JPH03277989A - Apparatus for measuring concentration ri in blood - Google Patents

Apparatus for measuring concentration ri in blood

Info

Publication number
JPH03277989A
JPH03277989A JP8039790A JP8039790A JPH03277989A JP H03277989 A JPH03277989 A JP H03277989A JP 8039790 A JP8039790 A JP 8039790A JP 8039790 A JP8039790 A JP 8039790A JP H03277989 A JPH03277989 A JP H03277989A
Authority
JP
Japan
Prior art keywords
rays
counting
scintillator
beta
coincidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8039790A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP8039790A priority Critical patent/JPH03277989A/en
Publication of JPH03277989A publication Critical patent/JPH03277989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To enhance sensitivity and to reduce background counting by coincidence counting beta-rays and annihilation gamma-rays by two or more detectors using scintillators easily permitting beta-rays to transmit and having high density. CONSTITUTION:The beta-rays from a tube 10 through which blood passes are absorbed by a plastic scintillator 12a to be converted to light which is, in turn, measured by the PMT (photosensor) 12b of a side surface. Annihilation gamma-rays emit fluorescence by the opposed scintillator 14b provided on the outside to be measured. The signals of the scintillator 12a and the opposed scintillator 14a are coincidence counted by a coincidence counting circuit 22 through respective PMTs 12b, 14b. By this method, even when the threshold of beta-rays is set low, the coinicidence counting with gamma-rays is performed to make the effect of a background hard to receive and, in the same way, the background counting due to the coincidence counting of scattering gamma-rays can be also removed. By this method, the measuring sensitivity of radioactivity is enhanced and background counting is reduced and the shielding of lead can be reduced and miniaturization and wt. reduction can be achieved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は放射線検出の分野で利用される。[Detailed description of the invention] (b) Industrial application fields The present invention is utilized in the field of radiation detection.

本発明は血中のアイソトープ(R1)濃度を測定し、ポ
ジトロンCT装置の付属品として使われる、血中R1濃
度測定装置に関する。
The present invention relates to a blood R1 concentration measuring device that measures isotope (R1) concentration in blood and is used as an accessory for a positron CT device.

(ロ)従来技術 従来では、血液を通るチューブを囲むプラスチック・シ
ンチレーション検出器により血中のベータ(β)線を計
測するか、同様のチューブを互いに対向したBGOなど
の2つのシンチレーション検出器に同時計数回路を接続
させて、−船釣に計測が行われている。
(b) Prior art Conventionally, beta (β) rays in the blood are measured by a plastic scintillation detector surrounding a tube that passes through the blood, or by simultaneously attaching a similar tube to two scintillation detectors such as BGO facing each other. A counting circuit is connected and measurements are taken while fishing on a boat.

(ハ)発明が解決しようとする課題 前記したプラスチック・シンチレーション検出器では、
ベータ線以外にT線を計測してしまうこと、またベータ
線のエネルギーの高い核種しか計測できないという問題
点がある。
(c) Problems to be solved by the invention In the plastic scintillation detector described above,
There are problems in that T-rays are measured in addition to beta-rays, and only high-energy nuclides of beta-rays can be measured.

従来例の対向シンチレーション検出器では、低計数率で
パンクグランドT線によるバンクグランド計数が問題で
あった。
In the conventional opposing scintillation detector, bank ground counting due to puncture ground T-rays was a problem at a low counting rate.

これら従来の両方法ともバックグラウンドを小さくする
ためには、鉛等の大きな遮へいが必要となり問題である
Both of these conventional methods require a large shielding material such as lead in order to reduce the background, which is a problem.

本発明の目的は、バックグランド計数を減らして感度を
上げ、それと共に鉛等の遮へいも減らすことができる、
血中R1濃度測定装置を提供することである。
The purpose of the present invention is to reduce background counting, increase sensitivity, and at the same time reduce shielding such as lead.
An object of the present invention is to provide a blood R1 concentration measuring device.

(ニ)課題を解決するための手段 前記した目的は、血液の通るチューブを囲むシンチレー
ション検出器と、そのシンチレータを囲む密度の高いシ
ンチレータが使われた少なくとも2つのシンチレーショ
ン検出器と、これら全ての検出器に接続された同時計数
回路とを具備することにより、達成される。
(d) Means for Solving the Problem The above object is to provide at least two scintillation detectors including a scintillation detector surrounding a tube through which blood passes, a scintillation detector surrounding the scintillator with a high density of scintillators, and a scintillation detector that uses scintillation detectors that surround the tube through which blood flows, This is accomplished by providing a coincidence counting circuit connected to the device.

(ホ)作用 血液の通るチューブを囲むシンチレーション検出器には
、−船釣には密度の低いプラスチック・シンチレータが
使われており、ベータ線が透過し易く、また密度の高い
BGOなどのシンチレータが使われた少なくとも2つの
シンチレーション検出器により、消滅γ線が透過し易く
、これらのベータ線及び消滅T線を同時計数することに
より、感度を上げ、バンクグランド計数が減らされる。
(e) Function The scintillation detector that surrounds the tube through which the blood passes - Low-density plastic scintillators are used for boat fishing, which allow beta rays to easily pass through, and high-density scintillators such as BGO are used. With at least two scintillation detectors, annihilation gamma rays are easily transmitted, and by counting these beta rays and annihilation T rays simultaneously, sensitivity is increased and bank ground counting is reduced.

(へ)実施例 本発明の好適な実施例は、図面に基づいて説明される。(f) Example A preferred embodiment of the invention will be explained based on the drawings.

実施例の説明の前に、前記した従来例を第3図から第6
図について説明する。
Before explaining the embodiment, the conventional example described above is shown in FIGS. 3 to 6.
The diagram will be explained.

従来例の最初のものでは、チューブ10から出てくるポ
ジトロン(陽電子)をプラスチックシンチレータ検出器
12により計測する。 検出器12はプラスチック・シ
ンチレータ12aとPMT(光電子増倍管ないしホトマ
ル)12bとからなる。
In the first conventional example, positrons coming out of the tube 10 are measured by a plastic scintillator detector 12. The detector 12 consists of a plastic scintillator 12a and a PMT (photomultiplier tube or photomultiplier) 12b.

この場合、消滅γ線(511keV)もプラスチック・
シンチレータ検出器12で計測してしまうので、エネル
ギースペクトルは第4図のようになる。
In this case, annihilation gamma rays (511 keV) are also
Since it is measured by the scintillator detector 12, the energy spectrum will be as shown in FIG.

図示例のように、51 l keVのT線はバックグラ
ンドになるので、通常ではエネルギースレショルドを5
11keVを越えた値にする。 これ°では、感度が低
くなる上に、低エネルギーのβ線放出核! (18F等
)は計測できない。
As shown in the example, the 51 l keV T-line becomes the background, so the energy threshold is usually set to 51 l keV.
Set the value to exceed 11 keV. At this temperature, the sensitivity is low, and the low-energy β-ray emitting nucleus! (18F etc.) cannot be measured.

第5図と第6図は他の従来例を図示している。FIGS. 5 and 6 illustrate other conventional examples.

第5図は血液の通るチューブ10を挾んだ2つの対向シ
ンチレーション検出器14による測定例を示している。
FIG. 5 shows an example of measurement using two opposing scintillation detectors 14 sandwiching a tube 10 through which blood passes.

  14aはシンチレータBG0゜20は同時計数回路
であり、これにより消滅T線は同時計数する。 同時計
数すればバックグランドの影響は受けにくいが、第6図
に示すような、チューブ10外の散乱T線間時計数を計
測するため、低計数率でバンクグランド計数を生じてし
まう。
14a is a scintillator BG0. 20 is a coincidence counting circuit, whereby the annihilation T-rays are counted in coincidence. Although simultaneous counting is less susceptible to the influence of background, bank ground counting occurs at a low counting rate because the counts between scattered T-rays outside the tube 10 are measured as shown in FIG.

従って、従来例の両方法ともバックグランド計数を少な
くするためには、鉛シールドを大きくする必要があり、
使いにくいものになってしまう。
Therefore, in both conventional methods, it is necessary to increase the lead shield size in order to reduce the background count.
It becomes difficult to use.

そこで、本発明の実施例を第1図と第2図とについて説
明する。
Therefore, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

構成はチューブlOの入る穴のあいたプラスチック・シ
ンチレータ12aを囲むように対向シンチレーション検
出器14を配置してなる。
The configuration is such that opposing scintillation detectors 14 are arranged so as to surround a plastic scintillator 12a with a hole into which the tube IO is inserted.

各シンチレータ12a、14aは光センサ(PMT)1
2b、14bとの接続面以外は光のクロストークを無く
すため、反射材を塗布しておくのが好ましい。
Each scintillator 12a, 14a is a photo sensor (PMT) 1
In order to eliminate optical crosstalk, it is preferable to coat surfaces other than the connecting surfaces with 2b and 14b with a reflective material.

動作原理は第2図に示される。The principle of operation is shown in FIG.

チューブ10からのベータ線はプラスチックシンチレー
タ12aで吸収され、光に変換される。
Beta radiation from tube 10 is absorbed by plastic scintillator 12a and converted into light.

この光は側面のPMT12bで計測される。This light is measured by the PMT 12b on the side.

消滅γ線は外側にある対向シンチレータ14bで蛍光し
tfSされる。 プラスチックシンチレータ12aと対
向シンチレータ14aの信号はそれぞれのPMT12b
、14bを介して同時計数を同時計数回路22により行
う。
The annihilation gamma rays fluoresce at the opposing scintillator 14b on the outside and are subjected to tfS. The signals of the plastic scintillator 12a and the opposing scintillator 14a are transmitted through the respective PMTs 12b.
, 14b, the coincidence counting circuit 22 performs coincidence counting.

本発明によれば、ベータ線のスレシロルドを低く設定し
てもT線との同時計数を行うため、バンクグランド計数
の影響を受けにくい。 また、同様な理由で、第6図の
散乱同時計数によるバンクグランド計数も除去できる。
According to the present invention, even if the beta ray threshold is set low, coincidence counting with the T ray is performed, so that it is less susceptible to bank ground counting. Furthermore, for the same reason, bank ground counting based on scattering coincidence shown in FIG. 6 can also be eliminated.

なお、プラスチック・シンチレーション検出器及び対向
型シンチレーション検出器の形状は実施例以外の例えば
板状でもよい。
Note that the shape of the plastic scintillation detector and the opposed scintillation detector may be other than the shape of the embodiment, for example, a plate shape.

また、シンチレータもプラスチック・シンチレータ、B
GO12J外にも様々なものに代替できる。
In addition, the scintillator is also a plastic scintillator, B
It can be replaced with various things other than GO12J.

(ト)効果 本発明によれば、放射能の測定感度を上げることができ
、その際バンクグランド計数が下げられ、鉛の遮へいを
へらすことができるので、装置を小型、軽量化できる。
(g) Effects According to the present invention, the sensitivity of radioactivity measurement can be increased, and in this case, the bank ground count can be lowered and lead shielding can be reduced, so that the apparatus can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示した構成置数り図、第2
図は本発明による原理説明図、第3図は従来例の構成置
数り図、第4図は該従来例によるエネルギースペクトル
図、第5図は他の従来例置数り図、第6図は該従来例に
よる散乱T線の同時計数例示図である。 lOはチューブ、12aはプラスチック・シンチレータ
、12bはPMT、14はBGOシンチレータ、14b
はPMT、20と22は同時計数回路である。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
3 is a diagram explaining the principle of the present invention, FIG. 3 is a configuration diagram of a conventional example, FIG. 4 is an energy spectrum diagram of the conventional example, FIG. 5 is a diagram of another conventional example, and FIG. is a diagram illustrating coincidence of scattered T-rays according to the conventional example. 1O is a tube, 12a is a plastic scintillator, 12b is a PMT, 14 is a BGO scintillator, 14b
is a PMT, and 20 and 22 are coincidence circuits.

Claims (1)

【特許請求の範囲】[Claims] 1、血液の通るチューブを囲むシンチレーション検出器
と、そのシンチレータを囲む密度の高いシンチレータが
使われた少なくとも2つのシンチレーション検出器と、
これら全ての検出器に接続された同時計数回路とを具備
していることを特徴とする、血中RI濃度測定装置。
1. A scintillation detector surrounding a tube through which blood passes, and at least two scintillation detectors using a scintillator with high density surrounding the scintillator;
A blood RI concentration measuring device characterized by comprising a coincidence counting circuit connected to all of these detectors.
JP8039790A 1990-03-27 1990-03-27 Apparatus for measuring concentration ri in blood Pending JPH03277989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8039790A JPH03277989A (en) 1990-03-27 1990-03-27 Apparatus for measuring concentration ri in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8039790A JPH03277989A (en) 1990-03-27 1990-03-27 Apparatus for measuring concentration ri in blood

Publications (1)

Publication Number Publication Date
JPH03277989A true JPH03277989A (en) 1991-12-09

Family

ID=13717157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8039790A Pending JPH03277989A (en) 1990-03-27 1990-03-27 Apparatus for measuring concentration ri in blood

Country Status (1)

Country Link
JP (1) JPH03277989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264985A (en) * 2008-04-25 2009-11-12 Nara Institute Of Science & Technology Radiation detector
CN116184483A (en) * 2023-04-27 2023-05-30 中国人民解放军军事科学院军事医学研究院 Portable neutron dosimeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009264985A (en) * 2008-04-25 2009-11-12 Nara Institute Of Science & Technology Radiation detector
CN116184483A (en) * 2023-04-27 2023-05-30 中国人民解放军军事科学院军事医学研究院 Portable neutron dosimeter

Similar Documents

Publication Publication Date Title
CA2252993C (en) Detector assembly for multi-modality scanners
US5880469A (en) Method and apparatus for a directional neutron detector which discriminates neutrons from gamma rays
US5773829A (en) Radiation imaging detector
US9069089B2 (en) Methods and systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography
US5134293A (en) Scintillator material
Dahlbom et al. Performance of a YSO/LSO phoswich detector for use in a PET/SPECT system
US10203419B2 (en) Detector component for an X-ray or gamma ray detector
US5753917A (en) Dual crystal scintillation camera
US4843245A (en) Scintillation detector for tomographs
US5015860A (en) Scintillator materials containing lanthanum fluorides
WO1996039641A9 (en) Dual crystal scintillation camera
JP2006258755A (en) ZnS(Ag) SCINTILLATION DETECTOR
US9645253B2 (en) Method and apparatus for detection of radioactive isotopes
EP1987373A2 (en) Beta-radiation detector for blood flow and chromatography
US5015861A (en) Lead carbonate scintillator materials
JPH03277989A (en) Apparatus for measuring concentration ri in blood
JPH068859B2 (en) Device for measuring β-radionuclide content in food
Duxbury et al. Preliminary results from the new large-area PETRRA positron camera
US3591807A (en) Photon detector utilizing a well-type scintillation crystal
Yamamoto et al. Development of a positron-imaging detector with background rejection capability
Yavuzkanat et al. Geant4 investigation of the alpha-beta-gamma detector system used in medical imaging, environmental and nuclear site monitoring
JPS639881A (en) Radiation detector
US20210356611A1 (en) Spectroscopic Sensor for Alpha and Beta Particles
Najam et al. Nuclear Medicine Instrumentation
Raylman et al. Beta-sensitive intraoperative probes utilizing dual, stacked ion-implanted-silicon detectors: proof of principle