JPH0327603Y2 - - Google Patents

Info

Publication number
JPH0327603Y2
JPH0327603Y2 JP1984179334U JP17933484U JPH0327603Y2 JP H0327603 Y2 JPH0327603 Y2 JP H0327603Y2 JP 1984179334 U JP1984179334 U JP 1984179334U JP 17933484 U JP17933484 U JP 17933484U JP H0327603 Y2 JPH0327603 Y2 JP H0327603Y2
Authority
JP
Japan
Prior art keywords
cable
deformable member
linear
deformable
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984179334U
Other languages
Japanese (ja)
Other versions
JPS6194001U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984179334U priority Critical patent/JPH0327603Y2/ja
Publication of JPS6194001U publication Critical patent/JPS6194001U/ja
Application granted granted Critical
Publication of JPH0327603Y2 publication Critical patent/JPH0327603Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Communication Cables (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Laser Surgery Devices (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は屈曲機構を備えたケーブル関し、特
に、医療用あるいは工業用内視鏡等の光フアイバ
センサ、あるいはレーザメスに適用して有用なも
のである。
[Detailed description of the invention] <Industrial application field> The present invention relates to a cable equipped with a bending mechanism, and is particularly useful when applied to optical fiber sensors such as medical or industrial endoscopes, or laser scalpels. It is.

〈従来の技術と問題点〉 医療機器あるいは工業用内視鏡の光フアイバセ
ンサにおいては先端の撮像部を外部からの操作に
よつて、所望の方向に屈曲して所望の影像をとら
える必要があることが多い。かかる要望に応えて
開発された第3図に示すよう光フアイバセンサケ
ーブルが知られている。第3図では、光フアイバ
センサ本体部9の周りに多数の節輪10を挿通
し、各節輪10は各節輪10の中央部に設けられ
た突出支点部11で突き合わされている。又各節
輪の周囲には複数本の操作用ワイヤ12が対称に
配置されていて一方を引き縮め、他方を伸ばすこ
とによつて、光フアイバセンサの先端撮像部を屈
曲させて所望の方向に向かす構造を備えている。
しかし、かかる構造の光フアイバセンサケーブル
では、節輪10を用いるためケーブルの太さが太
くなると、共に操作用ワイヤ12の節輪10の貫
通孔での摩擦力が光フアイバセンサケーブルの長
さの増加と共に累積されるため、制御可能距離が
数m以内に限られるという欠点があつた。一方最
近では、光フアイバセンサの本体であるイメージ
フアイバは新しい技術の開発によつて極めて細径
でかつ長尺のものの製作が可能になつた。上記欠
点を解消し、また、光フアイバセンサはその応用
分野をさらに広げるために、新しい光フアイバセ
ンサの開発が期待されている。本考案はかかる従
来技術の欠陥に鑑みてなされたもので、ケーブル
外径は細く、かつ、先端部を容易に所望の方向に
操作できる屈曲機構を備えたケーブルを提供する
ことを目的とする。
<Conventional technology and problems> In optical fiber sensors for medical devices or industrial endoscopes, it is necessary to bend the imaging unit at the tip in a desired direction by external operation to capture a desired image. There are many things. An optical fiber sensor cable, as shown in FIG. 3, has been developed in response to such demands. In FIG. 3, a large number of nodal rings 10 are inserted around the optical fiber sensor body 9, and each nodal ring 10 is butted against a protruding fulcrum 11 provided at the center of each nodal ring 10. Also, a plurality of operating wires 12 are arranged symmetrically around each node ring, and by contracting one and extending the other, the tip imaging section of the optical fiber sensor is bent and moved in a desired direction. It has a structure that allows you to move towards it.
However, in the optical fiber sensor cable having such a structure, when the thickness of the cable increases due to the use of the joint ring 10, the frictional force of the operating wire 12 at the through hole of the joint ring 10 increases due to the length of the optical fiber sensor cable. Since it is accumulated as it increases, there is a drawback that the controllable distance is limited to within several meters. On the other hand, recently, the development of new technology has made it possible to manufacture image fibers that are the main body of optical fiber sensors with extremely small diameters and long lengths. In order to eliminate the above-mentioned drawbacks and further expand the field of application of optical fiber sensors, the development of new optical fiber sensors is expected. The present invention was made in view of the deficiencies of the prior art, and it is an object of the present invention to provide a cable that has a small outer diameter and is equipped with a bending mechanism that allows the tip end to be easily manipulated in a desired direction.

〈問題点を解決するための手段〉 上述した目的を達成した本考案によるケーブル
は、ケーブルの被覆部に内蔵した形状記憶合金か
らなる変形部材と、こ変形部材に通電し変形部材
を所定温度にして所定の記憶形状によりケーブル
を屈曲させる操作装置とを具備し、前記変形部材
は線状に形成され且つ線の長さの方向に形状記憶
が与えられ、ケーブルの軸とほぼ平行に複数本、
前記被覆部に内蔵されており、更に、ケーブルの
軸軸を中心として前記複数本の線状変形部材と、
前記線状変形部材とは逆方向の形状記憶が与えら
れた他の線状変形部材とが対称に前記被覆部に内
蔵され、前記複数本の各線状変形部材とこれらに
対称に内蔵された前記他の線状変形部材とはケー
ブルの先端部において接続されていることを特徴
とする。
<Means for solving the problems> The cable according to the present invention, which has achieved the above-mentioned purpose, has a deformable member made of a shape memory alloy built into the sheath of the cable, and an electric current is applied to the deformable member to bring the deformable member to a predetermined temperature. and an operating device for bending the cable according to a predetermined memorized shape, the deformable member being formed in a linear shape and having a shape memory in the direction of the length of the wire, a plurality of deformable members substantially parallel to the axis of the cable,
The plurality of linear deformable members are built into the sheathing part, and further include the plurality of linear deformable members around the axis of the cable;
Another linear deformable member given a shape memory in the opposite direction to the linear deformable member is symmetrically built into the covering portion, and each of the plurality of linear deformable members and the linear deformable member symmetrically built into these It is characterized in that it is connected to other linear deformable members at the tip of the cable.

〈実施例〉 本考案による屈曲機構を備えたケーブルを一実
施例の図面を参照しながら説明する。第1図は本
考案の一実施例の屈曲機構を備えた光フアイバセ
ンサケーブルの横断面図である。第2図は第1図
に示すものの線状の変形部材の配置と作用を説明
する概念図である。第1図に示す屈曲機構を備え
た光フアイバセンサケーブルにおいては、光フア
イバセンサ本体を構成する中央に配置されたイメ
ージフアイバからなる画像伝送部1と、その周囲
に配置された照明光伝送部2とがあり、光フアイ
バセンサ本体部を取り囲んで、伸縮可撓性に富む
ケーブル被覆部3が配設されている。ケーブル被
覆部3内には、それぞれ中心から30度づつ円周方
向に間隔をおいて、一対づつの記憶材料からなる
変形部材4a1,4a2……4a6と前記変形部材とは
逆方向の形状記憶が与えられた他の変形部材(以
下、他の変形部材と称す)4b1,4b2……4b6
内蔵されていて、それぞれの変形部材と他の変形
部材はケーブル被覆部3の先端部3aにおいて導
線5で接続されており、ケーブル被覆部3の基部
3bにおいて、導線5によつて操作装置6へ導入
され、抵抗Rとスイツチ7を介して電源8に接続
されている。スイツチ7の投入により第2図に示
す例では変形部材4a1とこれに対称位置の他の変
形部材4b1とに電流が流れ、変形部材4a1はそれ
自体の電気抵抗により発熱し、周囲の条件からほ
ぼ一定の温度に保たれ、その温度が変形部材4a1
の変態温度に達すると、変形部材4a1を形成する
記憶材料例えばTiNi線は記憶形状に復帰する。
本実施例では変形部材4a1,……4a6には変態温
度において線材の長さの方向に所定の量の収縮を
示すようにしてあり、これにより、他の変形部材
4b1の線材との間で長さが異る結果となる。変形
部材4a1並びに他の変形部材4b1はそれぞれケー
ブル被覆部先端部3a及び基部3bにおいてケー
ブル被覆部3に固定されているため、ケーブル被
覆部3は第2図に一点鎖線で示すように矢印aに
示す方向に屈曲する。次いで、スイツチ7を切
り、変形部材4a1が常温に戻ると、もとの直線状
に戻る。その他の対4a2と4b2,……4a6と4b6
についても電源の接続によつて同様の変形を示
す。従つて、操作装置6の電源8を4a6,4b6
示す対に切換えて加えれば、第1図矢印cに示す
方向にケーブル被覆部3は変形する。第1図に示
す例ではケーブル被覆部3片側半分に変形部材4
a1,……4a6が配列された構造のものが示されて
いるので、これらとは逆の方向にケーブル被覆部
3の先端部を屈曲させることはできない。従つて
逆の方向にケーブル被覆部3を屈曲させるにはケ
ーブル本体を全体に180゜回転させて通電すればよ
い。また、他の方法としては、他の変形部材4
b1,4b2……4b6に接近して、更に変形部材をそ
れぞれ埋設し、これらに対応して変形部材4a1
4a2,……4a6に近接して他の変形部材を更に埋
設すれば、ケーブルを回転させずに逆の方向にも
電源の切換えで屈曲することができる。また、操
作装置6内にて、抵抗Rを1本だけ用いて各変形
部材への通電に共用することも出きる。尚、一対
の変形部材と他の変形部材からなる所望の対を操
作装置6によつて順次切換えて、所望の方向にケ
ーブル被覆部3を屈曲することができる。また実
施例のケーブル被覆は第1図に示すごとく、イメ
ージフアイバからなる画像伝送部1と照明光伝送
部2とからなる光フアイバセンサが内装されてい
るため、操作装置6によるスイツチの切換えで、
所望の方向に光フアイバセンサの先端の撮像部を
転向することができる。尚、ケーブル被覆部3に
光フアイバセンサを内装したケーブル構造体を所
望の方向に所望の量屈曲させるには、光フアイバ
センサとケーブル被覆部3とからなるケーブル構
造体の曲げ強度に抗して、形状記憶材料がその復
元力を発揮するよう設計されねばならない。ま
た、第2図に示すような光フアイバセンサケーブ
ルは操作装置6における抵抗Rの微妙な調節によ
り、所望の屈曲位置に保つことができる。尚、電
源8は直流電源の場合が示されているが、交流あ
るいはパルス巾あるいはパルス周期の調整可能な
パルス電源でもよい。
<Example> A cable equipped with a bending mechanism according to the present invention will be described with reference to the drawings of an example. FIG. 1 is a cross-sectional view of an optical fiber sensor cable equipped with a bending mechanism according to an embodiment of the present invention. FIG. 2 is a conceptual diagram illustrating the arrangement and operation of the linear deformable member shown in FIG. 1. In the optical fiber sensor cable equipped with the bending mechanism shown in FIG. 1, there is an image transmission section 1 consisting of an image fiber arranged in the center constituting the optical fiber sensor body, and an illumination light transmission section 2 arranged around it. A highly expandable and flexible cable sheathing section 3 is disposed surrounding the optical fiber sensor main body. Inside the cable sheathing section 3, a pair of deformable members 4a 1 , 4a 2 ...4a 6 made of memory material and a pair of deformable members 4a 1 , 4a 2 ... 4a 6 and a pair of deformable members 4a 1 , 4a 2 . Other deformable members (hereinafter referred to as other deformable members) 4b 1 , 4b 2 . It is connected at the tip 3a with a conductor 5, and at the base 3b of the cable sheath 3, it is introduced into the operating device 6 by the conductor 5, and connected to a power source 8 via a resistor R and a switch 7. In the example shown in FIG. 2, when the switch 7 is turned on, current flows through the deformable member 4a 1 and the other deformable member 4b 1 located symmetrically to it, and the deformable member 4a 1 generates heat due to its own electrical resistance, causing the surrounding Due to the conditions, the temperature is kept almost constant, and that temperature is the deformable member 4a 1
When the transformation temperature reaches , the memory material such as TiNi wire forming the deformable member 4a 1 returns to its memorized shape.
In this embodiment , the deformable members 4a 1 , . This results in different lengths between the two. Since the deformable member 4a 1 and the other deformable member 4b 1 are fixed to the cable sheathing section 3 at the tip end 3a and base 3b of the cable sheathing section, respectively, the cable sheathing section 3 is fixed to the cable sheathing section 3 as shown by the dashed line in FIG. Bend in the direction shown in a. Next, when the switch 7 is turned off and the deformable member 4a1 returns to room temperature, it returns to its original straight shape. Other pairs 4a 2 and 4b 2 ,...4a 6 and 4b 6
shows similar deformation depending on the power supply connection. Therefore, if the power source 8 of the operating device 6 is switched and applied to the pair shown at 4a 6 and 4b 6 , the cable sheath 3 is deformed in the direction shown by the arrow c in FIG. In the example shown in FIG.
Since a structure in which a 1 , . Therefore, in order to bend the cable sheathing portion 3 in the opposite direction, it is sufficient to rotate the entire cable body by 180 degrees and then apply electricity. In addition, as another method, another deformable member 4
Deformable members are buried closer to b 1 , 4b 2 ... 4b 6 , respectively, and correspondingly deformable members 4a 1 ,
If other deformable members are further buried in the vicinity of 4a 2 , . Further, in the operating device 6, only one resistor R can be used for energizing each deformable member. Note that by sequentially switching between a desired pair of one deformable member and another deformable member using the operating device 6, the cable sheathing portion 3 can be bent in a desired direction. Furthermore, as shown in FIG. 1, the cable sheath of the embodiment is equipped with an optical fiber sensor consisting of an image transmission part 1 made of an image fiber and an illumination light transmission part 2, so that by switching the switch using the operating device 6,
The imaging section at the tip of the optical fiber sensor can be turned in a desired direction. In order to bend the cable structure in which the optical fiber sensor is installed in the cable sheathing part 3 in the desired direction by the desired amount, it is necessary to resist the bending strength of the cable structure made up of the optical fiber sensor and the cable sheathing part 3. , the shape memory material must be designed to exhibit its restoring power. Furthermore, the optical fiber sensor cable as shown in FIG. 2 can be maintained at a desired bent position by delicately adjusting the resistance R in the operating device 6. Although the power source 8 is shown as a DC power source, it may be an AC power source or a pulse power source with adjustable pulse width or pulse period.

第1図に示した光フアイバセンサケーブルの例
では、特に工業用の光フアイバセンサケーブルの
如く長尺の場合は、屈曲を必要とする部分はケー
ブルの先端部の5cm位の部分のみでよいため、そ
こまでは形状記憶合金でなく通常のリード線を使
用すればよい。
In the example of the optical fiber sensor cable shown in Figure 1, especially if it is long like an industrial optical fiber sensor cable, the only part that needs to be bent is about 5 cm at the tip of the cable. Up to that point, you can use normal lead wires instead of shape memory alloys.

尚、第1図に示すものは光フアイバセンサケー
ブルの例について説明したが、本考案による屈曲
機構を備えたケーブルの被覆部内本体は何であつ
ても良く、例えばイメージフアイバによる画像伝
送部、照明光伝送部、あるいはレーザメスの如き
光エネルギ伝送用フアイバこれらが単独に、また
は任意の組合せでケーブル被覆部により被覆され
ているものであつて良い。例えば、第1図の光フ
アイバセンサケーブルに更に、CO2レーザ光を良
く透過するAgBr、AgCl等からなるエネルギ伝送
用フアイバを挿通することにより、屈曲によつて
レーザ照射方向をコントロールでき、レーザ治療
が可能な内視鏡とすることができる。
Although the optical fiber sensor cable shown in FIG. 1 has been described as an example, the cable having the bending mechanism according to the present invention may have any main body within the sheathing part, such as an image transmission part using an image fiber, an illumination light A transmission section or a fiber for transmitting optical energy such as a laser scalpel may be covered with a cable covering section singly or in any combination thereof. For example, by inserting an energy transmission fiber made of AgBr, AgCl, etc. that transmits CO 2 laser light well into the optical fiber sensor cable shown in Figure 1, the direction of laser irradiation can be controlled by bending the cable, allowing laser treatment. It can be an endoscope capable of

〈考案の効果〉 本考案による屈曲機構を備えたケーブルによれ
ば、伸縮可撓性に富むケーブル被覆に仕込まれた
形状記憶合金の変形部材に電流供給による加熱手
段を設けた構成とすることによつて、従来の節輪
を使用したものの如く外径が著しく太くなるとい
つた不都合はなくなり、細い径に形成することが
でき有利である。また、ケーブル被覆内に仕込ま
れた形状記憶合金の複数本の細線のいずれかに電
流を通じ加熱するだけで長さ方向、つまり伸縮方
向の記憶形状を復元し、イメージフアイバケーブ
ル等を所望の方向に屈曲することができるため、
従来のものの如く機械的な操作用ワイヤを必要と
せず、操作距離をきわめて長くすることができ、
とくに工業用として、更に広い用途を期待するこ
とができるものである。
<Effects of the invention> According to the cable equipped with the bending mechanism according to the invention, the deformable member of the shape memory alloy incorporated in the highly elastic and flexible cable sheath is provided with a heating means by supplying electric current. Therefore, the disadvantage of having a significantly large outer diameter as in the case of conventional joint rings is eliminated, and it is advantageous that the outer diameter can be formed into a small diameter. In addition, by simply heating one of the multiple shape memory alloy thin wires in the cable sheath, the memory shape in the length direction, that is, the direction of expansion and contraction can be restored, and the image fiber cable etc. can be moved in the desired direction. Because it can be bent,
It does not require mechanical operating wires like conventional ones, and the operating distance can be extremely long.
In particular, it can be expected to be used in a wider range of industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の断面図、第2図は
第1図に示すものの変形部材の配置並びにその作
用を説明するための概念図、第3図は従来の光フ
アイバセンサケーブルの屈曲機構の説明図であ
る。 図面中、1は画像伝送部、2は照明光伝送部、
3はケーブル被覆部、4a1,4a2…4a6は変形部
材、4b1,4b2…4b6は他の変形部材、5は導
線、6は操作装置、7はスイツチ、8は電源であ
る。
Fig. 1 is a cross-sectional view of one embodiment of the present invention, Fig. 2 is a conceptual diagram for explaining the arrangement of deformable members and their functions shown in Fig. 1, and Fig. 3 is a diagram of a conventional optical fiber sensor cable. It is an explanatory view of a bending mechanism. In the drawings, 1 is an image transmission section, 2 is an illumination light transmission section,
3 is a cable covering part, 4a 1 , 4a 2 ... 4a 6 is a deformable member, 4b 1 , 4b 2 ... 4b 6 is another deformable member, 5 is a conductor, 6 is an operating device, 7 is a switch, and 8 is a power source .

Claims (1)

【実用新案登録請求の範囲】 (1) ケーブルの被覆部に内蔵した形状記憶合金か
らなる変形部材と、この変形部材に通電し変形
部材を所定温度にして所定の記憶形状によりケ
ーブルを屈曲させる操作装置とを具備し、 前記変形部材は線状に形成され且つ線の長さ
の方向に形状記憶が与えられ、ケーブルの軸と
ほぼ平行に複数本、前記被覆部に内蔵されてお
り、 更に、ケーブルの軸を中心として前記複数本
の線状変形部材と、前記線状変形部材とは逆方
向の形状記憶が与えられた他の線状変形部材と
が対称に前記被覆部に内蔵され、前記複数本の
各線状変形部材とこれらに対称に内蔵された前
記他の線状変形部材とはケーブルの先端部にお
いて接続されていることを特徴とするケーブ
ル。 (2) 実用新案登録請求の範囲第1項において、上
記被覆部が画像伝送用フアイバを被覆している
ことを特徴とするケーブル。 (3) 実用新案登録請求の範囲第1項または第2項
において、上記被覆部が照明用フアイバを被覆
していることを特徴とするケーブル。 (4) 実用新案登録請求の範囲第1項または第2項
または第3項において、上記被覆部がエネルギ
伝送用フアイバを被覆していることを特徴とす
るケーブル。
[Claims for Utility Model Registration] (1) A deformable member made of a shape memory alloy built into the sheath of the cable, and an operation of energizing the deformable member to bring the deformable member to a predetermined temperature and bend the cable into a predetermined memorized shape. the deformable member is formed in a linear shape and given shape memory in the direction of the length of the wire, and a plurality of deformable members are built into the sheathing section substantially parallel to the axis of the cable, and further, The plurality of linear deformable members and another linear deformable member given a shape memory in a direction opposite to that of the linear deformable members are built into the covering part symmetrically about the axis of the cable, and the A cable characterized in that each of the plurality of linear deformable members and the other linear deformable member built symmetrically therein are connected at a distal end portion of the cable. (2) The cable according to claim 1, characterized in that the covering portion covers an image transmission fiber. (3) The cable according to claim 1 or 2, characterized in that the covering portion covers a lighting fiber. (4) The cable according to claim 1, 2, or 3 of the utility model registration claim, characterized in that the covering portion covers an energy transmission fiber.
JP1984179334U 1984-11-28 1984-11-28 Expired JPH0327603Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984179334U JPH0327603Y2 (en) 1984-11-28 1984-11-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984179334U JPH0327603Y2 (en) 1984-11-28 1984-11-28

Publications (2)

Publication Number Publication Date
JPS6194001U JPS6194001U (en) 1986-06-17
JPH0327603Y2 true JPH0327603Y2 (en) 1991-06-14

Family

ID=30736894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984179334U Expired JPH0327603Y2 (en) 1984-11-28 1984-11-28

Country Status (1)

Country Link
JP (1) JPH0327603Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4944727A (en) * 1986-06-05 1990-07-31 Catheter Research, Inc. Variable shape guide apparatus
JPH07106223B2 (en) * 1986-07-15 1995-11-15 オリンパス光学工業株式会社 Medical tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13
JPS60156430A (en) * 1984-01-26 1985-08-16 オリンパス光学工業株式会社 Endoscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141187A (en) * 1974-03-01 1975-11-13
JPS60156430A (en) * 1984-01-26 1985-08-16 オリンパス光学工業株式会社 Endoscope

Also Published As

Publication number Publication date
JPS6194001U (en) 1986-06-17

Similar Documents

Publication Publication Date Title
EP0549569B1 (en) Mechanism for bending elongated body
CA1325938C (en) Variable shape guide apparatus
JPH0327603Y2 (en)
WO2015033602A1 (en) Insertion device having bending mechanism
JPH0546214B2 (en)
JP3075306B2 (en) Bendable flexible tube
JPH08110480A (en) Flexible tube
JP3321199B2 (en) Multi-degree-of-freedom curved tube
JPH03109021A (en) Bending apparatus
JPS59202426A (en) Endoscope
CN113301840B (en) Actuator for an endoscope probe, endoscope probe and method for controlling an actuator for an endoscope probe
JPH05184528A (en) Bending mechanism of flexible tube
WO2019234799A1 (en) Variable-rigidity device and endoscope
WO2019234798A1 (en) Variable-rigidity device and endoscope
JPH06209998A (en) Flexible pipe having multiple degree of freedom
JP3435227B2 (en) Endoscope bending section
JPH0673516B2 (en) Endoscope
JPH05285089A (en) Bending mechanism for flexible pipe
JPH0627900B2 (en) Cable bending mechanism
JPH08122655A (en) Curving flexible pipe
JP3298943B2 (en) Light-to-heat conversion endoscope
JPH0386142A (en) Deflection operation device for tubular insertion tool
JPH10192224A (en) Multidirectional oscillating structure
JPS6048725A (en) Curving controller in endoscope
KR20100059339A (en) Multi-link device and multi-link system having the same