JPH03276576A - Pressure type fuel cell power generating system - Google Patents

Pressure type fuel cell power generating system

Info

Publication number
JPH03276576A
JPH03276576A JP2076210A JP7621090A JPH03276576A JP H03276576 A JPH03276576 A JP H03276576A JP 2076210 A JP2076210 A JP 2076210A JP 7621090 A JP7621090 A JP 7621090A JP H03276576 A JPH03276576 A JP H03276576A
Authority
JP
Japan
Prior art keywords
air
oxygen
gas
chamber
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076210A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
杉山 智弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2076210A priority Critical patent/JPH03276576A/en
Publication of JPH03276576A publication Critical patent/JPH03276576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To improve the energy utilization factor by providing an oxygen permeating film type separating device separating the oxygen-enriched gas from the off-air bn the outlet side of an air chamber. CONSTITUTION:A separating device 21 is constituted of a pressure container partitioned into an off-air chamber 21B and an oxygen-enriched gas chamber 21C by an oxygen permeating film 21A made of polyimide, the oxygen in the off-air 5C guided into the off-air chamber 21B on the high gas pressure side permeates the permeating film 21A via the pressure difference applied to the permeating film 21A without requiring special power, it is separately recovered to the oxygen-enriched gas chamber 21C side which is the low-gas pressure side, and the residual nitrogen-rich exhaust gas 5D is decompressed by a decompressor 6A then discharged to the outside of the system. The recovered oxygen- enriched gas 25 contains oxygen 90% or above, and it is fed to the intake port side of an air compressor 2 via an oxygen adding passage 24. The energy utilization factor is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は炭化水素系燃料の改質ガス2よび空気中の酸
素を発電反応の活物質とする加圧式燃料電池発電システ
ム、ことに空気中酸素の処理構造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a pressurized fuel cell power generation system using a reformed gas 2 of a hydrocarbon fuel and oxygen in the air as active materials for a power generation reaction, especially in the air. Concerning oxygen processing structure.

〔従来の技術〕[Conventional technology]

第3図は従来の加圧式りんeR型燃料電池発電システム
を簡略化して示すシステム構成図である。
FIG. 3 is a simplified system configuration diagram of a conventional pressurized phosphorus eR type fuel cell power generation system.

図において、加圧式の燃料電池(本体)1は図示しない
圧力容器に収納されており、複数の単′鷹池の積層体(
スタック)として構成される。各単電池は電解質として
のりん酸金言浸したマトリックス11の両面に12F!
して燃料電極12および空気電量13を配した##造と
なってお夕、燃桝側12の反マトリックス側にはリブ付
さ電極基材またはリブ付きセパレート板等によりて燃料
ガス室14が形成されるとともに、空気電極13の反マ
トリックス側には空気室15が形成される。
In the figure, a pressurized fuel cell (main body) 1 is housed in a pressure vessel (not shown), and a stacked structure of a plurality of single cells (
stack). Each cell has 12 F on both sides of a matrix 11 soaked in phosphoric acid as an electrolyte!
A fuel gas chamber 14 is formed on the anti-matrix side of the combustion chamber side 12 by a ribbed electrode base material or a ribbed separate plate. At the same time, an air chamber 15 is formed on the opposite side of the air electrode 13 from the matrix.

2は空気室15に酸化剤としての加圧空気を供給する空
気圧縮機であり、大気圧望見5を例えば4却/、−nG
程度の加圧空気5Aに刀口圧して空気室15に供給する
。また、燃料改JR器3は・く−ナ18の燃焼熱を熱源
として吸熱反応である水蒸気改質反応を行うものであり
、改質原料4としてメタノールと水の混合気体、あるい
は天然ガスと水蒸気の混合気体を原料過熱管16で改質
反応に針通な湯度に原熱し、改質触媒全収蔵した改質反
応管17f!:通すことKより、水素リッチな改質ガス
4AKf換し、燃料電池1の燃料ガス室14に供給する
2 is an air compressor that supplies pressurized air as an oxidizing agent to the air chamber 15, and the atmospheric pressure gauge 5 is set to, for example, 4/, -nG.
The pressurized air 5A is supplied to the air chamber 15 with a knife mouth pressure of about 5A. In addition, the fuel reformer 3 performs a steam reforming reaction, which is an endothermic reaction, using the combustion heat of the burner 18 as a heat source, and uses a mixed gas of methanol and water, or natural gas and steam as the reforming raw material 4. The mixed gas is heated in the raw material superheating tube 16 to a temperature suitable for reforming reaction, and the reforming reaction tube 17f contains all the reforming catalyst! : Through the passage K, hydrogen-rich reformed gas 4AKf is exchanged and supplied to the fuel gas chamber 14 of the fuel cell 1.

燃料ガス室14に供給され之改質ガス4Aおよび空気室
15に供給された加圧空気5Aの圧力は例えば各室の出
口側配管14Aおよび15Aに設けられ之減圧升または
流量制御9Pを含む減圧器6F(燃料ガス側)、6A(
空気側ンによって調節され、マトリックス11に原わる
差圧を零に近づけるよう制御される。その結果、両電極
12,1乙にそれぞれ拡散し次改質ガス4人中の水素、
および加圧空気中の酸素がジん醗で濡れた電極触媒粒と
接触し、電気化学反応に基づく直接発電が行われる。発
電電力は電力変換装置9で例えば定電圧制御され九九部
負荷10に供給される。ま之、空気電極13で加圧空気
中の酸素の、fI50(XIが消費され九オフ空気5B
は減圧器6At−介して外部に放出され、燃料電極12
で酸素が消費され几オフガス4BIC含まれる使い残し
の水素は減圧器6Fを介してバーナ18に送られ、支燃
空気ブロワ8によってバーナ18に送られる支燃空気7
と混合して燃焼し、水蒸気改質反応に必要な熱源として
利用される。なお、オフガス4B中の残留水素の燃焼熱
だけでは反応熱′ftまかない切れない場合には改質原
料の一部が補助燃料としてバーナ18に供給される。
The pressure of the reformed gas 4A supplied to the fuel gas chamber 14 and the pressurized air 5A supplied to the air chamber 15 is determined by, for example, a pressure reduction system provided in the outlet side pipes 14A and 15A of each chamber, including a pressure reduction chamber or a flow rate control 9P. 6F (fuel gas side), 6A (
The pressure difference across the matrix 11 is controlled to be close to zero. As a result, the hydrogen in the reformed gas diffuses into both electrodes 12 and 1, respectively.
Oxygen in the pressurized air then comes into contact with the electrocatalyst particles wetted with resin, resulting in direct power generation based on an electrochemical reaction. The generated power is subjected to, for example, constant voltage control by the power converter 9 and is supplied to the multiplication part load 10 . However, the fI50 (XI of oxygen in the pressurized air at the air electrode 13 is consumed and 9 off air 5B
is discharged to the outside via the pressure reducer 6At-, and the fuel electrode 12
After the oxygen is consumed, the unused hydrogen contained in the off gas 4BIC is sent to the burner 18 via the pressure reducer 6F, and the combustion support air 7 is sent to the burner 18 by the combustion support air blower 8.
It is mixed with and combusted and used as a heat source necessary for the steam reforming reaction. Incidentally, if the combustion heat of residual hydrogen in the off-gas 4B is insufficient to cover the reaction heat 'ft, a part of the reformed raw material is supplied to the burner 18 as auxiliary fuel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のように構成された従来の装置釦おいて、燃料電池
1の発電反応を効率化しようとする場合、反応活物質で
ある水素および11!ar、電気化学的な反応部である
!極とマトリックスの界面にすみやかに供給して気相、
液相、固相からなる三相界面における発電反応を活性化
することが求められる。この三相界面への反応ガスの供
給は空気題砥および燃料電極におけるガスの拡e、速度
に依存する。ことに水素に比べてガス拡散速Kか遅い酸
素によって反応速度が律速される。従来装置におけるガ
ス拡散速度の同上対策としては、反応ガスの圧力を4に
9/iG程度に高める方法、および燃料ガスの水素消費
率(燃料利用率ともいう)が70ないし5O91,であ
るのに対し、加圧空気中の酸素消費″4を5O91,程
度に抑さえ、これによって酸素濃度の下限値を高める方
法などが盛り込まれている。しかしながら、燃料電池の
発電反応をさらに効率化するためにガス圧を4#/mG
以上に高めると、燃料電池1を収納する圧力容器をはじ
め燃料改質器3や空気圧J1!器、配管類がすべて高圧
化する九めに、装置が大型かつ高1量化するとともに、
経隘的不利益を招くという問題が生ずる・また、反応空
気の酸素消費率をさらに下げた場合には、1更用空気量
が増原することによって9気圧縮機が大型化し、かつそ
の圧縮に要する補機損失も増MJすると^う問題が発生
するとともに、使い浅しの酸素を多量に含んだオフ空気
が利用されないままに捨てられることになシ、発電シス
テム全体としてのエネルギー消賛効半が低下するという
問題が生ずる。
In the conventional device button configured as described above, when trying to improve the efficiency of the power generation reaction of the fuel cell 1, hydrogen and 11! ar, it is an electrochemical reaction part! The gas phase is quickly supplied to the interface between the pole and the matrix.
It is required to activate the power generation reaction at the three-phase interface consisting of a liquid phase and a solid phase. The supply of reactant gas to this three-phase interface depends on the air flow and the gas spread rate at the fuel electrode. In particular, the reaction rate is determined by the gas diffusion rate K or oxygen, which is slower than hydrogen. As a countermeasure against the gas diffusion rate in the conventional device, there is a method of increasing the pressure of the reaction gas to about 4 to 9/iG, and a method of increasing the hydrogen consumption rate of the fuel gas (also called fuel utilization rate) of 70 to 5O91. On the other hand, it includes a method of suppressing oxygen consumption in pressurized air to about 5O91, thereby increasing the lower limit of oxygen concentration.However, in order to further improve the efficiency of the power generation reaction of fuel cells, Gas pressure 4#/mG
If it is increased above, the pressure vessel housing the fuel cell 1, the fuel reformer 3, and the air pressure J1! In the 9th century, when all the equipment and piping became high pressure, the equipment became larger and more powerful.
A problem arises in that it causes long-term disadvantages.In addition, if the oxygen consumption rate of the reaction air is further lowered, the amount of air used for one change will increase, resulting in an increase in the size of the 9-air compressor, and the compression speed will increase. In addition to increasing the loss of auxiliary machinery required, the problem arises that unused off-air containing a large amount of oxygen is discarded without being used, and the energy consumption of the power generation system as a whole is reduced by half. A problem arises in that the value decreases.

この発明の目的は、反応ガス圧力を高めたシ酸素消費率
を下げ念シすることなく、燃料電池の発電効率および発
電システム全体としてエネルギー利用率を向上すること
にある。
An object of the present invention is to improve the power generation efficiency of a fuel cell and the energy utilization rate of the power generation system as a whole without reducing the oxygen consumption rate when the reaction gas pressure is increased.

〔課題を解決する念めの手段〕 上記課題を解決するために、この発明によれば、マトリ
ックスを挟持する燃料電極および空気電極と両電極に反
応ガスを供給する燃料ガス室および空気室を備えた燃料
電池と、前記燃料ガス室に水素リッチな改質ガスを供給
する燃料改′Jjt器と、前記空気室に加圧空気を供給
する空気圧縮機とを含み、前記燃料ガス室のオフガスと
支燃空気とを前記燃料改質器のバーナに供給して改質反
応の熱源とするものにおいて、前記空気室出口側のオフ
3気からa12素富北ガスを分離するfIR素透通膜式
の多層装置を設けてなるものとし、かつ分離した酸謂冨
化ガスを空気圧縮機の空気吸込口側に供給丁2反応空気
の酸素付加通路を備えてなるもの、まカは#ll素化化
ガス燃料改質器のバーナの支燃仝少プロワ吸込口側に供
給する酸素付加通路を備えズなるもののうち、少くとも
いずれか一万を含む鴫のとする。
[Measures to solve the problem] In order to solve the above problem, according to the present invention, a fuel electrode and an air electrode that sandwich a matrix, and a fuel gas chamber and an air chamber that supply a reaction gas to both electrodes are provided. a fuel cell, a fuel reformer that supplies hydrogen-rich reformed gas to the fuel gas chamber, and an air compressor that supplies pressurized air to the air chamber; An fIR elementary permeable membrane type that separates A12 Sofu Kita gas from off 3 gas on the outlet side of the air chamber in which combustion supporting air is supplied to the burner of the fuel reformer to serve as a heat source for the reforming reaction. A multi-layer device is provided, and an oxygen addition passage for the reaction air is provided on the air suction side of the air compressor to supply the separated so-called acid-enriched gas. This shall include at least 10,000 oxygen containing passages for supplying oxygen to the suction side of the low blower blower of the burner of the oxidized gas fuel reformer.

〔作用〕[Effect]

この発明の構成において、空気室の出口側に’4A水器
を介、して酸素透過模式の分離装置を設は次ことにより
、オフ空気が高圧状態であることを利用してオフg!気
中に含まれる酸素を分離し、酸素1化ガスとして容易に
回収できる機能が得られる。
In the configuration of this invention, an oxygen permeation type separator is installed on the outlet side of the air chamber via a '4A water container.The off-g! This provides the ability to separate oxygen contained in the air and easily recover it as oxygen monoxide gas.

したがって、回収した酸素富化ガスを空気圧縮機の空気
吸込口側に供給する付加通路を設ければ、空気圧縮機で
生成される加圧空気中の酸素濃度を従来より大幅に高め
ることが可能であり、これにより空気電極中の*素の拡
散速度を高めて燃料電池の発電動″4を改善することが
可能になる。−万、回収した酸素富化ガスを改質器バー
ナの支燃空気の吸込口側に供給する付加通路を設ければ
、改質器バーナにおけるオフガスや補助燃料の燃焼効率
を高め、かつ燃焼を安定化することが可能になるととも
に、支燃空気プロワを小容量化することを通じて発電シ
ステム全体としての発電効率を改善する機能が得られる
Therefore, by providing an additional passage to supply the recovered oxygen-enriched gas to the air suction side of the air compressor, it is possible to significantly increase the oxygen concentration in the pressurized air produced by the air compressor compared to conventional methods. This makes it possible to increase the diffusion rate of the element in the air electrode and improve the power generation performance of the fuel cell. Providing an additional passage for supplying air to the air suction side increases the combustion efficiency of off-gas and auxiliary fuel in the reformer burner, stabilizes combustion, and allows the combustion-supporting air blower to have a small capacity. By doing so, it is possible to obtain functions that improve the power generation efficiency of the power generation system as a whole.

Cjj!施例〕 以下この発明′ft実施例に基づいて説明する。Cjj! Example] The present invention will be explained below based on an embodiment.

第1図はこの発明の実施例になる加圧式燃料電池発電シ
ステムfcm略化して示すシステム構成図でるり、以下
従来装置と同じ部分には同一参照符号を用いて詳細な説
明を省略する。図において、燃料電池1の空気室15に
はオフ空気5Bの出口側配管15Aに放熱器22が設け
られ、発電反応に伴なう生成水を含んだオフ空気5Bを
冷却することによって生成水1−*縮して分離する。凝
縮した水は復水器23によって回収され、乾いたオフ空
気5Cとなって酸素透過膜式の分離器(t21に供給さ
れる。分離装置t21d例えばポリイミド系の酸素透J
護21 Aによってオフ空気室21Bと酸素富化ガス室
21Cとに画成され之圧力容器がらなジ、高ガス圧側の
オフ窒気室21BK4人されたオフ空気5C中の酸:I
gは透過膜21Aに〃uゎる差圧によって特別な動力を
必要とせずに透過膜全透過し、低ガス圧側でbるr11
素冨化ガスN21C側に分離して回収され、残る窒素リ
ッチな廃ガス5Dは減圧66Aで減圧した後系外に放出
される。−万、回収された酸素富化ガス25は90%以
上の酸素を含む状態となっているので、#!素付加通路
24t−介して空気圧縮機2の吸込口側に供給され、空
気5と酸素富化ガス25七が空気圧縮機2で塀圧される
。その結果、4#/cIItG6度に圧縮された加圧空
気30は酸素富化ガス25が付加された分だけそのa!
2素濃度が高ぐなジ、したがって燃料計1の空気電極1
3中における拡散速度が同上するので、三相界面におけ
る電気化学的反応上活性化することができる。
FIG. 1 is a simplified system configuration diagram of a pressurized fuel cell power generation system fcm according to an embodiment of the present invention. Hereinafter, the same reference numerals will be used for the same parts as in the conventional device, and detailed explanation will be omitted. In the figure, in the air chamber 15 of the fuel cell 1, a radiator 22 is provided on the outlet side piping 15A of off-air 5B, and by cooling the off-air 5B containing generated water accompanying the power generation reaction, the generated water 1 -*Shrink and separate. The condensed water is recovered by the condenser 23, becomes dry off-air 5C, and is supplied to an oxygen permeable membrane type separator (t21).
The acid in the off-air 5C, which is divided into an off-air chamber 21B and an oxygen-enriched gas chamber 21C by protection 21A, and the off-nitrogen chamber 21B on the high gas pressure side of the pressure vessel: I
g is completely permeated through the permeable membrane without the need for special power due to the differential pressure across the permeable membrane 21A, and becomes r11 on the low gas pressure side.
The enriched gas N21C is separated and recovered, and the remaining nitrogen-rich waste gas 5D is depressurized with a vacuum 66A and then discharged to the outside of the system. - 10,000, the recovered oxygen-enriched gas 25 contains more than 90% oxygen, so #! The air 5 and the oxygen-enriched gas 257 are supplied to the suction port side of the air compressor 2 through the element addition passage 24t, and are subjected to wall pressure in the air compressor 2. As a result, the pressurized air 30 compressed to 4#/cIItG6 degrees has its a!
The concentration of two elements is high, so air electrode 1 of fuel meter 1
Since the diffusion rate in 3 is the same as above, it can be activated by electrochemical reaction at the three-phase interface.

酸素と窒素全分離する方法としては、冷却分離法、 P
 S A (Pressure SwingAdoso
rpt、i。
Methods for completely separating oxygen and nitrogen include cooling separation method, P
S A (Pressure SwingAdoso
rpt, i.

n)法なども知られているが、内省とも高R度酸(が得
られる反面、運転コストが高いという欠点がある。これ
に反し、酸素透過膜式の分離装置It211i、オフ空
気5Cが4 H/cr/l G程度の高圧状態であるこ
とを利用して圧力差によって酸素を分離して回収でき、
かつ放熱器を熱交換器に代えて熱回収全行うことも可能
でろ夕、運転コストが低すという利点が得られる。
n) method is also known, but although it can obtain high R degree acid, it has the disadvantage of high operating cost. Utilizing the high pressure state of 4 H/cr/l G, oxygen can be separated and recovered by pressure difference.
It is also possible to perform all heat recovery by replacing the radiator with a heat exchanger, which provides the advantage of lower operating costs.

第2図はこの発明の異なる実施列を示すシステム構成図
であシ、前述の実施例に比べ、酸素透過膜式の分離器2
1で分離したrR素素化化ガス25酸素付加通路35を
介して改質器バーナIENC支燃空気を供給する支燃空
気プロワ8の吸込口側に供給し、支燃空気7と酸素富化
ガス25とを併せて改質器バーナ18に供給するよう構
成した点が異なりてお)、オフ空気中の酸素を有効利用
して支燃空気中の酸素A度金高めることにより、バーナ
18におけるオフガス4Bまたは補助燃料の燃焼効率が
向上するとともに1バーナの燃焼状、ゆを安定化できる
利点が得られる。ま几、支燃2気ブロワ8の吐出量を回
収した酸素富化ガス25の量に見合ってnugすること
も可能でロシ、これによってブロワ8を小型化し、かつ
その補機損失を低減できる利点も得られる。
FIG. 2 is a system configuration diagram showing a different embodiment of the present invention.
The rR hydrogenation gas 25 separated in step 1 is supplied via the oxygen addition passage 35 to the suction port side of the combustion support air blower 8 that supplies combustion support air to the reformer burner IENC, and the combustion support air 7 and oxygen enriched The difference is that the gas 25 is also supplied to the reformer burner 18), and by effectively utilizing oxygen in the off-air to increase the oxygen content in the combustion-supporting air, The combustion efficiency of the off-gas 4B or the auxiliary fuel is improved, and the combustion condition of one burner can be stabilized. However, it is also possible to adjust the discharge amount of the combustion-supporting two-gas blower 8 to match the amount of recovered oxygen-enriched gas 25. This has the advantage of making the blower 8 smaller and reducing its auxiliary loss. You can also get

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、加圧式燃料電池の空気室出口
側に酸素透過模式の分離装置を設けるよう構成し念。そ
の結果、オフ空気が高圧状態であることを利用し、従来
利用されなかったオフ空気中に入口側の半分程度含まれ
る使い残しの薮素を新几な動力を必要とすることなく分
離して回収することができる。
As described above, the present invention is constructed so that an oxygen permeation type separation device is provided on the air chamber outlet side of a pressurized fuel cell. As a result, by utilizing the high-pressure state of the off-air, it is possible to separate the unused bush material contained in about half of the inlet side of the off-air, which has not been used in the past, without requiring new power. It can be recovered.

したがって回収した酸素富化ガスを付加通路を介して空
気圧縮機の吸込口側に供給すれば、加圧空気中の酸素濃
度を従来よシ高めて燃料電池の空気室に供給できるので
、!気電極中OII素拡散速度が向上し、従来I!!素
の拡散速度によって律速されていた電気化学的反応が活
性化し、燃料電池の発電効率を同上する効果が得られる
とともに、反応ガス圧をさらに高めることによって空気
!極中の醒素拡敢速度を高める従来方法で問題となった
装置の大型化や設備コストの増大、あるいは酸素消費率
を一層下げて拡散速度を同上する従来方法で問題となり
之を気圧縮機の大型化やその補4!!損失の増大などの
問題点が排除され、発電効率の高い加圧式燃料電池発電
システムを低い設備コストおよび運転コストを保持して
提供することができる。
Therefore, by supplying the recovered oxygen-enriched gas to the suction port of the air compressor via the additional passage, the oxygen concentration in the pressurized air can be increased compared to the conventional method and supplied to the air chamber of the fuel cell! The OII elemental diffusion rate in the gas electrode has been improved, compared to the conventional I! ! The electrochemical reaction, which was rate-limited by the diffusion rate of the element, is activated, which has the effect of increasing the power generation efficiency of the fuel cell, and by further increasing the reactant gas pressure, air! Conventional methods that increase the rate of diffusion of the arousal in the atmosphere have resulted in larger equipment and increased equipment costs, or problems with conventional methods that have lowered the oxygen consumption rate and increased the diffusion rate have resulted in the use of gas compressors. Increase in size and supplement 4! ! Problems such as increased loss are eliminated, and a pressurized fuel cell power generation system with high power generation efficiency can be provided while maintaining low equipment costs and operating costs.

また、分離回収した酸素富化ガスを付加通路を介して燃
料改質器バーナ側に供給するよう構成すれば、支燃空気
中の酸素濃度を高めてバーナの燃焼効率を同上し、かつ
安定化する利点が得られるとともに、支燃空気ブロワを
小型化し、かつその補機損失を低減できる利点が得られ
る。さらに両者を組み合わせるよう構成することも可能
であシ、この場合には発電効率および燃焼効率の同上効
果と、システム全体としてのエネルギー利用の効軍化、
運転コストおよび設備コストの低減効果等を併せて得る
ことができる。
In addition, if the separated and recovered oxygen-enriched gas is configured to be supplied to the fuel reformer burner side via an additional passage, the oxygen concentration in the combustion-supporting air can be increased to improve the combustion efficiency of the burner and stabilize it. In addition, it is possible to downsize the combustion-supporting air blower and reduce the loss of its auxiliary equipment. Furthermore, it is also possible to configure a combination of both, and in this case, the above effects of power generation efficiency and combustion efficiency, as well as effective use of energy as a whole system, are possible.
The effect of reducing operating costs and equipment costs can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例になる加圧式燃料電池発成シ
ステムを簡略化して示すシステム構成図、第2図はこの
発明の異なる実施例を示すシステム構成図、第3図は従
来の装置を示すシステム構成図である。 1・・・燃料電池、2・・・空気圧a機、3・・・燃料
改質器、4・・・改質原料、4A・・・改質ガス、4B
・−・オフガス、5・・・空気、5A、30・・・加圧
空気、5B・・・オフ空気、6A、6F・・・減圧器、
8・・・支燃空気プロワ、11・・・マトリックス、1
2.13・・・電極、14.15・・・反応ガス室、1
6・・・通熱管、17・・・改質反応管、18・・・改
質器バーナ、21・・・分離装置、21A・・・酸素透
過膜、21B・・・オフ空気室、21C・・・酸素富化
ガス室、22・・・放熱器、23・・・復水器、24.
35・・・酸素竹刀+1通路。
Fig. 1 is a simplified system configuration diagram showing a pressurized fuel cell generation system according to an embodiment of the present invention, Fig. 2 is a system configuration diagram showing a different embodiment of the invention, and Fig. 3 is a conventional system configuration diagram. FIG. 2 is a system configuration diagram showing the system configuration. 1... Fuel cell, 2... Pneumatic a machine, 3... Fuel reformer, 4... Reforming raw material, 4A... Reformed gas, 4B
...off gas, 5...air, 5A, 30...pressurized air, 5B...off air, 6A, 6F...pressure reducer,
8... Combustion supporting air blower, 11... Matrix, 1
2.13... Electrode, 14.15... Reaction gas chamber, 1
6... Heat exchange tube, 17... Reforming reaction tube, 18... Reformer burner, 21... Separation device, 21A... Oxygen permeable membrane, 21B... Off air chamber, 21C... ...Oxygen-enriched gas chamber, 22...Radiator, 23...Condenser, 24.
35... Oxygen shinai +1 passage.

Claims (1)

【特許請求の範囲】 1)マトリックスを挟持する燃料電極および空気電極と
両電極に反応ガスを供給する燃料ガス室および空気室を
備えた燃料電池と、前記燃料ガス室に水素リッチな改質
ガスを供給する燃料改質器と、前記空気室に加圧空気を
供給する空気圧縮機とを含み、前記燃料ガス室のオフガ
スと支燃空気とを前記燃料改質器のバーナに供給して改
質反応の熱源とするものにおいて、前記空気室出口側の
オフ空気から酸素富化ガスを分離する酸素透過膜式の分
離装置を設けてなることを特徴とする加圧式燃料電池発
電システム。 2)分離した酸素富化ガスを空気圧縮機の空気吸込口側
に供給する反応空気の酸素付加通路を備えてなることを
特徴とする請求項1記載の加圧式燃料電池発電システム
。 3)酸素富化ガスを燃料改質器のバーナの支燃空気ブロ
ワ吸込口側に供給する酸素付加通路を備えてなることを
特徴とする請求項1記載の加圧式燃料電池発電システム
[Claims] 1) A fuel cell comprising a fuel electrode and an air electrode that sandwich a matrix, a fuel gas chamber and an air chamber that supply a reactive gas to both electrodes, and a hydrogen-rich reformed gas in the fuel gas chamber. and an air compressor that supplies pressurized air to the air chamber; 1. A pressurized fuel cell power generation system, which is used as a heat source for a fuel reaction, and is equipped with an oxygen-permeable membrane type separation device for separating oxygen-enriched gas from the off-air on the outlet side of the air chamber. 2) The pressurized fuel cell power generation system according to claim 1, further comprising: a reaction air oxygenation passage for supplying the separated oxygen-enriched gas to the air suction side of the air compressor. 3) The pressurized fuel cell power generation system according to claim 1, further comprising an oxygen addition passageway for supplying oxygen-enriched gas to the combustion support air blower suction port side of the burner of the fuel reformer.
JP2076210A 1990-03-26 1990-03-26 Pressure type fuel cell power generating system Pending JPH03276576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076210A JPH03276576A (en) 1990-03-26 1990-03-26 Pressure type fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076210A JPH03276576A (en) 1990-03-26 1990-03-26 Pressure type fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH03276576A true JPH03276576A (en) 1991-12-06

Family

ID=13598811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076210A Pending JPH03276576A (en) 1990-03-26 1990-03-26 Pressure type fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH03276576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106963A (en) * 1997-05-15 2000-08-22 Toyota Jidosha Kabushiki Kaisha Fuel-cells system
JP2004214117A (en) * 2003-01-08 2004-07-29 Nikon Corp Electronic equipment and operation control method of electronic equipment
WO2004064188A1 (en) * 2003-01-08 2004-07-29 Nikon Corporation Electronic apparatus and its operation controllig method
JP2008066211A (en) * 2006-09-11 2008-03-21 Daihatsu Motor Co Ltd Fuel battery system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106963A (en) * 1997-05-15 2000-08-22 Toyota Jidosha Kabushiki Kaisha Fuel-cells system
JP2004214117A (en) * 2003-01-08 2004-07-29 Nikon Corp Electronic equipment and operation control method of electronic equipment
WO2004064188A1 (en) * 2003-01-08 2004-07-29 Nikon Corporation Electronic apparatus and its operation controllig method
US7955747B2 (en) 2003-01-08 2011-06-07 Nikon Corporation Electronic device and electronic device operating control method
JP2008066211A (en) * 2006-09-11 2008-03-21 Daihatsu Motor Co Ltd Fuel battery system

Similar Documents

Publication Publication Date Title
US6063515A (en) Integrated fuel cell electric power generation system for submarine applications
JP5011673B2 (en) Fuel cell power generation system
CA1214512A (en) Fuel cell power supply with oxidant and fuel gas switching
US6607854B1 (en) Three-wheel air turbocompressor for PEM fuel cell systems
US6663991B2 (en) Fuel cell pressurization system
JP2022526997A (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide resistant anode and integrated shift reactor
US7045233B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
US7141323B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
US20030207161A1 (en) Hydrogen production and water recovery system for a fuel cell
JPH08502855A (en) Solid polymer fuel cell power generation facility using hydrocarbon as fuel
US11616249B2 (en) Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
EP1062024A2 (en) Process gas purification and fuel cell system
US7132182B2 (en) Method and apparatus for electrochemical compression and expansion of hydrogen in a fuel cell system
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP3522769B2 (en) Operating method of fuel cell plant and fuel cell plant
JPH03276576A (en) Pressure type fuel cell power generating system
JP2002260708A (en) Stackes structure of fuel cell
JP2001023670A (en) Fuel cell power generating system
JP3575650B2 (en) Molten carbonate fuel cell
JP4221981B2 (en) Fuel cell system
JP4011203B2 (en) Fuel cell power generation system
JPS6068563A (en) Fuel cell power generation system
EP4207401A2 (en) Fuel cell system including fuel exhaust processor and method of operating the same
JPH01128364A (en) Generator of fused carbonate type fuel cell
JP4547868B2 (en) Solid polymer electrolyte fuel cell