JPH0327607B2 - - Google Patents
Info
- Publication number
- JPH0327607B2 JPH0327607B2 JP15133782A JP15133782A JPH0327607B2 JP H0327607 B2 JPH0327607 B2 JP H0327607B2 JP 15133782 A JP15133782 A JP 15133782A JP 15133782 A JP15133782 A JP 15133782A JP H0327607 B2 JPH0327607 B2 JP H0327607B2
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- furnace
- dummy slab
- temperature
- dummy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 6
- 238000009529 body temperature measurement Methods 0.000 claims description 5
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/14—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
- G01K1/146—Supports; Fastening devices; Arrangements for mounting thermometers in particular locations arrangements for moving thermometers to or from a measuring position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K13/00—Thermometers specially adapted for specific purposes
- G01K13/10—Thermometers specially adapted for specific purposes for measuring temperature within piled or stacked materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Combustion (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Description
【発明の詳細な説明】
本発明は連続加熱炉等の最適炉内温度制御を行
なう場合に、予じめ被加熱材料の底面側に相当す
る箇所の雰囲気温度の変化を測定記録しておき、
これを炉内温度の制御因子の一つとして効率の良
い熱管理を行なうようになした炉内における測温
用ダミースラブに関するものである。DETAILED DESCRIPTION OF THE INVENTION When performing optimal furnace temperature control in a continuous heating furnace or the like, the present invention measures and records in advance changes in the ambient temperature at a location corresponding to the bottom side of the material to be heated.
The present invention relates to a dummy slab for temperature measurement in a furnace, which uses this as one of the control factors for the temperature inside the furnace to perform efficient heat management.
第1図に示すように、例えば連続加熱炉1は、
一般に予熱帯A、加熱帯B、均熱帯C等の多段帯
域を備え、被加熱材料2の送りの方向に所定の炉
内温度パターンに沿つて制御され、連続に送られ
る材料2を、圧延に必要とする目標温度の範囲に
入るように各バーナ3で加熱して、圧延ピツチに
合わせて圧延ラインへ供給するようにしている。
ところで、装入材料条件や圧延条件が変わると、
加熱炉出口4の材料抽出温度が変化するので、炉
内温度パターンを設定変更する必要がある。すな
わち各帯域において炉内温度をそれぞれ独立に設
定制御し、材料2の装入から抽出までに必要な昇
温のための炉内温度パターンを形成しなければな
らない。 As shown in FIG. 1, for example, the continuous heating furnace 1 is
Generally, the furnace is equipped with multi-stage zones such as a pre-heating zone A, a heating zone B, and a soaking zone C, and is controlled along a predetermined internal temperature pattern in the feeding direction of the material 2 to be heated, and the material 2 that is continuously fed is rolled. It is heated by each burner 3 so that it falls within the required target temperature range, and is supplied to the rolling line in accordance with the rolling pitch.
By the way, if the charging material conditions or rolling conditions change,
Since the material extraction temperature at the heating furnace outlet 4 changes, it is necessary to change the setting of the furnace temperature pattern. That is, the temperature inside the furnace must be set and controlled independently in each zone to form a temperature pattern inside the furnace for raising the temperature required from charging of the material 2 to extraction.
しかも各帯域の炉内温度は、定常操業の場合各
種外乱によつて変化しないように制御されること
が必要であり、また熱管理上、効率良く加熱する
ことが重要である。そのためには、連続加熱炉1
内のあらゆる各部の温度変化を予じめ検知して、
炉の特性を知ることが大切である。 Moreover, the temperature inside the furnace in each zone needs to be controlled so as not to change due to various disturbances during steady operation, and it is important to heat efficiently in terms of heat management. For that purpose, continuous heating furnace 1
Detects temperature changes in all parts of the interior in advance,
It is important to know the characteristics of the furnace.
そこで従来では第1図に示すように、加熱炉内
の各部に熱電対5を配設して、炉内温度を検出
し、コントロールしていた。また第2図及び第3
図に示すように、ダミースラブ6上に受け台7を
介して熱電対8を配設し、予じめ炉内におけるダ
ミースラブ6上の上面側の雰囲気温度変化を連続
して測定記録し、この記録を炉の操業制御の資料
として熱管理を行なうようにしていた。 Therefore, conventionally, as shown in FIG. 1, thermocouples 5 have been disposed in various parts of the heating furnace to detect and control the temperature inside the furnace. Also, Figures 2 and 3
As shown in the figure, a thermocouple 8 is placed on the dummy slab 6 via a pedestal 7, and the atmospheric temperature change on the upper surface side of the dummy slab 6 in the furnace is continuously measured and recorded in advance. This record was used as a reference for controlling the operation of the furnace for thermal management.
しかしながら、上記ダミースラブ6の雰囲気温
度は、その上面側においてのみしか得られず、底
面側の測定はし得なかつた。というのは、加熱炉
入口9の底面高さと装入台10の高さが同一に設
定されており、熱電対8と同様のものをダミース
ラブ6の底面側より突出させて設置すると、装入
台10へダミースラブ6を載置した時、或いはダ
ミースラブ6が加熱炉1内へ入る時に入口9の底
面壁と衝突して圧潰又は損壊される欠点があつ
た。このため、従来ではダミースラブ6の雰囲気
温度はその上面側においてしか測定をなし得ず、
熱管理上の信頼性に欠けるものであつた。尚、第
1図において11はスキツドパイプである。 However, the atmospheric temperature of the dummy slab 6 could only be obtained on its top surface, and could not be measured on its bottom surface. This is because the bottom height of the heating furnace inlet 9 and the height of the charging table 10 are set to be the same, and if a thermocouple similar to the thermocouple 8 is installed to protrude from the bottom side of the dummy slab 6, the charging When the dummy slab 6 is placed on the table 10 or when it enters the heating furnace 1, it collides with the bottom wall of the inlet 9 and is crushed or damaged. For this reason, in the past, the ambient temperature of the dummy slab 6 could only be measured on its upper surface.
It lacked reliability in terms of heat management. In addition, 11 in FIG. 1 is a skid pipe.
本発明は従来の上記欠点に鑑みてこれを改良除
去したものであつて、ダミースラブの底面側の雰
囲気温度の測定をも可能とし、熱管理上、非常に
優れた熱効率を得ることのできる炉内における測
温用ダミースラブを提供せんとするものである。 The present invention improves and eliminates the above-mentioned drawbacks of the conventional technology, and makes it possible to measure the atmospheric temperature on the bottom side of the dummy slab, making it possible to obtain very excellent thermal efficiency in terms of heat management. The purpose is to provide a dummy slab for temperature measurement inside the building.
以下に本発明の構成を図面に示す実施例に基づ
いて説明すると次の通りである。 The configuration of the present invention will be explained below based on the embodiments shown in the drawings.
先づ第4図及び第5図に示すように、ダミース
ラブ12の測定位置に、上・底面を貫通して熱電
対13の挿入孔14を穿設し、該挿入孔14の底
面側に低融点物質または燃焼消失する物質よりな
る栓15を装着する。該栓15は具体的には低融
点の金属、例えば鉛や亜鉛または木やゴム等の燃
焼消失物が使用される。熱電対13は、その熱接
点以外の部分を孔スリーブ17またはシース管内
に納めて芯線相互を絶縁し、金属や磁性体等より
なる保護管16内に挿入した状態で支持されてい
る。18は熱電対13の保護管16の外周に固定
した重錘を兼用するストツパー、19は熱電対1
3の受台である。上記ストツパー18は、熱電対
13を挿入孔14に挿入した状態でダミースラブ
12の上面よりも、高い位置にある。ストツパー
18のダミースラブ12上面からの高さは栓15
が消失して熱電対13が降下したとき、熱接点部
を測温に適した量(50〜100mm)だけダミースラ
ブ12の下面に突出せしめるものであることを要
する。また熱電対13の長さは、栓15が滅失
し、ストツパー18がダミースラブ12の上面に
掛つている状態でも、前記受台19の嵌合孔20
より上方に位置して安定した支持状態が得られる
ようになつている。21はダミースラブ12上に
設置された保護装置22内に収納されたマイクロ
コンピユーター(以下マイコンという)であり、
熱電対13の出力信号は全てこのマイコン21内
に記録されるようになつている。尚、保護装置2
2は外周を断熱材で被覆した二重箱体であつて外
箱内には水を入れ、水が蒸発するときの潜熱によ
つて収納されたマイコン21を冷却するようにな
されている。 First, as shown in FIGS. 4 and 5, an insertion hole 14 for the thermocouple 13 is drilled through the top and bottom surfaces of the dummy slab 12 at the measurement position, and a low A plug 15 made of a melting point substance or a substance that disappears by combustion is attached. Specifically, the stopper 15 is made of a metal with a low melting point, such as lead or zinc, or a combustion product such as wood or rubber. The thermocouple 13 is supported in a state in which the portion other than its thermal contact is housed in a hole sleeve 17 or a sheath tube to insulate the core wires from each other, and is inserted into a protective tube 16 made of metal, magnetic material, or the like. 18 is a stopper that also serves as a weight fixed to the outer periphery of the protective tube 16 of the thermocouple 13; 19 is the thermocouple 1;
This is the pedestal for number 3. The stopper 18 is located at a higher position than the upper surface of the dummy slab 12 when the thermocouple 13 is inserted into the insertion hole 14. The height of the stopper 18 from the top surface of the dummy slab 12 is the stopper 15.
When the thermocouple 13 disappears and the thermocouple 13 falls, it is necessary that the thermal contact portion protrudes from the lower surface of the dummy slab 12 by an amount (50 to 100 mm) suitable for temperature measurement. Furthermore, the length of the thermocouple 13 is such that even when the plug 15 is lost and the stopper 18 is hung on the upper surface of the dummy slab 12,
It is positioned higher up to provide stable support. 21 is a microcomputer (hereinafter referred to as microcomputer) housed in a protection device 22 installed on the dummy slab 12;
All output signals of the thermocouple 13 are recorded within this microcomputer 21. In addition, protective device 2
Reference numeral 2 is a double box body whose outer periphery is covered with a heat insulating material, and the outer box is filled with water, and the microcomputer 21 housed therein is cooled by the latent heat generated when the water evaporates.
上記構成のダミースラブ12であれば、第1図
に示す装入台10上に載置された状態又は加熱炉
1内の炉入口9を通過する位置では、第4図に示
すように熱電対13は挿入孔14に栓15が施さ
れた状態で挿入支持されており、ダミースラブ1
2と装入台10との間及び炉入口9で熱電対13
が圧潰又は損壊される虞れは微塵もない。そし
て、ダミースラブ12の熱電対13が炉1内に送
り込まれて進行を始めると、炉尻の500〜800℃の
附近で栓15が溶融或いは燃焼消失し、熱電対1
3は第5図の位置まで、すなわち、保護管16に
固定したストツパー18がダミースラブ12上に
当接する位置まで落下する。これにより、熱電対
13の無接点部(感温部)13aは、ダミースラ
ブ12の底面より突出し、該部分の雰囲気温度を
測定する。測定されたデータは全て保護装置22
に収納されたマイコン21に記憶される。これ
は、加熱炉1の全域に亘つて測定記録される。
尚、参考までにマイコン21の炉を出た時の温度
は50〜100℃以内である。そして、熱電対13は
炉出口4を通過後に損壊される。しかしながら、
それまでの測温結果はダミースラブ12上の前記
マイコン21に記憶されており、その後取り出さ
れて分析処理される。ダミースラブ12の上面と
炉出入口4,9の天井面とは充分なる間隙がある
ので、マイコン21の損壊については心配する必
要はない。 In the case of the dummy slab 12 having the above configuration, when placed on the charging table 10 shown in FIG. 1 or at a position passing through the furnace inlet 9 in the heating furnace 1, a thermocouple 13 is inserted and supported with a plug 15 provided in the insertion hole 14, and the dummy slab 1
Thermocouple 13 between 2 and charging table 10 and at furnace inlet 9
There is no possibility that it will be crushed or damaged. Then, when the thermocouple 13 of the dummy slab 12 is sent into the furnace 1 and begins to advance, the plug 15 melts or burns and disappears near the bottom of the furnace at a temperature of 500 to 800°C, causing the thermocouple 1
3 falls to the position shown in FIG. As a result, the non-contact part (temperature sensing part) 13a of the thermocouple 13 protrudes from the bottom surface of the dummy slab 12, and measures the ambient temperature of the part. All measured data is sent to the protective device 22
The information is stored in the microcomputer 21 housed in the . This is measured and recorded over the entire area of the heating furnace 1.
For reference, the temperature of the microcomputer 21 when it leaves the furnace is within 50 to 100°C. Then, the thermocouple 13 is damaged after passing through the furnace outlet 4. however,
The temperature measurement results up to that point are stored in the microcomputer 21 on the dummy slab 12, and then taken out and analyzed. Since there is a sufficient gap between the upper surface of the dummy slab 12 and the ceiling surfaces of the furnace entrances and exits 4 and 9, there is no need to worry about damage to the microcomputer 21.
しかる後は、マイコン21に記憶されたダミー
スラブ12の下面雰囲気の温度変化と、従来方法
によつて測温した炉内温度パターンを加味して、
該加熱炉1内の熱管理を行なうようにすれば優れ
た熱効率が得られることは確実である。 After that, taking into account the temperature change in the atmosphere under the dummy slab 12 stored in the microcomputer 21 and the furnace temperature pattern measured by the conventional method,
It is certain that excellent thermal efficiency can be obtained by managing the heat inside the heating furnace 1.
尚、本発明は上記実施例に限定されるものでは
なく、熱電対13や栓15、受台19の形状等は
適宜変更可能である。 Note that the present invention is not limited to the above embodiments, and the shapes of the thermocouple 13, plug 15, pedestal 19, etc. can be changed as appropriate.
以上説明したように本発明は、ダミースラブに
熱電対の挿入孔を貫通して穿設し、該挿入孔の底
部に低融点物質または燃焼消失する物質よりなる
栓を設け、熱電対を挿入してその先端が前記栓に
当接した状態でダミースラブの上面より突出する
当該熱電対の位置に重錘を兼ねるストツパーを固
定し、前記熱電対の受台をダミースラブ上に設け
たから、従来の炉内測温に加えて、ダミースラブ
底面側の雰囲気温度パターンを測定して炉内温度
パターンをより正確に把握することができ、最適
炉内温度制御の実現に資することが可能である。 As explained above, in the present invention, a thermocouple insertion hole is drilled through a dummy slab, a plug made of a low melting point substance or a substance that disappears by combustion is provided at the bottom of the insertion hole, and the thermocouple is inserted. A stopper, which also serves as a weight, is fixed to the position of the thermocouple protruding from the upper surface of the dummy slab with its tip in contact with the stopper, and the pedestal for the thermocouple is provided on the dummy slab. In addition to measuring the temperature inside the furnace, it is possible to measure the atmospheric temperature pattern on the bottom side of the dummy slab to more accurately understand the temperature pattern inside the furnace, which can contribute to realizing optimal temperature control inside the furnace.
第1図は一般的な連続加熱炉を示す縦断面図、
第2図及び第3図は従来におけるダミースラブの
上面側の雰囲気温度を測定する熱電対の要部断面
側面図及び要部断面背面図、第4図及び第5図は
本発明の一実施例を示すもので、第4図は栓が消
失する前の状態を示すダミースラブの縦断面図
で、第5図は栓が消失した後のダミースラブの縦
断面図である。
12……ダミースラブ、13……熱電対、14
……挿入孔、15……栓、18……ストツパー、
19……受台。
Figure 1 is a vertical cross-sectional view showing a general continuous heating furnace.
2 and 3 are a cross-sectional side view and a cross-sectional rear view of a main part of a conventional thermocouple for measuring the ambient temperature on the upper surface side of a dummy slab, and FIGS. 4 and 5 are an embodiment of the present invention. FIG. 4 is a vertical cross-sectional view of the dummy slab showing the state before the plug disappears, and FIG. 5 is a vertical cross-sectional view of the dummy slab after the plug disappears. 12...Dummy slab, 13...Thermocouple, 14
...Insertion hole, 15...Plug, 18...Stopper,
19... cradle.
Claims (1)
設し、該挿入孔の底部に低融点物質または燃焼消
失する物質よりなる栓を設け、熱電対を挿入して
その先端が前記栓に当接した状態でダミースラブ
の上面より突出する当該熱電対の位置に重錘を兼
ねるストツパーを固定し、前記熱電対の受台をダ
ミースラブ上に設けたことを特徴とする炉内にお
ける測温用ダミースラブ。1. A thermocouple insertion hole is drilled through the dummy slab, a plug made of a low-melting point substance or a substance that disappears by combustion is provided at the bottom of the insertion hole, and the thermocouple is inserted so that its tip touches the plug. For temperature measurement in a furnace, characterized in that a stopper serving as a weight is fixed to the position of the thermocouple protruding from the upper surface of the dummy slab while in contact with the thermocouple, and a pedestal for the thermocouple is provided on the dummy slab. dummy slab.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15133782A JPS5940135A (en) | 1982-08-30 | 1982-08-30 | Dummy slab for measuring temperature in furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15133782A JPS5940135A (en) | 1982-08-30 | 1982-08-30 | Dummy slab for measuring temperature in furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5940135A JPS5940135A (en) | 1984-03-05 |
JPH0327607B2 true JPH0327607B2 (en) | 1991-04-16 |
Family
ID=15516366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15133782A Granted JPS5940135A (en) | 1982-08-30 | 1982-08-30 | Dummy slab for measuring temperature in furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5940135A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63149313A (en) * | 1986-12-12 | 1988-06-22 | Daido Steel Co Ltd | Gas quenching furnace |
JP2712296B2 (en) * | 1988-05-27 | 1998-02-10 | ソニー株式会社 | Heating furnace temperature controller |
DE4210387C2 (en) * | 1992-03-30 | 1994-03-24 | Denki Kagaku Kogyo Kk | Method and device for the continuous transport and treatment of high-temperature melted material |
CN104133506B (en) * | 2014-07-15 | 2016-08-24 | 中冶南方工程技术有限公司 | A kind of heating furnace bringing-up section fire box temperature detected value computational methods |
-
1982
- 1982-08-30 JP JP15133782A patent/JPS5940135A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5940135A (en) | 1984-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0244186Y2 (en) | ||
Kung et al. | Buoyant plumes of large-scale pool fires | |
JPH0327607B2 (en) | ||
US3115781A (en) | Apparatus for measuring furnace temperature | |
US4229230A (en) | Expendable immersion thermocouple | |
JP3804272B2 (en) | Apparatus for evaluating pyrophoric activity of pulverized coal and its evaluation method | |
US3503259A (en) | Direct sampler for use in basic oxygen furnaces and the like | |
JPS581730B2 (en) | Method for estimating internal temperature of hot steel ingot | |
US5242155A (en) | Melter/holder control system | |
KR900002424Y1 (en) | Warming apparatus for electric stove | |
JPH0329313Y2 (en) | ||
JPS5926261Y2 (en) | measurement recording device | |
US1534874A (en) | Heat-saturation indicator | |
JP2629392B2 (en) | Melt temperature measuring device for induction heating furnace | |
JPS6042343Y2 (en) | Heating material temperature measuring device in heating furnace | |
JPS5946702B2 (en) | Continuous casting mold | |
JPS5952205B2 (en) | Hearth rail for walking beam heating furnace | |
KR900011196Y1 (en) | Gauge of continuous casting powder addition | |
Dudley Jr | The thermal conductivity of refractories | |
JPS594040Y2 (en) | Tuyere for blast furnace | |
JPS5932906Y2 (en) | Blast furnace gas temperature measuring device | |
JPS5920633Y2 (en) | sintering machine ignition furnace | |
KR101167153B1 (en) | Oxygen concentration measuring apparatus in reheation furnace | |
JPS5835625Y2 (en) | Torpedo car hot metal level measuring device | |
JPS583275Y2 (en) | Electric furnace lining abnormality detection device |