JPH0327601A - Polarization coupler - Google Patents

Polarization coupler

Info

Publication number
JPH0327601A
JPH0327601A JP16170789A JP16170789A JPH0327601A JP H0327601 A JPH0327601 A JP H0327601A JP 16170789 A JP16170789 A JP 16170789A JP 16170789 A JP16170789 A JP 16170789A JP H0327601 A JPH0327601 A JP H0327601A
Authority
JP
Japan
Prior art keywords
waveguide
coupled
signal
polarized wave
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16170789A
Other languages
Japanese (ja)
Inventor
Mitsumoto Iida
飯田 光元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16170789A priority Critical patent/JPH0327601A/en
Publication of JPH0327601A publication Critical patent/JPH0327601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To absorb a polarized wave component not in use by providing 1st and 2nd circular waveguides, a square branch waveguide including a filter reflecting a high frequency signal and a conversion waveguide leading one of 2 linearly polarized wave signals to the square waveguide and absorbing and attenuating the other signal. CONSTITUTION:A horizontal polarized wave signal in 4GHz is coupled with a branched waveguide 23 with a slit 26, sent to a 4Ghz output terminal 28 through a band pass filter 27 and not coupled with a selective absorbing load 24. The 4GHz band vertical polarized wave signal is not coupled with the slit 26, coupled with a coupling loop 29 and absorbed to a resistive terminator 31 through a low pass filter 30. A 6GHz band vertical polarized wave fed to a 6GHz input terminal 32 is sent to a circularly waveguide 22 without being affected by a horizontal resistance plate 33 in a conversion waveguide 25 and not coupled with the coupling loop 29. Moreover, the wave is sent as it is to the circular waveguide terminal 34 without being affected by the slit 26. The 6GHz band horizontal polarized wave from the terminal 34 is not coupled with the branch waveguide 23 and the load 24 but enters the waveguide 22 and is absorbed by the resistance plate 33.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は別々の導波管を伝送される異なった周波数帯の
2つの信号を、1つの円形導波管を伝送する互いに直交
した2つの直綿偏波信号に変換する偏分波器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention converts two signals of different frequency bands transmitted through separate waveguides into two signals perpendicular to each other transmitted through one circular waveguide. This invention relates to a polarization splitter that converts directly polarized signals.

〔従来の技術〕[Conventional technology]

衛星通信においては、地球局から衛星に向けて送信する
アップリンクの周波数と衛星からの電波を地球局で受信
するダウンリンクの周波数は、例えば60H2帯と4 
G H z帯のように離れた周波数帯が用いられている
。更に、送信と受信との信号の分離を容易にするため、
アンプリンクとダウンリンクの信号は互いに直交した偏
波が使用され、インテルサット衛星の4/6GH2帯で
はそれぞれ右旋および左旋の円偏波が用いられでいる。
In satellite communications, the uplink frequency that is transmitted from the earth station to the satellite and the downlink frequency that the earth station receives radio waves from the satellite are, for example, the 60H2 band and 4
Distant frequency bands such as the GHz band are used. Furthermore, in order to facilitate the separation of transmitting and receiving signals,
Polarizations orthogonal to each other are used for the amplifier link and downlink signals, and right-handed and left-handed circularly polarized waves are used in the 4/6 GH2 band of the Intelsat satellite, respectively.

第4図は円偏波を使用ずる従来のカセグレンアンテナの
一次放射器の一構威例を示す斜視図で、円錐ホーン1と
90゜移相板による円偏波発生器2と偏分波器3とから
構威されている. 第4図において、入力端子4に加えられた送信信号10
0は偏分波器3の円形導波管部から垂直偏波信号101
として円偏波発生器2に送られる。
Figure 4 is a perspective view showing an example of the configuration of a conventional primary radiator of a Cassegrain antenna that uses circularly polarized waves. It is structured from 3. In FIG. 4, a transmission signal 10 applied to input terminal 4
0 is a vertically polarized signal 101 from the circular waveguide section of the polarization splitter 3.
The signal is sent to the circularly polarized wave generator 2 as a signal.

円偏波発生器2には板に平行な偏波と垂直な偏波とで9
0”の移相差を生ずる90″移相板5が45@傾斜して
設けられており、垂直偏波信号101は左旋円偏波信号
102として円錐ホーン1から放射される。図外の副反
射鏡からの反射波は進行方向が反対の右旋円偏波信号1
03となり、円偏波発生器2を通過すると水平偏波信号
104となる.受信信号を取り出す分岐導波管6は送信
信号を反射させるフィルタを含んでおり、更に入力端子
4は水平偏波信号を通過できないので水平偏波信号10
4は全反射して再び円偏波発生器2に送られ送信波10
2とは逆旋回方向の右旋円偏波成分105となって再放
射される.従って、円偏波発生器2の特性を改善するだ
けでは楕円偏波率を良くすることはできない。
Circularly polarized wave generator 2 has 9 polarized waves parallel to the plate and perpendicular to the plate.
A 90'' phase shift plate 5 that produces a phase shift difference of 0'' is provided at an angle of 45@, and a vertically polarized signal 101 is radiated from the conical horn 1 as a left-handed circularly polarized signal 102. The reflected wave from the sub-reflector (not shown) is a right-handed circularly polarized wave signal 1 whose traveling direction is opposite.
03, and when it passes through the circularly polarized wave generator 2, it becomes a horizontally polarized signal 104. The branch waveguide 6 that takes out the received signal includes a filter that reflects the transmitted signal, and the input terminal 4 cannot pass the horizontally polarized signal, so the horizontally polarized signal 10
4 is totally reflected and sent to the circularly polarized wave generator 2 again as a transmitted wave 10.
2 and is re-radiated as a right-handed circularly polarized wave component 105 in the opposite rotation direction. Therefore, it is not possible to improve the elliptically polarized wave ratio simply by improving the characteristics of the circularly polarized wave generator 2.

受信の場合も同様であり、右旋円偏波の入射波200は
、円偏波発生器2によって水平偏波信号201となり、
分岐導波管6のフィルタを通過して出力端子から受信信
号202として出力される。
The same applies to reception, where the right-handed circularly polarized incident wave 200 becomes a horizontally polarized signal 201 by the circularly polarized wave generator 2.
The signal passes through the filter of the branch waveguide 6 and is output as a received signal 202 from the output terminal.

一方、入射波200と直交する左旋円偏波入力203は
円偏波発生器2で垂直偏波信号204となり、分岐導波
管6とは結合がな<6GH2帯の導波管は通過できない
ので、そのまま全反射して左旋円偏波信号205として
再放射され、その一部が副反射鏡からの反射波206と
して再受信され、出力端子に干渉信号207として現れ
る。
On the other hand, a left-handed circularly polarized wave input 203 that is perpendicular to the incident wave 200 becomes a vertically polarized wave signal 204 in the circularly polarized wave generator 2, and is not coupled to the branch waveguide 6, since it cannot pass through the waveguide in the <6GH2 band. , it is totally reflected and re-radiated as a left-handed circularly polarized wave signal 205, a part of which is re-received as a reflected wave 206 from the sub-reflector, and appears at the output terminal as an interference signal 207.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

インテルサットのV号系衛星の4/6C;H2帯では、
直交する右旋円偏波は左旋円偏波で別々の情報を伝送し
、周波数を二重に利用する直交偏波による周波数再利用
方式が採用され、この衛星を利用する4/6GH.帯の
地球局アンテナは、その地球局が直交両偏波を共に送受
する場合はもちろんであるが、例えその地球局が両偏波
を使用せず従来通り単一偏波のみを送受する場合でも、
楕円偏波率の良好なことが要求される.単一偏波のみを
送受する第4図に示した従来の一次放射器の楕円偏波率
を改善する第1の要点は円偏波発生器の特性の改善であ
るが、上述したように、副反射鏡などからの反射波によ
って楕円偏波成分を発生し、円偏波発生器の特性改暮の
みでは良好な楕円偏波率を得ることができない.特に直
径の小さいカセグレンアンテナでは副反射鏡からの反射
が大きく、これを抑圧する有効な手段がない. これを解決する一つの方法は、直交両偏波送受信用に設
計された第5図の直交偏波結合器を使用し、使用しない
偏波の入出力に無反射終端器10.10’及び11を接
続することである。この場合、60H.帯送信信号の副
反射鏡からの反射波104は、6GH2帯直交偏波結合
器12の分岐導波管13を経て無反射終端器11で吸収
されて殆ど反射が無くなるので右旋円偏波の放射は無く
楕円偏波率を劣化させない。又、4C;H2#の左旋円
偏波入力203による垂直偏波信号204は、4GH2
帯直交偏波結合器14の垂直偏波分岐導波管15.15
’に結合され無反射終端器10.10’に吸収されて殆
ど反射を生じない.従って、第4図の左旋円偏波の再放
射成分205は微少となり、副反射鏡からの反射波20
6は無視でき、干渉信号207は無くなる,4C;H.
帯の入射波200は水平偏波分岐導波管16.16’に
結合され、線図で示す導波管IT,17’を経てハイブ
リッドl8で合或されて出力信号208となる。この方
法は良好な楕円偏波率が得られるが4GH2帯直交偏波
結合器14の構造が複雑で形状も大きくなる問題がある
. 本発明の目的は、上述した問題を除去し、構造が簡単で
使用しない偏波成分を吸収し、副反射鏡からの反射があ
っても楕円偏波率の良いアンテナ一次放射系を構威する
ことのできる偏分波器を提供することにある. 〔課題を解決するための手段〕 本発明の偏分波器は、高低2つの周波数帯の信号を伝送
する第1の円形導波管と、この第1の円形導波管の一端
にインピーダンス変成部を介して互いに中心軸が一致す
るように接続され前記高周波数帯の信号のみを伝送する
第2の円形導波管と、前記インピーダンス変成部に近い
管壁に設けられた管軸方向のスリットによって前記第1
の円形導波管と結合され前記低周波数帯の信号を通過し
前記高周波数帯の信号を反射するフィルタを含み前記低
周波数帯の信号を伝送する方形の分岐導波管と、前記ス
リットと反対側の管壁で円周方向の磁界成分による磁界
結合もしくは半径方向の電界成分による電界結合によっ
て前記第1の円形導波管と結合され前記低周波数帯の信
号を通過し前記高周波数帯の信号を反射するフィルタ及
び無反射終端器から威る選択性吸収負荷と、前記第2の
円形導波管に接続され前記第2の円形導波管を伝送する
直交した2つの直線偏波信号の一方を方形導波管に伝送
し他方を吸収減衰させる変換導波管とを備えることによ
って構威される。
In the 4/6C; H2 band of Intelsat's V series satellites,
Orthogonal right-handed circularly polarized waves transmit different information using left-handed circularly polarized waves, and a frequency reuse method using orthogonal polarized waves is adopted in which frequencies are used twice. Of course, the earth station antenna in the band is used when the earth station transmits and receives both orthogonal polarizations, but even when the earth station does not use both polarizations and transmits and receives only a single polarization as before. ,
Good elliptical polarization is required. The first point to improve the elliptical polarization of the conventional primary radiator shown in FIG. 4, which transmits and receives only a single polarized wave, is to improve the characteristics of the circularly polarized wave generator, but as mentioned above, Elliptical polarization components are generated by reflected waves from sub-reflectors, etc., and it is not possible to obtain a good elliptical polarization rate only by changing the characteristics of the circular polarization generator. In particular, in Cassegrain antennas with small diameters, the reflection from the sub-reflector is large, and there is no effective means to suppress this. One way to solve this problem is to use the orthogonal polarization coupler shown in FIG. is to connect. In this case, 60H. The reflected wave 104 from the sub-reflector of the band transmission signal passes through the branch waveguide 13 of the 6GH2 band orthogonal polarization coupler 12 and is absorbed by the non-reflection terminator 11, so that almost no reflection occurs, so it becomes a right-handed circularly polarized wave. There is no radiation and the elliptical polarization is not degraded. Also, the vertically polarized signal 204 due to the left-handed circularly polarized wave input 203 of 4C;H2# is 4GH2
Vertical polarization branch waveguide 15.15 of band orthogonal polarization coupler 14
' and is absorbed by the non-reflection terminator 10.10', causing almost no reflection. Therefore, the re-radiation component 205 of the left-handed circularly polarized wave in FIG. 4 becomes very small, and the reflected wave 205 from the sub-reflector
6 can be ignored and the interference signal 207 disappears, 4C;H.
The incident wave 200 of the band is coupled to the horizontally polarized branching waveguide 16, 16', passes through the waveguide IT, 17' shown diagrammatically, and is combined in the hybrid l8 to form an output signal 208. Although this method can obtain a good elliptical polarization index, there is a problem that the structure of the 4GH2 band orthogonal polarization coupler 14 is complicated and the shape is large. The purpose of the present invention is to eliminate the above-mentioned problems, to construct an antenna primary radiation system that has a simple structure, absorbs unused polarization components, and has a good elliptical polarization even when there is reflection from the sub-reflector. The objective is to provide a polarization demultiplexer that can [Means for Solving the Problems] The polarization demultiplexer of the present invention includes a first circular waveguide that transmits signals in two high and low frequency bands, and an impedance transformer at one end of the first circular waveguide. a second circular waveguide that is connected to each other so that their central axes coincide with each other through the section and transmits only the signal in the high frequency band; and a slit in the tube axis direction provided in the tube wall near the impedance transformation section. The first
a rectangular branching waveguide that transmits the low frequency band signal and includes a filter that is coupled to the circular waveguide and transmits the low frequency band signal and reflects the high frequency band signal, and is opposite to the slit. The side pipe wall is coupled to the first circular waveguide by magnetic field coupling due to a circumferential magnetic field component or electric field coupling due to a radial direction electric field component, and the signal in the low frequency band passes through, and the signal in the high frequency band is transmitted. a selective absorption load from a reflective filter and a non-reflection terminator, and one of two orthogonal linearly polarized signals connected to the second circular waveguide and transmitted through the second circular waveguide. This is achieved by providing a conversion waveguide that transmits the waveguide to the rectangular waveguide and absorbs and attenuates the other waveguide.

〔作用〕[Effect]

この構威によれば、高.低各周波数帯の使用しない偏波
成分を吸収することができ、副反射鏡からの反射が多い
小形カセグレンアンテナの一次放射器に適用できる。
According to this structure, high. It can absorb unused polarized wave components in each low frequency band, and can be applied to the primary radiator of a small Cassegrain antenna where there are many reflections from the sub-reflector.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の第1の実施例の斜視図、第1図
(b)は断面図であり、4,6C;H2帯を伝送できる
第1の円形導波管20と、ステップ状のインピーダンス
変威部21を介して接続され6GHz’?tFのみを通
過する第2の円形導波管22と、第1の円形導波管20
に結合され4CI{2帯の水平偏波を分岐する分岐導波
管23と、これと反対側に設けられ円周方向磁界成分H
φによるループ結合により4GH2帯の垂直偏波を吸収
する選択性吸収負荷24と、6GHz帯の垂直偏波を方
形導波管に伝送し水平偏波を吸収する抵抗板を備えた変
換導波管25とで構威されている。
FIG. 1(a) is a perspective view of the first embodiment of the present invention, and FIG. 1(b) is a cross-sectional view, showing a first circular waveguide 20 capable of transmitting the 4,6C;H2 band; 6GHz'? A second circular waveguide 22 that passes only tF, and a first circular waveguide 20
A branching waveguide 23 is coupled to the 4CI{2 band horizontally polarized wave, and a branching waveguide 23 is provided on the opposite side to branch the horizontally polarized wave in the 4CI{2 band.
A conversion waveguide equipped with a selective absorption load 24 that absorbs vertically polarized waves in the 4GH2 band by loop coupling through φ, and a resistor plate that transmits vertically polarized waves in the 6GHz band to a rectangular waveguide and absorbs horizontally polarized waves. It is organized as 25.

4GH2帯の水平偏波信号は第1の円形導波管20のイ
ンピーダンス変成部21に近い下側の管壁に設けられた
管軸方向のスリット26により分岐導波管23に結合さ
れ、帯域フィルタ部27を通過して4GH2出力端子2
8に伝送される.円形導波管の水平偏波基本モードは、
選択性吸収負荷24の結合ループ29が設けられている
円形導波管の上側の管壁付近では円周方向の磁界成分H
φが無いので、水平偏波は選択性吸収負荷24には結合
されない。
The horizontally polarized signal in the 4GH2 band is coupled to the branch waveguide 23 through a slit 26 in the tube axis direction provided in the lower tube wall near the impedance transformation section 21 of the first circular waveguide 20, and then passed through the bandpass filter. 4GH2 output terminal 2 after passing through section 27
8. The horizontally polarized fundamental mode of a circular waveguide is
Near the upper wall of the circular waveguide where the coupling loop 29 of the selective absorption load 24 is provided, the magnetic field component H in the circumferential direction
Since there is no φ, no horizontal polarization is coupled to the selective absorption load 24.

4GH2帯の垂直偏波信号は、下側の管壁では軸方向の
磁界戒分が無くスリット26には結合されず、上側管壁
の円周方向磁界成分Hφによって結合ループ29と結合
し、同軸形の低域フィルタ30を通って無反射終端器3
1に吸収される。
The vertically polarized signal of the 4GH2 band is not coupled to the slit 26 because there is no axial magnetic field distribution on the lower tube wall, but is coupled to the coupling loop 29 by the circumferential magnetic field component Hφ of the upper tube wall, and the coaxial The non-reflection terminator 3 is passed through the shaped low-pass filter 30.
1 is absorbed.

60H2人力端子32に加えられた5GHzlの垂直偏
波は、変換導波管25内に水平に挿入されている抵抗板
33の影響を殆ど受けずに円形導波管22に伝えられる
。垂直偏波は上側管壁に円周方向磁界成分Hφを有する
ので結合ループ29に電圧を誘起するが低域フィルタ3
0が遮断域のため結合せず、又、下側管壁には軸方向磁
界戒分H2が無いためスリット26に影響されずにその
まま円形導波管端子34に伝えられる。
The 5 GHzl vertically polarized wave applied to the 60H2 human power terminal 32 is transmitted to the circular waveguide 22 almost unaffected by the resistance plate 33 inserted horizontally into the conversion waveguide 25. Since the vertically polarized wave has a circumferential magnetic field component Hφ on the upper tube wall, it induces a voltage in the coupling loop 29, but the low-pass filter 3
0 is not coupled because it is a cutoff region, and since there is no axial magnetic field distribution H2 on the lower tube wall, it is transmitted as it is to the circular waveguide terminal 34 without being affected by the slit 26.

円形導波管端子34から人力された6GH2帯の水平偏
波は、同様に分岐導波管23及び選択性吸収負荷24の
いずれにも結合されずに第2の円形導波管22に入り抵
抗板33に吸収される。
Similarly, the horizontally polarized wave in the 6GH2 band input from the circular waveguide terminal 34 enters the second circular waveguide 22 without being coupled to either the branching waveguide 23 or the selective absorption load 24 and is resisted. It is absorbed by the plate 33.

以上の説明から明らかなように第1図の偏分波器を第4
図の従来の偏分波器3の代わりに使用して一次放射器を
構威すると、6GH2帯の副反射鏡からの反射波104
は抵抗板33で吸収されるので右旋円偏波の再放射波1
05が無くなり、4GH2帯の左旋円偏波による垂直偏
波信号204は選択性吸収負荷24に吸収されるので干
渉信号207が無くなって、送受共楕円偏波率の良いア
ンテナを構成することができる。
As is clear from the above explanation, the polarization splitter shown in Fig. 1 is
When a primary radiator is constructed by using it in place of the conventional polarization splitter 3 shown in the figure, the reflected wave 104 from the sub-reflector in the 6GH2 band
is absorbed by the resistor plate 33, so the right-handed circularly polarized re-radiated wave 1
05 is eliminated, and the vertically polarized signal 204 due to left-handed circular polarization in the 4GH2 band is absorbed by the selective absorption load 24, so the interference signal 207 is eliminated, and an antenna with good elliptical polarization for both transmitting and receiving can be configured. .

第2図は本発明の第2の実施例の斜視図である.ここで
は、選択性吸収負荷35が分岐導波管と同様な帯域フィ
ルタを含む導波管型で、円周方向のスリットによる磁界
結合を用い、6GH2帯の変換導波管36が第5図の6
GH2帯直交偏波結合器12の分岐導波管13に無反射
終端器を組み込んだものとなっている。この構成は第1
の実施例よりは形状がやや大きくなるが6GH2帯の大
電力送信に耐え、第5図の直交偏波結合器を用いる従来
例よりは構威が簡単で小形となる効果がある。
FIG. 2 is a perspective view of a second embodiment of the present invention. Here, the selective absorption load 35 is a waveguide type including a bandpass filter similar to a branch waveguide, and uses magnetic field coupling by circumferential slits, and the 6GH2 band conversion waveguide 36 is shown in FIG. 6
A non-reflection terminator is incorporated in the branch waveguide 13 of the GH2 band orthogonal polarization coupler 12. This configuration is the first
Although the shape is slightly larger than that of the embodiment, it can withstand high power transmission in the 6GH2 band, and has the effect of being simpler and smaller than the conventional example using the orthogonal polarization coupler shown in FIG.

第3図は第1図の選択性吸収負荷24をループ結合でな
く円形導波管内に半径方向に挿入されたアンテナによる
電界結合としたものであって、円周方向の磁界戒分によ
る磁界結合と同様に垂直偏波のみに結合し同様な効果が
得られる。円周方向磁界成分による磁界結合が第1の円
形導波管の端末部において強い結合が得られるに対し、
電界結合の場合は端末よりやや離れた所(管内波長の約
l/4)で強い結合が得られる. 以上の各実施例において、選択性吸収負荷は水平偏波に
対して結合がないことを説明したが、水平偏波が第1図
の軸方向スリット26に結合し、そこに発生した磁気モ
ーメントにより円形導波管内で局所的に誘起される高次
モードについても、上記選択性吸収負荷に結合するよう
な電磁界は発生しないので水平,垂直両偏波の結合を生
しることもない. また、前記各実施例において、4GH2帯の分岐導波管
のフィルタは帯域フィルタとしたが低域フィルタ又は帯
域阻止フィルタを用いて構威することもできる.選択性
吸収負荷のフィルタについても同様であり、結合ループ
の形状など図示のものに限らない.又、6 G H z
帯の変換導波管の構戒も実施例の物に限定されず、第1
及び第2の円形導波管のインピーダンス変成部も実施例
のステップ構造以外のものでもよく、第2の円形導波管
の長さに制約はない.更に、各構戒部は一体構造で作ら
れてもよく、フランジ等で結合されてもよい. 〔発明の効果〕 以上詳細に説明したように、本発明の偏分波器によれば
簡単な構造で、高,低各周波数帯の使用しない偏波成分
を吸収することができ、副反射鏡からの反射が多い小形
カセグレンアンテナの一次放射器を簡単な構或で実現で
きる効果がある。
In FIG. 3, the selective absorption load 24 in FIG. 1 is not loop-coupled but has electric field coupling by an antenna inserted in the radial direction in a circular waveguide, and magnetic field coupling by magnetic field distribution in the circumferential direction. Similar effects can be obtained by coupling only vertically polarized waves. Whereas strong magnetic coupling due to the circumferential magnetic field component is obtained at the end of the first circular waveguide,
In the case of electric field coupling, strong coupling is obtained at a location slightly away from the terminal (approximately 1/4 of the tube wavelength). In each of the above embodiments, it has been explained that the selective absorption load does not couple to horizontally polarized waves, but the horizontally polarized waves couple to the axial slit 26 in FIG. Even for higher-order modes that are locally induced within the circular waveguide, no electromagnetic field is generated that couples to the selective absorption load, so there is no coupling of both horizontal and vertical polarization. Further, in each of the above embodiments, the filter of the branch waveguide for the 4GH2 band is a bandpass filter, but a low-pass filter or a band-elimination filter may also be used. The same applies to filters with selective absorption loads, and the shapes of coupling loops are not limited to those shown. Also, 6 GHz
The configuration of the band conversion waveguide is not limited to that of the embodiment, and the structure of the conversion waveguide of the
The impedance transformation portion of the second circular waveguide may also have a structure other than the step structure of the embodiment, and there is no restriction on the length of the second circular waveguide. Furthermore, each structural part may be made of an integral structure, or may be connected by flanges or the like. [Effects of the Invention] As explained in detail above, the polarization demultiplexer of the present invention has a simple structure and can absorb unused polarization components in the high and low frequency bands. This has the effect of realizing a primary radiator of a small Cassegrain antenna with a simple structure, which has many reflections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の偏分波器の第1実施例の斜視図
、第1図(b)は本発明の第1実施例の断面図、第2図
は本発明の第2実施例の斜視図、第3図は本発明の第3
実施例の斜視図、第4図は円偏波を使用する従来のカセ
グレンアンテナの一次放射器の斜視図、第5図は直交偏
波を利用する直交偏波結合器の斜視図である. 1・・・円錐ホーン、2・・・円偏波発生器、3・・・
偏分波器、4・・・人力端子、5・・・90゜移相板、
6,13,15.15’.16.16’・・・分岐導波
管、10.10’.11・・・無反射終端器、12.1
4・・・直交偏波結合器、17.17’・・・導波管、
18・・・ハイブリッド、20.22・・・円形導波管
、2l・・・インピーダンス変成部、23・・・分岐導
波管、24・・・選択性吸収負荷、25・・・変換導波
管、26・・・スリット、27・・・帯域フィルタ、2
8・・・出力端子、29・・・結合ループ、30・・・
低域フィルタ、3l・・・無反射終端器、32・・・入
力端子、33・・・抵抗板、34・・・円形導波管端子
、35・・・選択性吸収負荷、36・・・変換導波管.
第 1 図 第2 図 第3 図
FIG. 1(a) is a perspective view of a first embodiment of the polarization splitter of the present invention, FIG. 1(b) is a sectional view of the first embodiment of the present invention, and FIG. A perspective view of the embodiment, FIG. 3 is the third embodiment of the present invention.
FIG. 4 is a perspective view of the primary radiator of a conventional Cassegrain antenna using circular polarization, and FIG. 5 is a perspective view of an orthogonal polarization coupler using orthogonal polarization. 1... Conical horn, 2... Circularly polarized wave generator, 3...
Polarization splitter, 4... manual terminal, 5... 90° phase shift plate,
6, 13, 15.15'. 16.16'...Branch waveguide, 10.10'. 11... Non-reflection terminator, 12.1
4... orthogonal polarization coupler, 17.17'... waveguide,
18...Hybrid, 20.22...Circular waveguide, 2l...Impedance transformation section, 23...Branch waveguide, 24...Selective absorption load, 25...Conversion waveguide Pipe, 26...Slit, 27...Band filter, 2
8... Output terminal, 29... Coupling loop, 30...
Low-pass filter, 3l... Non-reflection terminator, 32... Input terminal, 33... Resistance plate, 34... Circular waveguide terminal, 35... Selective absorption load, 36... Conversion waveguide.
Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1.高,低2つの周波数帯の信号を伝送する第1の円形
導波管と、この第1の円形導波管の一端にインピーダン
ス変成部を介して互いに中心軸が一致するように接続さ
れ前記高周波数帯の信号のみを伝送する第2の円形導波
管と、前記インピーダンス変成部に近い管壁に設けられ
た管軸方向のスリットによって前記第1の円形導波管と
結合され前記低周波数帯の信号を通過し前記高周波数帯
の信号を反射するフィルタを含み前記低周波数帯の信号
を伝送する方形の分岐導波管と、前記スリットと反対側
の管壁で円周方向の磁界成分による磁界結合もしくは半
径方向の電界成分による電界結合によって前記第1の円
形導波管と結合され前記低周波数帯の信号を通過し前記
高周波数帯の信号を反射するフィルタ及び無反射終端器
から成る選択性吸収負荷と、前記第2の円形導波管に接
続され前記第2の円形導波管を伝送する直交した2つの
直線偏波信号の一方を方形導波管に伝送し他方を吸収減
衰させる変換導波管とを備えたことを特徴とする偏分波
器。
1. A first circular waveguide that transmits signals in two frequency bands, high and low; a second circular waveguide that transmits only signals in the frequency band; and a second circular waveguide that is coupled to the first circular waveguide by a slit in the tube axis direction provided in the tube wall near the impedance transformation section to transmit signals in the low frequency band. a rectangular branch waveguide that transmits the low frequency band signal and includes a filter that passes the signal of the high frequency band and reflects the signal of the high frequency band, and a magnetic field component in the circumferential direction on the tube wall on the opposite side to the slit. a filter coupled to said first circular waveguide by magnetic field coupling or electric field coupling with a radial electric field component to pass said low frequency band signals and reflect said high frequency band signals; and a non-reflection terminator. one of the two orthogonal linearly polarized signals connected to the second circular waveguide and transmitted through the second circular waveguide is transmitted to the rectangular waveguide, and the other is absorbed and attenuated. A polarization splitter characterized by comprising a conversion waveguide.
JP16170789A 1989-06-23 1989-06-23 Polarization coupler Pending JPH0327601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16170789A JPH0327601A (en) 1989-06-23 1989-06-23 Polarization coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16170789A JPH0327601A (en) 1989-06-23 1989-06-23 Polarization coupler

Publications (1)

Publication Number Publication Date
JPH0327601A true JPH0327601A (en) 1991-02-06

Family

ID=15740351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16170789A Pending JPH0327601A (en) 1989-06-23 1989-06-23 Polarization coupler

Country Status (1)

Country Link
JP (1) JPH0327601A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918206A (en) * 1995-06-30 1997-01-17 Nec Corp Circularly polarized waveguide-microstrip line converter
JP2008043528A (en) * 2006-08-16 2008-02-28 Etoile Co Ltd Slippers and method for manufacturing the same
JP2015207863A (en) * 2014-04-18 2015-11-19 三菱電機株式会社 Polarization coupler
JP2016134639A (en) * 2015-01-15 2016-07-25 三菱電機株式会社 Polarization separation circuit
JP2017017638A (en) * 2015-07-06 2017-01-19 三菱電機株式会社 Directional coupler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117303A (en) * 1982-12-23 1984-07-06 Nec Corp Polarizer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117303A (en) * 1982-12-23 1984-07-06 Nec Corp Polarizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918206A (en) * 1995-06-30 1997-01-17 Nec Corp Circularly polarized waveguide-microstrip line converter
JP2008043528A (en) * 2006-08-16 2008-02-28 Etoile Co Ltd Slippers and method for manufacturing the same
JP2015207863A (en) * 2014-04-18 2015-11-19 三菱電機株式会社 Polarization coupler
JP2016134639A (en) * 2015-01-15 2016-07-25 三菱電機株式会社 Polarization separation circuit
JP2017017638A (en) * 2015-07-06 2017-01-19 三菱電機株式会社 Directional coupler

Similar Documents

Publication Publication Date Title
US4030048A (en) Multimode coupling system including a funnel-shaped multimode coupler
US4847574A (en) Wide bandwidth multiband feed system with polarization diversity
US4410866A (en) Antenna transducer for a transmission-reception antenna
US7002528B2 (en) Circularly polarized receive/transmit elliptic feed horn assembly for satellite communications
GB2109167A (en) Hybrid mode feed
US4728960A (en) Multifunctional microstrip antennas
US6329957B1 (en) Method and apparatus for transmitting and receiving multiple frequency bands simultaneously
US4199764A (en) Dual band combiner for horn antenna
EP1612888B1 (en) Antenna device
JP2022544961A (en) Full-band quadrature mode converter
CA1221163A (en) Four-port network coupling arrangement for microwave antennas employing monopulse follow-up
JPH0327601A (en) Polarization coupler
US4757281A (en) Rotary microwave joint device
CA1048145A (en) Antenna with echo cancelling elements
JPH0430201B2 (en)
Paine et al. Beam waveguide and receiver optics for the SMA
US3646589A (en) Multimode tracking system utilizing a circular waveguide having slots angularly oriented with respect to the waveguide axis
Yeh The received power of a receiving antenna and the criteria for its design
KR101491723B1 (en) Duplex band feedhorn
Sarasa et al. A compact single-horn C/X dual band and circular polarized Tx & Rx antenna system
Granet et al. Axially-Corrugated X-Band Horn Design With Integrated TE 21 Monopulse Tracking in Corrugation
RU2292098C1 (en) Multifrequency feed system of reflector-type orthogonal polarization division antenna
US6181222B1 (en) Polarizer for two different frequency bands
JP7341599B2 (en) Absorption port and separate transmitting and receiving antenna
JPH0918206A (en) Circularly polarized waveguide-microstrip line converter