JPH03277695A - Purification of fuel gas - Google Patents

Purification of fuel gas

Info

Publication number
JPH03277695A
JPH03277695A JP2080169A JP8016990A JPH03277695A JP H03277695 A JPH03277695 A JP H03277695A JP 2080169 A JP2080169 A JP 2080169A JP 8016990 A JP8016990 A JP 8016990A JP H03277695 A JPH03277695 A JP H03277695A
Authority
JP
Japan
Prior art keywords
fuel gas
carbon monoxide
gas
olefins
dienes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2080169A
Other languages
Japanese (ja)
Inventor
Satoru Nakamichi
悟 中道
Fumiaki Yoshikawa
文明 吉川
Norihisa Shiraishi
典久 白石
Kenzo Yamamoto
山本 研三
Tsutomu Toida
戸井田 努
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
JFE Steel Corp
Original Assignee
JGC Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Kawasaki Steel Corp filed Critical JGC Corp
Priority to JP2080169A priority Critical patent/JPH03277695A/en
Publication of JPH03277695A publication Critical patent/JPH03277695A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P20/121

Landscapes

  • Industrial Gases (AREA)

Abstract

PURPOSE:To purify a fuel gas containing CO, H, dienes, olefins and O- and S-compounds without causing carbonaceous deposition by subjecting the fuel gas to hydrogenation and CO conversion, followed by heat recovery and removal of both steam and S-compounds. CONSTITUTION:Steam is added to a fuel gas containing CO, H, dienes, olefins and O- and S-compounds. The mixture is preheated at 100-250 deg.C by heat recovered from steam and/or a process gas, and hydrogenation is carried out for hydrogenating the dienes, olefins and O-compounds. Then, CO conversion is carried out by converting the CO in the hydrogenated fuel gas into CO2 and H. After recovery of heat of the fuel gas thus treated, the gas is further cooled to removed steam. Then, removal of the S-compounds gives a purified fuel gas.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、一酸化炭素、水素、ジエン類、オレフィン類
、酸素、硫黄化合物等が共存するコークス炉ガス等の燃
料ガスの精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for purifying fuel gas such as coke oven gas in which carbon monoxide, hydrogen, dienes, olefins, oxygen, sulfur compounds, etc. coexist.

く従来の技術〉 一酸化炭素と水蒸気とを反応させて、二酸化炭素と水素
とにするには、鉄−クロム系の触媒を用いて250〜4
00℃で変成する高温変成があり、硫黄化合物の多い原
料ガスを変成するときは、コバルト−モリブデン系の触
媒を硫化して用いる場合もある。
Prior Art> In order to react carbon monoxide and water vapor to produce carbon dioxide and hydrogen, an iron-chromium catalyst is used to react with 250 to 4
There is high-temperature modification in which modification occurs at 00° C. When modifying a raw material gas containing a large amount of sulfur compounds, a sulfurized cobalt-molybdenum catalyst may be used.

硫黄化合物が無い場合は、銅−亜鉛系触媒を用いて20
0〜250℃で低温変成する方法がある。
If there is no sulfur compound, use a copper-zinc catalyst to
There is a method of low-temperature metamorphosis at 0 to 250°C.

これらの技術により燃料ガス、合成ガス中の一酸化炭素
を低下させることが行われている。
These techniques are used to reduce carbon monoxide in fuel gas and synthesis gas.

しかし、これらの従来技術をコークス炉ガス等のジエン
類、オレフィン類、酸素、硫黄化合物の共存するガスに
適用すると次のような不都合の生ずることが判った。
However, it has been found that when these conventional techniques are applied to gas such as coke oven gas in which dienes, olefins, oxygen, and sulfur compounds coexist, the following disadvantages occur.

〈発明が解決しようとする課題〉 ジエン類、オレフィン類、酸素、硫黄化合物の共存する
コークス炉ガスに水蒸気を加えて、一酸化炭素の変成反
応試験を行ったところ、触媒の活性劣化が太き(安定し
た性能を維持できないことが判った。
<Problem to be solved by the invention> When water vapor was added to coke oven gas in which dienes, olefins, oxygen, and sulfur compounds coexisted, a carbon monoxide conversion reaction test was conducted, and it was found that the activity of the catalyst significantly deteriorated. (It was found that stable performance could not be maintained.

これは一酸化炭素変成触媒の使用可能温度までコークス
炉ガスを予熱すると含有成分の重合、分解反応のためか
炭素質が生成し、触媒上に付着してしまい活性劣化が起
きていると考えられる。
This is thought to be due to the fact that when coke oven gas is preheated to a temperature at which the carbon monoxide shift catalyst can be used, carbonaceous substances are generated, perhaps due to polymerization and decomposition reactions of the contained components, and adhere to the catalyst, causing activity deterioration. .

予熱温度を低くすれば解決できる可能性があるが、低温
変成触媒は硫黄化合物により活性を失ってしまうので脱
硫精製後のガスにしか使用できない。
This problem may be solved by lowering the preheating temperature, but low-temperature shift catalysts lose their activity due to sulfur compounds, so they can only be used for gas after desulfurization and purification.

本発明は、一酸化炭素、水素、ジエン類、オレフィン類
、酸素および硫黄化合物を含有する燃料ガスを精製する
際、炭素質析出によるトラブルを起すことなく一酸化炭
素および硫黄化合物を除去できる燃料ガスの精製法を提
供することを目的としている。
The present invention provides a fuel gas that can remove carbon monoxide and sulfur compounds without causing troubles due to carbonaceous precipitation when refining fuel gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen, and sulfur compounds. The purpose is to provide a purification method for

く課題を解決するための手段〉 アルミナやけい酸カルシウム製のボールを充填した反応
管に表1に示す組成の燃料ガスを流し、充填層に50〜
300℃の温度分布を付け200時間運転した後、燃料
ガスを止め、窒素ガスを流し、冷却して開放し充填層へ
の炭素質の付着状況を観察したところ、200℃付近か
ら変色が見られ、250℃付近では黒く、明らかに炭素
質が付着しているのが判る状態であった。
Means for Solving the Problem> A fuel gas having the composition shown in Table 1 is passed through a reaction tube filled with balls made of alumina or calcium silicate, and a
After operating for 200 hours with a temperature distribution of 300°C, the fuel gas was stopped, nitrogen gas was flowed, and the tank was cooled and opened to observe the adhesion of carbon to the packed bed. Discoloration was observed from around 200°C. At around 250° C., it was black, and it was clear that carbonaceous substances were attached.

炭素質析出の原因はジエン類、オレフィン類と酸素との
共存による重合、分解が起きるためと考え、できるだけ
低温にてジエン類、オレフィン類、酸素を水添して飽和
炭化水素、水に転換し熱的に安定にすることにより一酸
化炭素の変成反応温度まで予熱を可能にする方法を検討
した。
We believe that the cause of carbonaceous precipitation is polymerization and decomposition caused by the coexistence of dienes and olefins with oxygen, so we hydrogenate dienes, olefins, and oxygen at as low a temperature as possible to convert them into saturated hydrocarbons and water. We investigated a method that enables preheating to the carbon monoxide metamorphosis reaction temperature by making it thermally stable.

しかし、表1の組成のガスを水添するとその反応熱によ
り120℃の温度上昇があるので、水添後の温度を20
0℃以下に抑えるには入口温度を80℃以下にしなけれ
ばならない。
However, when hydrogenating a gas with the composition shown in Table 1, the temperature rises by 120°C due to the heat of reaction, so the temperature after hydrogenation is reduced to 20°C.
In order to keep it below 0°C, the inlet temperature must be kept below 80°C.

Pd触媒を用いて表1の組成のガスを80℃で水添反応
を行ってみると、一酸化炭素の強吸着のためか硫黄化合
物のためか、反応が阻害されてしまうことが判った。 
また、100℃以上好ましくは120〜200℃にする
と反応が順調に進行することも判った。
When hydrogenating a gas having the composition shown in Table 1 at 80° C. using a Pd catalyst, it was found that the reaction was inhibited, probably due to strong adsorption of carbon monoxide or sulfur compounds.
It has also been found that the reaction proceeds smoothly when the temperature is 100°C or higher, preferably 120 to 200°C.

幸いなことに、Pd触媒の場合は触媒層内で200℃以
上になっても炭素質が析出しないことが判った。
Fortunately, it has been found that in the case of a Pd catalyst, carbonaceous substances do not precipitate even at temperatures of 200° C. or higher within the catalyst layer.

さらに、水蒸気を添加してもジエン類、オレフィン類、
酸素の水添を行い得ることも判った。
Furthermore, even if water vapor is added, dienes, olefins,
It has also been found that hydrogenation of oxygen can be carried out.

これらのことを利用すれば、炭素質析出無しに一酸化炭
素の変成反応に必要な温度まで反応および熱回収によっ
て昇温できることになる。
By utilizing these facts, it is possible to raise the temperature by reaction and heat recovery to the temperature required for the metamorphosis reaction of carbon monoxide without carbonaceous precipitation.

すなわち、上記目的を達成するために本発明の第1の態
様によれば、一酸化炭素、水素、ジエン類、オレフィン
類、酸素および硫黄化合物を含有する燃料ガス中の前記
一酸化炭素を水蒸気添加による一酸化炭素変成反応にて
除去し、前記硫黄化合物を脱硫除去して燃料ガスを精製
する方法において、 前記燃料ガスに水蒸気を加え、水蒸気および/またはプ
ロセスガスからの熱を回収して前記燃料ガスを100〜
250℃に予熱したのち、前記燃料ガス中に残存するジ
エン類、オレフィン類および酸素を水素化する水添工程
、前記水添工程からの燃料ガス中に残存する一酸化炭素
を二酸化炭素および水素に転換する低温一酸化炭素変成
工程、 前記低温一酸化炭素変成工程からの燃料ガスの熱を回収
し、さらに冷却して燃料ガス中の水蒸気を除去する工程
、 前記水蒸気を除去した燃料ガス中に残存する硫黄化合物
を除去する工程を有することを特徴とする燃料ガスの精
製法が提供される。
That is, in order to achieve the above object, according to the first aspect of the present invention, the carbon monoxide in the fuel gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen and sulfur compounds is removed by adding water vapor. In the method of purifying fuel gas by desulfurizing and removing the sulfur compounds by a carbon monoxide conversion reaction, water vapor is added to the fuel gas, heat from the water vapor and/or process gas is recovered, and the fuel gas is purified by removing the sulfur compounds by desulfurization. gas from 100
After preheating to 250°C, there is a hydrogenation step in which dienes, olefins, and oxygen remaining in the fuel gas are hydrogenated, and carbon monoxide remaining in the fuel gas from the hydrogenation step is converted into carbon dioxide and hydrogen. a low-temperature carbon monoxide transformation step for converting; a step of recovering the heat of the fuel gas from the low-temperature carbon monoxide transformation step and further cooling it to remove water vapor from the fuel gas; Provided is a method for purifying fuel gas, the method comprising the step of removing sulfur compounds.

また、本発明の第2の態様によれば、一酸化炭素、水素
、ジエン類、オレフィン類、酸素および硫黄化合物を含
有する燃料ガス中の前記一酸化炭素を水蒸気添加による
一酸化炭素変成反応にて除去し、前記硫黄化合物を脱硫
除去して燃料ガスを精製する方法において、 水蒸気および/またはプロセスガスからの回収熱で前記
燃料ガスを100〜250℃に予熱したのち、前記燃料
ガス中に残存するジエン類、オレフィン類および酸素を
水素化する水添工、程、 前記水添工程からの燃料ガスに水蒸気を加え、かつプロ
セスガスからの回収熱で前記燃料ガスを250〜350
℃に予熱したのち、燃料ガス中に残存する一酸化炭素を
二酸化炭素および水素に転換する一酸化炭素変成工程、
前記一酸化炭素変成工程からの燃料ガスの熱を回収し、
さらに冷却して燃料ガス中の水蒸気を除去する工程、 前記水蒸気を除去した燃料ガス中に残存する硫黄化合物
を除去する工程を有することを特徴とする燃料ガスの精
製法が提供される。
Further, according to the second aspect of the present invention, the carbon monoxide in the fuel gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen, and sulfur compounds is subjected to a carbon monoxide modification reaction by adding steam. In the method of purifying fuel gas by desulfurizing and removing the sulfur compounds, the fuel gas is preheated to 100 to 250°C using steam and/or heat recovered from the process gas, and then the remaining sulfur compounds remain in the fuel gas. a hydrogenation process for hydrogenating dienes, olefins, and oxygen; steam is added to the fuel gas from the hydrogenation process, and the fuel gas is heated to 250 to 350
a carbon monoxide conversion process that converts carbon monoxide remaining in the fuel gas into carbon dioxide and hydrogen after preheating to ℃;
Recovering the heat of the fuel gas from the carbon monoxide transformation step,
There is provided a method for purifying fuel gas, which comprises the steps of: further cooling to remove water vapor from the fuel gas; and removing sulfur compounds remaining in the fuel gas from which the water vapor has been removed.

前記水添工程はPd触媒で断熱反応器を用いて行うのが
好ましい。
The hydrogenation step is preferably carried out using a Pd catalyst in an adiabatic reactor.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

第1図は、本発明の第1の態様の1例を示す反応系統図
である。 第1の態様では処理すべき燃料ガスlは、水
添反応器2→一酸化炭素変成反応器3→脱硫反応器11
の順序で処理される。
FIG. 1 is a reaction system diagram showing an example of the first aspect of the present invention. In the first embodiment, the fuel gas l to be treated is hydrogenated reactor 2 → carbon monoxide shift reactor 3 → desulfurization reactor 11
are processed in this order.

処理すべき燃料ガスlとしては、一酸化炭素、水素、ジ
エン類、オレフィン類、酸素および硫黄化合物を含有す
るガスであればいかなるガスでもよ(、例えばコークス
炉ガスを代表的に挙げることができる。
The fuel gas to be treated may be any gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen, and sulfur compounds (for example, coke oven gas is a typical example). .

処理すべき燃料ガス1に、まず水蒸気6を加えて混合し
たのち、原料予熱器5で100〜250℃、好ましくは
120〜200℃に予熱される。 この予熱は運転開始
時のみは水蒸気を用いてスタートアップ用原料予熱器1
3で行うが、通常運転時は後述するプロセスガスからの
回収熱のみで行うことができる。 従って、加熱炉で燃
焼ガスによる予熱をする場合に比べて局部的に高温にさ
らされることがないので、分解1重合の恐れが少なく低
温水添反応器2の低温水添触媒層上への炭素析出を防止
できる。
After water vapor 6 is first added and mixed to the fuel gas 1 to be treated, the fuel gas 1 is preheated to 100 to 250°C, preferably 120 to 200°C, in a raw material preheater 5. This preheating is performed using steam at the start-up raw material preheater 1 only at the start of operation.
3, but during normal operation, it can be performed using only the heat recovered from the process gas, which will be described later. Therefore, compared to preheating with combustion gas in a heating furnace, there is no local exposure to high temperatures, so there is less risk of decomposition and polymerization, and the carbon on the low-temperature hydrogenation catalyst layer of the low-temperature hydrogenation reactor 2 is not exposed to high temperatures locally. Precipitation can be prevented.

次に、このガスを低温水添反応器2へ導き、ジエン類、
オレフィン類、酸素を水添して200〜300℃になっ
たガスを一酸化炭素変成反応器3で一酸化炭素を二酸化
炭素、水素に転換する。 硫黄化合物の一部は一酸化炭
素変成触媒上で、加水分解または水素添加により硫化水
素に転換される。
Next, this gas is led to the low temperature hydrogenation reactor 2, and dienes,
Olefins and oxygen are hydrogenated and the gas heated to 200 to 300° C. is used in a carbon monoxide conversion reactor 3 to convert carbon monoxide into carbon dioxide and hydrogen. A portion of the sulfur compounds are converted to hydrogen sulfide by hydrolysis or hydrogenation over a carbon monoxide conversion catalyst.

水添反応器2にはPd触媒を充填し、100〜250℃
、好ましくは120〜200℃で前記予熱ガスを反応さ
せてジエン類、オレフィン類、酸素を水添すると200
〜250℃を越えても触媒上に炭素析出を起こさずに済
む。
Hydrogenation reactor 2 was filled with Pd catalyst and heated to 100 to 250°C.
, preferably at 120 to 200°C to hydrogenate dienes, olefins, and oxygen by reacting the preheated gas to 200°C.
Even if the temperature exceeds ~250°C, no carbon deposition occurs on the catalyst.

変成後のガスは原料予熱器5で処理すべき燃料ガスlと
熱交換し、冷却器7で冷却され、気液分離器8で凝縮水
9を分離除去されたのち、脱硫反応器11で硫黄化合物
を除去し精製ガスlOを得る。 脱硫反応器11として
は特に限定せず、乾式または湿式を用いることができ、
例えば酸化鉄系脱硫剤を充填したものでよい。
The gas after the transformation exchanges heat with the fuel gas l to be treated in the raw material preheater 5, is cooled in the cooler 7, and after separating and removing condensed water 9 in the gas-liquid separator 8, sulfur is removed in the desulfurization reactor 11. Compounds are removed to obtain purified gas lO. The desulfurization reactor 11 is not particularly limited, and a dry type or a wet type can be used.
For example, it may be filled with an iron oxide desulfurization agent.

以上により、コークス炉ガス等ジエン類、オレフィン類
、酸素の共存する燃料ガス中の一酸化炭素および硫黄化
合物の含有量を削減し、触媒上への炭素質析出無くガス
精製を行うことができる。
As described above, the content of carbon monoxide and sulfur compounds in fuel gas such as coke oven gas in which dienes, olefins, and oxygen coexist can be reduced, and gas purification can be performed without carbonaceous precipitation on the catalyst.

次に、本発明の第2の態様について説明する。Next, a second aspect of the present invention will be explained.

第2図は、その1例を示す反応系統図である。 処理す
べき燃料ガスlは、水添反応器2→一酸化炭素変成反応
器4→脱硫反応器】1の順序で処理される。
FIG. 2 is a reaction system diagram showing one example. The fuel gas 1 to be treated is treated in the following order: hydrogenation reactor 2 → carbon monoxide shift reactor 4 → desulfurization reactor 1.

なお、第1の態様と同様の説明部分は省略する。Note that explanations similar to those in the first aspect will be omitted.

処理すべき燃料ガスlは、まず原料予熱器5で100〜
250℃、好ましくは12o〜200℃に予熱される。
The fuel gas l to be treated is first heated in the raw material preheater 5 to
It is preheated to 250°C, preferably 12o-200°C.

 この予熱は運転開始時のみは水蒸気を用いて原料予熱
器13で行うが、通常運転時はプロセスガスからの回収
熱のみで行うことができる。
This preheating is performed in the raw material preheater 13 using steam only at the start of operation, but during normal operation it can be performed only using the heat recovered from the process gas.

次に、このガスを水添反応器2へ導き、ジエン類、オレ
フィン類、酸素を水添して200〜300℃になったガ
スに水蒸気6を加え、熱交換器12で後述するプロセス
ガスと熱交換して250〜350℃に昇温し、一酸化炭
素変成反応器4で一酸化炭素を二酸化炭素、水素に転換
する。
Next, this gas is led to the hydrogenation reactor 2, where dienes, olefins, and oxygen are hydrogenated, and steam 6 is added to the gas that has reached 200 to 300°C, and the heat exchanger 12 converts the gas into a process gas, which will be described later. The temperature is raised to 250 to 350° C. by heat exchange, and carbon monoxide is converted into carbon dioxide and hydrogen in a carbon monoxide shift reactor 4.

硫黄化合物の一部は一酸化炭素変成触媒上で、加水分解
または水素添加により硫化水素に転換される。
A portion of the sulfur compounds are converted to hydrogen sulfide by hydrolysis or hydrogenation over a carbon monoxide conversion catalyst.

変成後のガスは熱交換器12で水添反応器2出ガスと熱
交換し、さらに原料予熱器5で処理すべき燃料ガスlと
熱交換し、冷却器7で冷却され、気液分離器8で凝縮水
9を分離除去されたのち、脱硫反応器11で硫黄化合物
を除去し精製ガスlOを得る。 脱硫反応器11として
は、特に限定せず、乾式または湿式を用いることができ
、例えば酸化鉄系脱硫剤を充填したものでよい。
The gas after the shift exchanges heat with the gas output from the hydrogenation reactor 2 in the heat exchanger 12, further exchanges heat with the fuel gas l to be treated in the raw material preheater 5, is cooled in the cooler 7, and then passes through the gas-liquid separator. After condensed water 9 is separated and removed in step 8, sulfur compounds are removed in a desulfurization reactor 11 to obtain purified gas lO. The desulfurization reactor 11 is not particularly limited, and a dry type or wet type can be used, and for example, one filled with an iron oxide desulfurization agent may be used.

以上により、コークス炉ガス等ジエン類、オレフィン類
、酸素の共存する燃料ガス中の一酸化炭素および硫黄化
合物の含有量を削減し、触媒上への炭素質析出無くガス
精製を行うことができる。
As described above, the content of carbon monoxide and sulfur compounds in fuel gas such as coke oven gas in which dienes, olefins, and oxygen coexist can be reduced, and gas purification can be performed without carbonaceous precipitation on the catalyst.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例]) 表1に示すガス組成の燃料ガス300 Nm”/Hrと
水蒸気6 (70kg/Hr l l O℃)とを第1
図に従って原料予熱器5にて150℃まで予熱し、Pd
−Al2O,触媒を30OL充填した水添反応器2に送
入した。 ジエン類、オレフィン類、酸素の水添が進行
し出口ガスの温度は 240℃になった。
(Example) A fuel gas of 300 Nm"/Hr having the gas composition shown in Table 1 and water vapor 6 (70 kg/Hr l l O ℃) were
According to the diagram, preheat the raw material to 150°C in the raw material preheater 5, and
-Al2O and the catalyst were fed into a hydrogenation reactor 2 filled with 30OL. Hydrogenation of dienes, olefins, and oxygen proceeded, and the temperature of the outlet gas reached 240°C.

次いで、低温一酸化炭素変成触媒(Fe−Cr系)60
0L充填した低温一酸化炭素変成反応器3に送入すると
、変成反応が進行して、出口ガスは310℃になった。
Next, a low temperature carbon monoxide shift catalyst (Fe-Cr type) 60
When the gas was fed into the low-temperature carbon monoxide shift reactor 3 filled with 0 L, the shift reaction proceeded and the temperature of the outlet gas reached 310°C.

このガスを原料予熱器5、冷却器7で熱回収、冷却し、
凝縮水9を気液分離器8で除去して、酸化鉄系脱硫剤2
m’を充填した脱硫反応器11にて硫化水素を除去して
表2の組成の精製ガス10を得た。
This gas is heat recovered and cooled by a raw material preheater 5 and a cooler 7,
The condensed water 9 is removed by the gas-liquid separator 8, and the iron oxide desulfurization agent 2 is removed.
Hydrogen sulfide was removed in a desulfurization reactor 11 filled with m' to obtain purified gas 10 having the composition shown in Table 2.

(実施例2) 表1に示すガス組成の燃料ガス300 Nm”/llr
を第2図に従って原料予熱器5にて150℃まで予熱し
、Pd−Aρ20□触媒を30OL充填した水添反応器
2に送入した。 ジエン類、オレフィン類、酸素の水添
が進行し出口ガスの温度は270℃になった。 このガ
スに水蒸気6を加え(70kg/Hr 110℃)熱交
換器12にて280℃に予熱して、一酸化炭素変成触媒
(Fe−Cr系)600L充填した一酸化炭素変成反応
器4に送入すると、変成反応が進行して、出口ガスは3
50℃になった。
(Example 2) Fuel gas with the gas composition shown in Table 1 300 Nm”/llr
was preheated to 150° C. in a raw material preheater 5 according to FIG. 2, and fed into a hydrogenation reactor 2 filled with 30 OL of Pd-Aρ20□ catalyst. Hydrogenation of dienes, olefins, and oxygen proceeded, and the temperature of the outlet gas reached 270°C. Steam 6 is added to this gas (70 kg/Hr 110°C), preheated to 280°C in a heat exchanger 12, and sent to a carbon monoxide shift reactor 4 filled with 600 L of carbon monoxide shift catalyst (Fe-Cr type). When the gas enters, the metamorphosis reaction proceeds and the exit gas becomes 3
The temperature reached 50℃.

このガスを熱回収、冷却し、凝縮水9を気液分離器8で
除去し、酸化鉄系脱硫剤2m”を充填した脱硫反応器1
1にて処理して表2の組成の精製ガスlOを得た。
This gas is heat recovered and cooled, condensed water 9 is removed by a gas-liquid separator 8, and a desulfurization reactor 1 is filled with 2 m'' of iron oxide desulfurization agent.
1 to obtain purified gas lO having the composition shown in Table 2.

表 1  燃料ガス組成 表 精製ガス組成 〈発明の効果〉 本発明は以上説明したように構成されているので、本発
明によれば、一酸化炭素、水素、ジエン類、オレフィン
類、酸素および硫黄化合物を含有する燃料ガスを精製す
る際、戻素質析出によるトラブルを起すことなく一酸化
炭素および硫黄化合物を除去して精製ガスを得ることが
できる。
Table 1 Fuel gas composition table Purified gas composition <Effects of the invention> Since the present invention is configured as described above, according to the present invention, carbon monoxide, hydrogen, dienes, olefins, oxygen and sulfur compounds When refining fuel gas containing carbon monoxide and sulfur compounds, purified gas can be obtained by removing carbon monoxide and sulfur compounds without causing trouble due to precipitation of return substances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ本発明の第1および第
2の態様の1例を示す反応系統図である。 符号の説明 1・・・燃料ガス、 2・・・低温水添反応器、 3・・・低温一酸化炭素変成反応器、 4・・・一酸化炭素変成反応器、 5・・・原料予熱器、 6・・・水蒸気、 7・・・冷却器、 8・・・気液分離器、 9・・・凝縮水、 10・・・精製ガス、 11・・・脱硫反応器、 12・・・熱交換器、 13・・・スタートアップ用原料予熱器FIG、1 FIG、2
FIG. 1 and FIG. 2 are reaction diagrams showing one example of the first and second aspects of the present invention, respectively. Explanation of symbols 1... Fuel gas, 2... Low temperature hydrogenation reactor, 3... Low temperature carbon monoxide shift reactor, 4... Carbon monoxide shift reactor, 5... Raw material preheater , 6... Steam, 7... Cooler, 8... Gas-liquid separator, 9... Condensed water, 10... Purified gas, 11... Desulfurization reactor, 12... Heat Exchanger, 13...Start-up raw material preheater FIG, 1 FIG, 2

Claims (3)

【特許請求の範囲】[Claims] (1)一酸化炭素、水素、ジエン類、オレフィン類、酸
素および硫黄化合物を含有する燃料ガス中の前記一酸化
炭素を水蒸気添加による一酸化炭素変成反応にて除去し
、前記硫黄化合物を脱硫除去して燃料ガスを精製する方
法において、 前記燃料ガスに水蒸気を加え、水蒸気および/またはプ
ロセスガスからの熱を回収して前記燃料ガスを100〜
250℃に予熱したのち、前記燃料ガス中に残存するジ
エン類、オレフィン類および酸素を水素化する水添工程
、 前記水添工程からの燃料ガス中に残存する一酸化炭素を
二酸化炭素および水素に転換する一酸化炭素変成工程、 前記一酸化炭素変成工程からの燃料ガスの熱を回収し、
さらに冷却して燃料ガス中の水蒸気を除去する工程、 前記水蒸気を除去した燃料ガス中に残存する硫黄化合物
を除去する工程を有することを特徴とする燃料ガスの精
製法。
(1) The carbon monoxide in the fuel gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen, and sulfur compounds is removed by a carbon monoxide conversion reaction by adding steam, and the sulfur compounds are desulfurized and removed. A method for purifying fuel gas by adding steam to the fuel gas and recovering heat from the steam and/or process gas to refine the fuel gas to
After preheating to 250°C, a hydrogenation step of hydrogenating dienes, olefins, and oxygen remaining in the fuel gas, and converting carbon monoxide remaining in the fuel gas from the hydrogenation step into carbon dioxide and hydrogen. converting a carbon monoxide transformation process, recovering the heat of the fuel gas from the carbon monoxide transformation process,
A method for purifying fuel gas, comprising the steps of: further cooling to remove water vapor from the fuel gas; and removing sulfur compounds remaining in the fuel gas from which the water vapor has been removed.
(2)一酸化炭素、水素、ジエン類、オレフィン類、酸
素および硫黄化合物を含有する燃料ガス中の前記一酸化
炭素を水蒸気添加による一酸化炭素変成反応にて除去し
、前記硫黄化合物を脱硫除去して燃料ガスを精製する方
法において、 水蒸気および/またはプロセスガスからの回収熱で前記
燃料ガスを100〜250℃に予熱したのち、前記燃料
ガス中に残存するジエン類、オレフィン類および酸素を
水素化する水添工程、 前記水添工程からの燃料ガスに水蒸気を加 え、かつプロセスガスからの回収熱で前記燃料ガスを2
50〜350℃に予熱したのち、燃料ガス中に残存する
一酸化炭素を二酸化炭素および水素に転換する一酸化炭
素変成工程、 前記一酸化炭素変成工程からの燃料ガスの熱を回収し、
さらに冷却して燃料ガス中の水蒸気を除去する工程、 前記水蒸気を除去した燃料ガス中に残存する硫黄化合物
を除去する工程を有することを特徴とする燃料ガスの精
製法。
(2) The carbon monoxide in the fuel gas containing carbon monoxide, hydrogen, dienes, olefins, oxygen, and sulfur compounds is removed by a carbon monoxide conversion reaction by adding steam, and the sulfur compounds are desulfurized and removed. In this method, the fuel gas is preheated to 100 to 250°C using heat recovered from steam and/or process gas, and then dienes, olefins, and oxygen remaining in the fuel gas are replaced with hydrogen. A hydrogenation step in which water vapor is added to the fuel gas from the hydrogenation step, and the fuel gas is converted into 2 with the heat recovered from the process gas.
A carbon monoxide conversion step in which carbon monoxide remaining in the fuel gas is converted into carbon dioxide and hydrogen after preheating to 50 to 350°C; heat of the fuel gas from the carbon monoxide conversion step is recovered;
A method for purifying fuel gas, comprising the steps of: further cooling to remove water vapor from the fuel gas; and removing sulfur compounds remaining in the fuel gas from which the water vapor has been removed.
(3)前記水添工程はPd触媒充填の断熱反応器を用い
る請求項1または2記載の燃料ガスの精製法。
(3) The fuel gas purification method according to claim 1 or 2, wherein the hydrogenation step uses an adiabatic reactor filled with a Pd catalyst.
JP2080169A 1990-03-28 1990-03-28 Purification of fuel gas Pending JPH03277695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2080169A JPH03277695A (en) 1990-03-28 1990-03-28 Purification of fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2080169A JPH03277695A (en) 1990-03-28 1990-03-28 Purification of fuel gas

Publications (1)

Publication Number Publication Date
JPH03277695A true JPH03277695A (en) 1991-12-09

Family

ID=13710826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2080169A Pending JPH03277695A (en) 1990-03-28 1990-03-28 Purification of fuel gas

Country Status (1)

Country Link
JP (1) JPH03277695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026090A1 (en) * 2007-08-17 2009-02-26 Shell Oil Company A process for removing sulfur from a fuel gas stream additionally containing diolefins and oxygen
JP2015040291A (en) * 2013-08-23 2015-03-02 株式会社Ihi Device and method for starting gas reforming system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009026090A1 (en) * 2007-08-17 2009-02-26 Shell Oil Company A process for removing sulfur from a fuel gas stream additionally containing diolefins and oxygen
JP2015040291A (en) * 2013-08-23 2015-03-02 株式会社Ihi Device and method for starting gas reforming system

Similar Documents

Publication Publication Date Title
US5152976A (en) Process for producing high purity hydrogen
CA1079029A (en) Process of increasing the yield in the production of sulfure
CA1261118A (en) High pressure process for sulfur recovery from a hydrogen sulfide containing gas stream
KR100317107B1 (en) Partial oxidation process for producing a stream of hot purified gas
JP3638618B2 (en) Production method of high purity hydrogen
US4302434A (en) Process for producing hydrogen and sulphur from hydrogen sulphide
US3988425A (en) Process of producing carbon monoxide from light hydrocarbons
US4041130A (en) Process for desulfurization of coke oven gas
RU2409517C2 (en) Method of producing sulphur from sulphur dioxide
US3771261A (en) Process for making fuel gas
CN101372627B (en) Method for producing clean fuel oil and high-purity chemical products from oven gas
WO2001009034A1 (en) Recovery of sulfur from h2s and concurrent production of h2 using short contact time cpox
JPS6317118B2 (en)
US4117100A (en) Process for reduction of sulfur dioxide to sulfur
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
KR910001816B1 (en) Method of carlon monoxide production
JPS60220123A (en) Removal of sulfur compound from exhaust gas
US4032618A (en) Conversion of ammonia into hydrogen and nitrogen by reaction with a sulfided catalyst
US4117101A (en) Process for reduction of SO2
JPS5938161B2 (en) Method for producing synthesis gas for ammonia production
JPH03277695A (en) Purification of fuel gas
RU2070538C1 (en) Method for production of elemental sulfur
US4060595A (en) Process for recovering elemental sulfur from gases having a high carbon dioxide content and containing sulfur compounds
JPH03277694A (en) Purification of fuel gas
US3970744A (en) Process for the production of sulfur from sulfur dioxide extracted from gas streams