンノマクトな偏光素子を提供するこ
とにある。
Therefore, the present invention aims to solve the above problems, and its purpose is to convert randomly polarized light into unidirectionally polarized light with high efficiency, with almost no loss due to light absorption or reflection. The object of the present invention is to provide a conomact polarizing element.

〔課題を解決するための手段] 上記課題を解決するために本発明の偏光素子は、光源か
らのランダム偏光を偏光面が互いに直交する主に2つの
直線偏光成分(P偏光、S偏光)に空間的分離を行なう
ための手段と、該2つの直線偏光成分の偏光面を回転さ
せる手段であるところの2つのツイステッド・ネマティ
ック液晶素子と、該2つの直線偏光成分の内どちらか片
方の偏光面を対称反転させる手段であるところの反射ミ
ラーとから構成されることを特徴とする。また、前記2
つのツイステッド・ネマティック液晶素子による直線偏
光成分の偏光面回転角がP偏光に対してθ、S偏光に対
して90°−θであることを特徴とする。さらに、前記
光源からのランダム偏光を偏光面が互いに直交する主に
2つの直線偏光成分(P偏光、S偏光)に空間的分離を
行なうための手段が偏光ビームスプリッタであることを
特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the polarizing element of the present invention converts randomly polarized light from a light source into mainly two linearly polarized light components (P polarized light and S polarized light) whose polarization planes are orthogonal to each other. two twisted nematic liquid crystal elements serving as a means for spatial separation, a means for rotating the plane of polarization of the two linearly polarized light components, and a plane of polarization of one of the two linearly polarized light components; It is characterized by comprising a reflecting mirror, which is a means for symmetrically inverting. In addition, the above 2
The polarization plane rotation angle of the linearly polarized light component by the two twisted nematic liquid crystal elements is θ for P polarized light and 90°-θ for S polarized light. Furthermore, the device is characterized in that the means for spatially separating the randomly polarized light from the light source into mainly two linearly polarized light components (P-polarized light and S-polarized light) whose polarization planes are orthogonal to each other is a polarizing beam splitter.

[作  用] 第2図及び第3図(a)〜第3図(c)を用いて本発明
の詳細な説明する。光源21からのランダム偏光15は
偏光ビームスプリッタ11により互いに強度の等しいP
偏光24とS偏光23に分離される(この時、S偏光は
偏光ビームスプリッタの複屈折層界面22で全反射され
る)。分離されたS偏光は第2のツイステッド・ネマテ
ィック液晶素子(以下TN液晶素子と略す)12を透過
する間に、出射光と対向する側からみて、時計回り(又
は反時計回り)に03の偏光面回転を受ける。ただし、
第2のTN液晶素子12は偏光ビームスプリッタのS偏
光側の出射面に対して平行に設置されている。この場合
の出射光の偏光方向を第3図(C)に示す。また、同様
にP偏光は第1のTN液晶素子13を透過する間にθl
の偏光面回転を受け、さらに、反射ミラー14により偏
光方向は対称反転(対称角θ2、θ2=90°−θ1)
される。ただし、第1のTN液晶素子13は偏光ビーム
スプリッタのP偏光側の出射面に対して平行に、また、
反射ミラー14はミラーの法線と第1のTN液晶素子が
45°の角度をなすように設置されている。この場合の
第1のTN液晶素子13及び反射ミラー14から出射光
の偏光方向を各々第3図(a)及び第3図(b)に示す
[Function] The present invention will be explained in detail using FIG. 2 and FIGS. 3(a) to 3(c). Randomly polarized light 15 from the light source 21 is polarized by the polarizing beam splitter 11 so that the polarized light 15 has equal intensity P.
The light is separated into polarized light 24 and S-polarized light 23 (at this time, the S-polarized light is totally reflected at the birefringent layer interface 22 of the polarizing beam splitter). While the separated S-polarized light passes through the second twisted nematic liquid crystal element (hereinafter abbreviated as TN liquid crystal element) 12, it becomes 03 polarized light clockwise (or counterclockwise) when viewed from the side facing the emitted light. undergoes plane rotation. however,
The second TN liquid crystal element 12 is installed parallel to the exit surface on the S-polarization side of the polarization beam splitter. The polarization direction of the emitted light in this case is shown in FIG. 3(C). Similarly, while the P-polarized light passes through the first TN liquid crystal element 13,
The polarization plane is rotated, and the polarization direction is further symmetrically reversed by the reflecting mirror 14 (symmetrical angle θ2, θ2 = 90° - θ1).
be done. However, the first TN liquid crystal element 13 is arranged parallel to the exit surface on the P polarization side of the polarization beam splitter, and
The reflecting mirror 14 is installed so that the normal line of the mirror and the first TN liquid crystal element form an angle of 45°. The polarization directions of the light emitted from the first TN liquid crystal element 13 and the reflection mirror 14 in this case are shown in FIGS. 3(a) and 3(b), respectively.

ここで、上記2つのTN液晶素子はホモジニアス配向処
理され、光の入射側に位置する液晶分子のダイレクタ−
の方向が、TN液晶素子に入射する偏光の偏光方向と一
致するように構成されている。
Here, the above two TN liquid crystal elements are homogeneously aligned, and the director of the liquid crystal molecules located on the light incident side is
is configured so that the direction of the polarized light coincides with the polarization direction of the polarized light incident on the TN liquid crystal element.

その結果、2つの出射光17.18は同じ偏光方向を有
する偏光となって合成される。
As a result, the two emitted lights 17 and 18 are combined into polarized light having the same polarization direction.

ここで、上記第1及び第2のTN液晶素子による偏光面
の回転方向は必ずしも同じ方向である必要はないが、第
3図(a)及び第3図(C)においてθ1=90°−θ
3なる関係にあることが必要である。
Here, the rotation directions of the planes of polarization by the first and second TN liquid crystal elements do not necessarily have to be the same direction, but in FIGS. 3(a) and 3(C), θ1=90°−θ
It is necessary that there be three relationships.

以上のように、本発明では、光源からのランダム偏光を
偏光方向が互いに直交する2つの直線偏光に空間的に分
離した後、2つのTN液晶素子及び少なくとも1つの反
射ミラーを用いて、2つの直線偏光の偏光方向が等しく
なる様に合成することにより、ランダム偏光から特定の
直線偏光への交換を高効率で行なうことが出来る。
As described above, in the present invention, after spatially separating randomly polarized light from a light source into two linearly polarized lights whose polarization directions are orthogonal to each other, two TN liquid crystal elements and at least one reflective mirror are used to separate the two linearly polarized lights. By combining the linearly polarized lights so that their polarization directions are the same, it is possible to exchange random polarized light with specific linearly polarized light with high efficiency.

〔実施例〕〔Example〕

以下、実施例に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail based on Examples.

但し、本発明は以下の実施例に限定されるものではない
However, the present invention is not limited to the following examples.

[実施例1] 本発明の偏光素子の実施例の一形態を第1図(斜視図)
に示す。併せて第2図も参照されたい。
[Example 1] Fig. 1 (perspective view) shows one embodiment of the polarizing element of the present invention.
Shown below. Please also refer to FIG. 2.

以下、主要な構成要素に付いて説明する。偏光ビームス
プリッタ11はMa(Nielle型の可視広帯域用の
もので、光の入射側には反射防止膜(入射時の平均反射
率は0.7%以下)をコート済みのものを用いた。この
偏光ビームスプリッタは2つの直角プリズムの斜辺に多
層膜を形成し斜辺どうしを接合したもので、偏光の分離
性に優れている。
The main components will be explained below. The polarizing beam splitter 11 is a Ma (Nielle type) visible broadband type, and the light incident side is coated with an antireflection film (average reflectance at the time of incidence is 0.7% or less). A polarizing beam splitter is made by forming a multilayer film on the oblique sides of two right-angled prisms and joining the oblique sides together, and has excellent polarization separation properties.

偏光ビームスプリッタとしては、他の例えばプレート状
のものも光の波長域によっては十分使用可能である。第
1及び第2の液晶素子13.12は同一のスペックもの
もとし、Δn=0.264(20″C)であるネマティ
ック系液晶を用い、ギャップ長=7.0μmトンイスト
角=45°とした。なお、液晶素子と偏光ビームスプリ
ッタは同一のガラス材料(BK7)を用いて作製し、オ
プティカルコンタクトさせた0反射ミラー14はガラス
板(BK7)にアルミニウムを蒸着したもの(可視域で
概ね90%以上の反射率を有する)を用いた0反射ミラ
ーとしては、他にも銀を蒸着したものや誘電体多層膜を
コートしたものを用いてもよく、あるいは反射ミラーの
代わりに偏光ビームスプリッタを用いてもよい、また、
光源には200Wのキセノンランプを用いた。
Other polarizing beam splitters, such as plate-shaped ones, can also be used depending on the wavelength range of the light. The first and second liquid crystal elements 13.12 had the same specifications, used nematic liquid crystal with Δn = 0.264 (20''C), gap length = 7.0 μm, and Tonist angle = 45°. The liquid crystal element and the polarizing beam splitter were made using the same glass material (BK7), and the zero-reflection mirror 14 in optical contact was made by vapor-depositing aluminum on a glass plate (BK7) (approximately 90% in the visible range). As the zero-reflection mirror (having a reflectance of may also be
A 200W xenon lamp was used as a light source.

以上のような構成要素を用いた偏光素子において、光源
からのランダム偏光15は偏光ビームスプリッタ11に
より互いに強度が等しく、偏光方向が直交する2つの直
線偏光(P偏光24、S偏光23)に分離される。分離
されたS偏光は第2のTN液晶素子12を透過する間に
、出射光と対向する側からみて、時計回りに45° (
θ3=45°)の偏光面回転を受ける。ただし、第2の
液晶素子12は偏光ビームスプリッタのS偏光側の出射
面に対して平行に設置されている。また、同様にP偏光
は第1のTN液晶素子13を透過する間に45° (θ
1−45°)の偏光面回転を受け、さらに、反射ミラー
14により偏光方向は対称反転(対称角45°、つまり
、時計回りに90°回転する)される(θ2=45°)
。ただし、第1の液晶素子13は偏光ビームスプリッタ
のP偏光側の出射面に対して平行に、また、反射ミラー
14はミラーの法線と第1の液晶素子が45°の角度を
なすように設置されている。その結果、2つの出射光1
7.18は同じ偏光方向(θ2=03)を有し、なおか
つ進行方向が同しである偏光となる。したがって、これ
ら2つの光を合成することにより、はとんど光の損失を
伴うことなく、光源からのランダム偏光を高効率で特定
の直線偏光に変換することができた。
In a polarizing element using the above components, randomly polarized light 15 from a light source is separated by a polarizing beam splitter 11 into two linearly polarized lights (P polarized light 24 and S polarized light 23) with equal intensity and orthogonal polarization directions. be done. While the separated S-polarized light passes through the second TN liquid crystal element 12, it rotates clockwise by 45° (
The polarization plane is rotated by θ3=45°). However, the second liquid crystal element 12 is installed parallel to the exit surface of the polarization beam splitter on the S-polarization side. Similarly, the P-polarized light passes through the first TN liquid crystal element 13 at 45° (θ
1-45°), and further, the polarization direction is symmetrically reversed (symmetrical angle of 45°, that is, rotated 90° clockwise) by the reflecting mirror 14 (θ2 = 45°).
. However, the first liquid crystal element 13 is arranged parallel to the exit plane on the P polarization side of the polarizing beam splitter, and the reflection mirror 14 is arranged so that the normal line of the mirror and the first liquid crystal element form an angle of 45°. is set up. As a result, two outgoing lights 1
7.18 is polarized light having the same polarization direction (θ2=03) and traveling in the same direction. Therefore, by combining these two lights, it was possible to convert random polarized light from a light source into specific linearly polarized light with high efficiency without causing any loss of light.

第4図に出射光の入射光に対する相対光強度分布を示す
。可視域において約80%以上の変換効率が得られてい
ること、また、変換効率の波長依存性が非常に少ないこ
とがわかる。なお、波長依存性に関しては液晶素子のパ
ラメータを変更することにより変化させることが可能で
ある。
FIG. 4 shows the relative light intensity distribution of the emitted light with respect to the incident light. It can be seen that a conversion efficiency of about 80% or more is obtained in the visible region, and that the wavelength dependence of the conversion efficiency is very small. Note that the wavelength dependence can be changed by changing the parameters of the liquid crystal element.

また、本偏光素子では、入射光束に対して出射光束の幅
が広がるが、ミラーやレンズ等を用いて2つの光束の合
成を行なうことにより出射光束の幅を入射時のそれ以下
に出来ることは明らかであり、出射光束の幅の広がりは
何ら欠点とはならないことを付記しておく。さらに、反
射ミラー14の法線と第1の液晶素子のなす角度を45
°よりもやや大きくとることにより、上記のミラーやレ
ンズ等を用いなくても2つの光束を合成し、なおかつ合
成時の光束幅を拡げないようにすることは可能であるが
、その場合には合成距離が非常に長くなり、また、特定
偏光への変換効率が多少悪くなる。
In addition, with this polarizing element, the width of the output beam increases relative to the input beam, but it is possible to reduce the width of the output beam to less than that of the input beam by combining the two beams using mirrors, lenses, etc. It should be noted that this is obvious and that the broadening of the width of the emitted light beam is not a drawback at all. Furthermore, the angle between the normal line of the reflecting mirror 14 and the first liquid crystal element is 45
It is possible to combine the two light beams without using the mirrors or lenses mentioned above by setting the value slightly larger than °, but it is possible to avoid widening the light beam width at the time of synthesis, but in that case, The synthesis distance becomes very long, and the conversion efficiency to specific polarized light deteriorates to some extent.

[実施例2] 実施例1と同様な偏光素子を作製した。ただし、第1の
液晶素子のツイスト角を出射光と対向する側からみて反
時計回りに30°とし、また、第2の液晶素子のツイス
ト角を出射光と対向する側からみて時計回りに30°と
した。この偏光素子においても可視域において、概ね8
0%以上の変換効率(特定の直線偏光のランダム偏光に
対する変換効率)が得られることが確認された。
[Example 2] A polarizing element similar to that in Example 1 was produced. However, the twist angle of the first liquid crystal element is 30 degrees counterclockwise when viewed from the side facing the output light, and the twist angle of the second liquid crystal element is 30 degrees clockwise when viewed from the side facing the output light. °. This polarizing element also has approximately 8
It was confirmed that a conversion efficiency of 0% or more (conversion efficiency of specific linearly polarized light to random polarized light) could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の偏光素子では、光源からの
ランダム偏光を偏光方向が互いに直交する2つの直線偏
光に空間的に分離した後、2つのTN液晶素子及び少な
くとも1つの反射ミラーを用いて、2つの直線偏光の偏
光方向が等しくなる様に合成することにより、ランダム
偏光から特定の直線偏光への変換を高効率で行なうこと
が出来る(つまり、光の利用効率に優れる)。このこと
は、従来に比べ一定の光源からより多くの特定直線偏光
を得られることを示し、また、言い替えれば、同じ強度
の特定偏光を得るに際して従来よりも小型の光源ですむ
ことを意味している。また、偏光面の回転を起こさせる
2つのTN液晶素子においてツイスト角、ツイスト方向
及び使用する液晶材料を適当に選択することにより、出
射光強度の波長依存性を制御できることから、2つの出
射光の合成時における光特性(スペクトル、光束の分布
等)を自由に制御することが可能であり、特に、出射光
束の断面積を大きく取る必要がある場合には有効である
。それ故、本発明の偏光素子は特定の直線偏光を必要と
する液晶表示素子の光源部、液晶プリンターの光源部な
どへの応用が最も効果的である。
As explained above, in the polarizing element of the present invention, after spatially separating randomly polarized light from a light source into two linearly polarized lights whose polarization directions are orthogonal to each other, the polarizing element uses two TN liquid crystal elements and at least one reflective mirror to , by combining two linearly polarized lights so that their polarization directions are equal, it is possible to convert random polarized light into specific linearly polarized light with high efficiency (that is, excellent light utilization efficiency). This means that more specific linearly polarized light can be obtained from a given light source than before, and in other words, it means that a smaller light source can be used to obtain the same intensity of specific polarized light. There is. In addition, by appropriately selecting the twist angle, twist direction, and liquid crystal material used in the two TN liquid crystal elements that rotate the plane of polarization, the wavelength dependence of the output light intensity can be controlled. It is possible to freely control the optical characteristics (spectrum, distribution of luminous flux, etc.) during synthesis, and this is particularly effective when it is necessary to increase the cross-sectional area of the emitted luminous flux. Therefore, the polarizing element of the present invention is most effectively applied to a light source section of a liquid crystal display element, a light source section of a liquid crystal printer, etc. that require specific linearly polarized light.

【図面の簡単な説明】 第1図は本発明の偏光素子の一構成を示す斜視図。 第2図は本発明の偏光素子の機能を説明するための図。 第3図(a)は第1のTN液晶素子から出射される偏光
の偏光方向を示す図。 第3図(b)は反射ミラーから出射される偏光の偏光方
向を示す図。 第3図(C)は第2のTN液晶素子から出射される偏光
の偏光方向を示す図。 第4図は実施例で示した本発明の偏光素子により得られ
る出射光の強度スペクトルを表わす図。 11・・・偏光ビームスプリッタ 12・・・第2のTN液晶素子 13・・・第1のTN液晶素子 14・・・反射ミラー 15・・・ランダム偏光 16・・・第1のTN液晶素子から出射される偏光の偏
光方向 ・・・反射ミラーから出射される偏光の偏光方向 ・・・第2のTN液晶素子から出射される偏光の偏光方
向 21・・・光源 22・・・複屈折層界面 23・・・S偏光成分 24・・・P偏光成分 以上
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing one configuration of a polarizing element of the present invention. FIG. 2 is a diagram for explaining the function of the polarizing element of the present invention. FIG. 3(a) is a diagram showing the polarization direction of polarized light emitted from the first TN liquid crystal element. FIG. 3(b) is a diagram showing the polarization direction of polarized light emitted from the reflection mirror. FIG. 3(C) is a diagram showing the polarization direction of polarized light emitted from the second TN liquid crystal element. FIG. 4 is a diagram showing the intensity spectrum of emitted light obtained by the polarizing element of the present invention shown in Examples. 11...Polarizing beam splitter 12...Second TN liquid crystal element 13...First TN liquid crystal element 14...Reflection mirror 15...Random polarized light 16...From the first TN liquid crystal element Polarization direction of polarized light emitted from the reflective mirror Polarization direction of polarized light emitted from the reflecting mirror Polarization direction of polarized light emitted from the second TN liquid crystal element 21 Light source 22 Birefringent layer interface 23...S polarized light component 24...P polarized light component or more

Claims (3)

【特許請求の範囲】[Claims] (1)光源からのランダム偏光を偏光面が互いに直交す
る主に2つの直線偏光成分(P偏光、S偏光)に空間的
分離を行なうための手段と、該2つの直線偏光成分の偏
光面を回転させる手段であるところの2つのツイステッ
ド・ネマティック液晶素子と、該2つの直線偏光成分の
内どちらか片方の偏光面を対象反転させる手段であると
ころの反射ミラーとから構成されることを特徴とする偏
光素子。
(1) A means for spatially separating randomly polarized light from a light source into mainly two linearly polarized light components (P polarized light and S polarized light) whose polarization planes are orthogonal to each other, and It is characterized by being composed of two twisted nematic liquid crystal elements, which are means for rotating, and a reflecting mirror, which is a means for symmetrically inverting the plane of polarization of one of the two linearly polarized light components. polarizing element.
(2)前記2つのツイステッド・ネマティック液晶素子
による直線偏光成分の偏光面回転角がP偏光に対してθ
、S偏光に対して90゜−θであることを特徴とする請
求項1記載の偏光素子。
(2) The polarization plane rotation angle of the linearly polarized light component by the two twisted nematic liquid crystal elements is θ with respect to the P polarized light.
, 90°-θ with respect to S-polarized light.
(3)前記光源からのランダム偏光を偏光面が互いに直
交する主に2つの直線偏光成分(P偏光、S偏光)に空
間的分離を行なうための手段が偏光ビームスプリッタで
あることを特徴とする請求項1記載の偏光素子。
(3) The means for spatially separating the randomly polarized light from the light source into mainly two linearly polarized light components (P polarized light and S polarized light) whose polarization planes are orthogonal to each other is a polarizing beam splitter. The polarizing element according to claim 1.
JP2317583A 1990-03-13 1990-11-21 Polarizer Pending JPH03278020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2317583A JPH03278020A (en) 1990-03-13 1990-11-21 Polarizer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-61670 1990-03-13
JP6167090 1990-03-13
JP2317583A JPH03278020A (en) 1990-03-13 1990-11-21 Polarizer

Publications (1)

Publication Number Publication Date
JPH03278020A true JPH03278020A (en) 1991-12-09

Family

ID=26402737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2317583A Pending JPH03278020A (en) 1990-03-13 1990-11-21 Polarizer

Country Status (1)

Country Link
JP (1) JPH03278020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297337A (en) * 1992-04-17 1993-11-12 Kodo Eizo Gijutsu Kenkyusho:Kk Polarized light converting element and projection type liquid crystal display device
US6038054A (en) * 1997-03-25 2000-03-14 Sharp Kabushiki Kaisha Polarized-light converting elemental device having cholesteric crystal layer
JP2006301519A (en) * 2005-04-25 2006-11-02 Nikon Corp Projection display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05297337A (en) * 1992-04-17 1993-11-12 Kodo Eizo Gijutsu Kenkyusho:Kk Polarized light converting element and projection type liquid crystal display device
US6038054A (en) * 1997-03-25 2000-03-14 Sharp Kabushiki Kaisha Polarized-light converting elemental device having cholesteric crystal layer
US6290358B1 (en) 1997-03-25 2001-09-18 Sharp Kabushiki Kaisha Polarized-light converting optical system, a polarized-light converting elemental device, a polarized-light converting elemental device array and a projection-type display device using any one of those components
JP2006301519A (en) * 2005-04-25 2006-11-02 Nikon Corp Projection display device

Similar Documents

Publication Publication Date Title
US6710921B2 (en) Polarizer apparatus for producing a generally polarized beam of light
US6208463B1 (en) Polarizer apparatus for producing a generally polarized beam of light
US4913529A (en) Illumination system for an LCD display system
US5982541A (en) High efficiency projection displays having thin film polarizing beam-splitters
US5327270A (en) Polarizing beam splitter apparatus and light valve image projection system
US5826960A (en) Protection type display device with polarized light reflecting mirror and polarized light source
JPH07225379A (en) Projection type liquid crystal display device
JPH03122631A (en) Projection type liquid crystal display device
US6040942A (en) Polarization separator/combiner
JPH03126910A (en) Polarization light source device and polarization beam splitter
JPH03156421A (en) Polarized light source device
US6142633A (en) Polarized light illuminator and projection type image display apparatus
JP3080693B2 (en) Polarizing beam splitter array
JP2830534B2 (en) Polarization conversion element
JP2861187B2 (en) Polarization conversion element for light source
JPH03278020A (en) Polarizer
Baur A new type of beam-splitting polarizer cube
JPH02264904A (en) Light source for linearly polarized light
RU2321031C1 (en) Reflecting prism for bringing plane of polarization in rotation
JPH02189504A (en) Polarized light converting element
JPH09297213A (en) Polarizer
JPH0526561Y2 (en)
JPH04156420A (en) Polarization conversion and synthesizing element
JPH03196015A (en) Polarized light source device
JPH03261910A (en) Polarizing element