JPH0327498B2 - - Google Patents

Info

Publication number
JPH0327498B2
JPH0327498B2 JP61237080A JP23708086A JPH0327498B2 JP H0327498 B2 JPH0327498 B2 JP H0327498B2 JP 61237080 A JP61237080 A JP 61237080A JP 23708086 A JP23708086 A JP 23708086A JP H0327498 B2 JPH0327498 B2 JP H0327498B2
Authority
JP
Japan
Prior art keywords
crosslinking
optical fiber
chamber
curable resin
ultraviolet curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61237080A
Other languages
Japanese (ja)
Other versions
JPS6395143A (en
Inventor
Minoru Yabuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61237080A priority Critical patent/JPS6395143A/en
Publication of JPS6395143A publication Critical patent/JPS6395143A/en
Publication of JPH0327498B2 publication Critical patent/JPH0327498B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光フアイバに被覆された紫外線硬化
型樹脂を架橋する光フアイバ被覆架橋装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical fiber coating and crosslinking device for crosslinking an ultraviolet curable resin coated on an optical fiber.

(従来技術) 最近、光フアイバに紫外線硬化型樹脂を被覆
し、この紫外線硬化型樹脂を紫外線ランプから紫
外線を照射し硬化して光フアイバ芯線を得る方法
が提案されている。この方法においてはダイスを
通して紫外線硬化型樹脂を被覆した後樹脂が自重
により垂れ下るのを防止するために紫外線硬化型
樹脂を冷却しまたは冷却しながら紫外線を照射す
ることが好ましい(特願昭60−36008号参照)。こ
の場合、冷却手段として空気を用いると、空気中
の水蒸気が水滴となつて紫外線硬化型樹脂に付着
するので架橋上好ましくなく、また紫外線硬化型
樹脂が架橋された後直ちに空気中に送出すと、同
様に水滴が被覆上に付着するのでこれを避けなけ
ればならない。尚、光フアイバ上の紫外線硬化型
樹脂は架橋装置を縦型にすれば垂れ下りを避ける
ことができるが、縦型の装置は設置空間から制約
される場合がある。
(Prior Art) Recently, a method has been proposed in which an optical fiber is coated with an ultraviolet curable resin and the ultraviolet curable resin is cured by irradiating ultraviolet rays from an ultraviolet lamp to obtain an optical fiber core wire. In this method, after coating the ultraviolet curable resin through a die, it is preferable to cool the ultraviolet curable resin or irradiate it with ultraviolet rays while cooling in order to prevent the resin from sagging due to its own weight. (See No. 36008). In this case, if air is used as a cooling means, the water vapor in the air will turn into water droplets and adhere to the UV-curable resin, which is unfavorable for crosslinking. , as well as water droplets depositing on the coating, which must be avoided. Note that hanging of the ultraviolet curable resin on the optical fiber can be avoided by making the crosslinking device vertical, but a vertical device may be limited by the installation space.

(発明の目的) 本発明の目的は、装置の向きを限定することな
く、且つ被覆に水適が付着することなく紫外線硬
化型樹脂を有効に架橋することができる光フアイ
バ被覆架橋装置を提供することにある。
(Object of the Invention) An object of the present invention is to provide an optical fiber coating crosslinking device that can effectively crosslink an ultraviolet curable resin without limiting the orientation of the device and without adhering water droplets to the coating. There is a particular thing.

(発明の構成) 本発明に係る光フアイバ被覆架橋装置は、紫外
線硬化型樹脂被覆ダイスを通して紫外線硬化型樹
脂が被覆された光フアイバを硬化する冷却手段と
この紫外線硬化型樹脂を架橋する紫外線ランプと
から成つているが、特に紫外線硬化型樹脂が被覆
された光フアイバを通す架橋室とこの架橋室内に
不活性ガスを供給する不活性ガス供給手段と架橋
室の下流側に連続して設けられた加温手段とを備
え、冷却手段は架橋室内に設けられていることを
特徴としている。
(Structure of the Invention) The optical fiber coating crosslinking device according to the present invention includes a cooling means for curing an optical fiber coated with an ultraviolet curable resin through an ultraviolet curable resin coating die, and an ultraviolet lamp for crosslinking the ultraviolet curable resin. It consists of a cross-linking chamber through which an optical fiber coated with an ultraviolet curable resin is passed, an inert gas supply means for supplying inert gas into this cross-linking chamber, and an inert gas supply means provided continuously on the downstream side of the cross-linking chamber. The cooling means is provided within the crosslinking chamber.

このように構成すると、光フアイバのまわりは
空気がなく、また架橋された被覆を有する光フア
イバは加温された後空気中に送出されるので冷却
架橋中及び送出し後に被覆上に水滴が付着するこ
とがなく、良質の光フアイバ芯線を得ることがで
きる。
With this configuration, there is no air around the optical fiber, and since the optical fiber with a cross-linked coating is heated and then sent out into the air, water droplets will not adhere to the coating during cooling and cross-linking and after delivery. A high-quality optical fiber core wire can be obtained without any process.

(実施例) 本発明の実施例を図面を参照して詳細に説明す
ると、図面は本発明に係る光フアイバ被覆架橋装
置10を示し、この光フアイバ被覆架橋装置10
は、紫外線硬化型樹脂被覆ダイス12を通して紫
外線硬化型樹脂が被覆された光フアイバ14を硬
化する冷却手段16と、この紫外線硬化型樹脂を
架橋する紫外線ランプ18とから成つている。図
示の実施例では、3つの紫外線ランプ18が光フ
アイバ14の走行方向に並べて用いられている
が、この紫外線ランプ18の数は適宜に選択する
ことができる。
(Example) An example of the present invention will be described in detail with reference to the drawings. The drawings show an optical fiber coated crosslinking device 10 according to the present invention, and this optical fiber coated crosslinking device 10
consists of a cooling means 16 for curing an optical fiber 14 coated with an ultraviolet curable resin through an ultraviolet curable resin coating die 12, and an ultraviolet lamp 18 for crosslinking the ultraviolet curable resin. In the illustrated embodiment, three ultraviolet lamps 18 are used side by side in the running direction of the optical fiber 14, but the number of ultraviolet lamps 18 can be selected as appropriate.

本発明の光フアイバ被覆架橋装置10は、紫外
線硬化型樹脂が被覆された光フアイバ14を通す
架橋室20とこの架橋室20内に不活性ガスを供
給する不活性ガス供給手段22と架橋室20の下
流側に連続して設けられた加温手段24とを更に
備え、冷却手段16は架橋室20内に設けられて
いる。
The optical fiber coating crosslinking device 10 of the present invention includes a crosslinking chamber 20 through which an optical fiber 14 coated with an ultraviolet curable resin is passed, an inert gas supply means 22 for supplying an inert gas into the crosslinking chamber 20, and a crosslinking chamber 20. The cooling means 16 is provided within the bridging chamber 20.

被覆ダイス12は架橋室20の入口側に連続さ
れ、また加温手段24は架橋室20の出口側に接
続されている。冷却手段16は、特に第2図から
解るように、紫外線ランプ18からの光の指向方
向に開いている切欠き状円形断面を有する環状中
空室26とこの環状中空室26内に冷媒ガスを供
給する図示しない冷媒ガス供給源とから成つてお
り、冷媒ガスは架橋室20の壁を気密に貫通して
環状中空室26の上端に接続されたガス入口28
から流入され、架橋室20の壁を気密に貫通して
環状中空室26の下端に接続されたガス出口30
から流出される。尚、環状中空室26の壁は熱伝
導性の低い材料から成る複数のステー32によつ
て架橋室20内に支持されている。尚、冷却手段
16を通る光フアイバ14が紫外線ランプ18か
らの光を有効に受けることができるように環状中
空室26の内面26aは高放射効率面から成つて
いるのが好ましい。また、加温室24は架橋され
た光フアイバを加熱する図示しないヒータを備え
ている。
The coating die 12 is connected to the inlet side of the crosslinking chamber 20, and the heating means 24 is connected to the outlet side of the crosslinking chamber 20. As can be seen in particular from FIG. 2, the cooling means 16 includes an annular cavity 26 with a notched circular cross-section that is open in the direction of light direction from the ultraviolet lamp 18 and a refrigerant gas supplied into the annular cavity 26. The refrigerant gas is passed through the wall of the bridging chamber 20 in a gas-tight manner and connected to the upper end of the annular hollow chamber 26.
A gas outlet 30 flows in from the bridging chamber 20 and is connected to the lower end of the annular hollow chamber 26 through the wall of the bridging chamber 20 in a gas-tight manner.
leaked from. The wall of the annular hollow chamber 26 is supported within the bridging chamber 20 by a plurality of stays 32 made of a material with low thermal conductivity. The inner surface 26a of the annular hollow chamber 26 is preferably made of a high radiation efficiency surface so that the optical fiber 14 passing through the cooling means 16 can effectively receive the light from the ultraviolet lamp 18. Further, the heating chamber 24 includes a heater (not shown) that heats the crosslinked optical fiber.

不活性ガス供給手段22は、加温室24に接続
されたガス入口34と架橋室20の上端に接続さ
れたガス出口36とから成り、図示しない不活性
ガス供給源からのN2ガスはこのガス流入口34
から流入しガス出口36から流出して架橋室20
内をN2ガス雰囲気にしている。
The inert gas supply means 22 consists of a gas inlet 34 connected to the heating chamber 24 and a gas outlet 36 connected to the upper end of the bridging chamber 20, and N 2 gas from an inert gas supply source (not shown) is supplied to this gas. Inflow port 34
The gas flows in from the gas outlet 36 and flows out from the bridging chamber 20.
There is a N2 gas atmosphere inside.

次に、本発明の光フアイバ被覆架橋装置の使用
状態をのべると、光フアイバ14は被覆ダイス1
2を通つて紫外線硬化型樹脂が被覆され、架橋室
20内に入る。冷却手段16は架橋室20内を縦
方向に設置されているので紫外線硬化型樹脂が被
覆された光フアイバ14は冷却手段16によつて
冷却され樹脂の粘度を高めつつ紫外線ランプ18
から紫外線が照射されて紫外線硬化型樹脂が硬化
される。従つて、被覆ダイス12で被覆された紫
外線硬化型樹脂は自重で垂れ下ることがなく、所
定の径が保たれる。このようにして紫外線硬化型
樹脂が被覆され硬化された光フアイバ14は加温
手段24で加温されつつ装置の外部に導出され
る。注目すべきことは冷却手段16による冷却処
理は放射冷却、伝導冷却及び対流冷却によつて行
なわれるが、この冷却処理は不活性ガス雰囲気中
で行なわれるので光フアイバ14に水滴が付着す
ることがなく、また装置の外部に導出される場合
に冷却された光フアイバ加温手段24によつて室
温まで加温されるので空気中の水蒸気が凝固して
水滴が付着することがない。
Next, the usage state of the optical fiber coating crosslinking device of the present invention will be described.
2 is coated with an ultraviolet curable resin and enters the crosslinking chamber 20 . Since the cooling means 16 is installed vertically in the crosslinking chamber 20, the optical fiber 14 coated with the ultraviolet curing resin is cooled by the cooling means 16, increasing the viscosity of the resin, and the ultraviolet lamp 18 is being cooled.
The UV-curable resin is cured by being irradiated with ultraviolet light. Therefore, the ultraviolet curing resin coated with the coating die 12 does not sag due to its own weight, and a predetermined diameter is maintained. The optical fiber 14 coated with the ultraviolet curable resin and cured in this manner is heated by the heating means 24 and led out of the apparatus. What should be noted is that the cooling process by the cooling means 16 is performed by radiation cooling, conduction cooling, and convection cooling, but since this cooling process is performed in an inert gas atmosphere, water droplets may not adhere to the optical fiber 14. Furthermore, since the optical fiber is heated to room temperature by the cooled optical fiber heating means 24 when it is led out of the apparatus, water vapor in the air will not solidify and water droplets will not adhere to it.

尚、上記実施例では装置は縦型になつている
が、横型であつてもよい。また、上記実施例では
紫外線ランプ18は架橋室20の壁を貫通してそ
の一部が架橋室20内に突出しているが、紫外線
ランプ18を架橋室20外に配置して架橋室20
の対応する壁部分を紫外線透過材料で形成しても
よい。
In the above embodiment, the apparatus is of a vertical type, but it may be of a horizontal type. Further, in the above embodiment, the ultraviolet lamp 18 penetrates the wall of the crosslinking chamber 20 and a part of it protrudes into the crosslinking chamber 20, but the ultraviolet lamp 18 is arranged outside the crosslinking chamber 20 and the crosslinking chamber 20 is
The corresponding wall portions may be formed from a UV transparent material.

(発明の効果) 本発明によれば、上記のように、光フアイバ上
の紫外線硬化型樹脂は冷却されながら硬化される
ので垂れ下りによる径の変動を生ずることがない
が、特にこの冷却処理は不活性ガス雰囲気中で行
なわれ、また架橋された被覆を有する光フアイバ
は加温された後空気中に送出されるので冷却架橋
中及び導出後に被覆上に水滴が付着することがな
く、良質の光フアイバ芯線を得ることができ、更
に樹脂の垂れ下りの防止によつて装置を縦型及び
横型のいずれにも適用することができる実益があ
る。
(Effects of the Invention) According to the present invention, as described above, the ultraviolet curable resin on the optical fiber is cured while being cooled, so there is no change in the diameter due to drooping. The process is carried out in an inert gas atmosphere, and since the optical fiber with the crosslinked coating is heated and then sent out into the air, there is no water droplet adhering to the coating during cooling and crosslinking and after removal, resulting in a high quality product. It is possible to obtain an optical fiber core wire, and furthermore, by preventing the resin from dripping, there is a practical advantage that the device can be applied to both vertical and horizontal types.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明に係る光フ
アイバ14被覆架橋装置の横断面図及び縦断面図
である。 10……光フアイバ被覆架橋装置、12……被
覆ダイス、14……光フアイバ、16……冷却手
段、18……紫外線ランプ、20……架橋室、2
2……不活性ガス供給手段、24……加温手段、
26……環状中空室、26a……高反射面、2
8,30……冷媒ガスの流入口及び流出口、3
4,36……不活性ガスの流入口及び流出口。
1 and 2 are a cross-sectional view and a vertical cross-sectional view, respectively, of an optical fiber 14 coating cross-linking device according to the present invention. DESCRIPTION OF SYMBOLS 10... Optical fiber coating crosslinking device, 12... Coating die, 14... Optical fiber, 16... Cooling means, 18... Ultraviolet lamp, 20... Crosslinking chamber, 2
2...Inert gas supply means, 24...Heating means,
26...Annular hollow chamber, 26a...High reflective surface, 2
8, 30... refrigerant gas inlet and outlet, 3
4, 36... Inert gas inlet and outlet.

Claims (1)

【特許請求の範囲】 1 紫外線硬化型樹脂被覆ダイスを通して紫外線
硬化型樹脂が被覆された光フアイバを硬化する冷
却手段と前記紫外線硬化型樹脂を架橋する紫外線
ランプとから成る光フアイバ被覆架橋装置におい
て、前記紫外線硬化型樹脂が被覆された光フアイ
バを通す架橋室と前記架橋室内に不活性ガスを供
給する不活性ガス供給手段と前記架橋室の下流側
に連続して設けられた加温手段とを備え、前記冷
却手段は前記架橋室内に設けられていることを特
徴とする光フアイバ被覆架橋装置。 2 前記冷却手段は前記紫外線ランプからの光の
指向方向に開いている切欠き状円形断面を有する
環状中空室と前記環状中空室内に冷媒ガスを供給
する冷媒ガス供給源とから成つている特許請求の
範囲第1項に記載の光フアイバ被覆架橋装置。 3 前記環状中空室の内面は高放射効率面から成
つている特許請求の範囲第2項に記載の光フアイ
バ被覆架橋装置。 4 前記紫外線ランプは前記架橋室内に突出して
いる特許請求の範囲第1項乃至第3項のいずれか
に記載の光フアイバ被覆架橋装置。
[Scope of Claims] 1. An optical fiber coating crosslinking device comprising a cooling means for curing an optical fiber coated with an ultraviolet curable resin through an ultraviolet curable resin coating die, and an ultraviolet lamp for crosslinking the ultraviolet curable resin, A crosslinking chamber through which the optical fiber coated with the ultraviolet curable resin is passed, an inert gas supply means for supplying an inert gas into the crosslinking chamber, and a heating means provided continuously on the downstream side of the crosslinking chamber. An optical fiber coated crosslinking device, characterized in that the cooling means is provided within the crosslinking chamber. 2. A patent claim in which the cooling means comprises an annular hollow chamber having a cutout-like circular cross section that is open in the direction of direction of light from the ultraviolet lamp, and a refrigerant gas supply source that supplies refrigerant gas into the annular hollow chamber. The optical fiber coating crosslinking device according to item 1. 3. The optical fiber coated crosslinking device according to claim 2, wherein the inner surface of the annular hollow chamber is made of a high radiation efficiency surface. 4. The optical fiber coated crosslinking device according to any one of claims 1 to 3, wherein the ultraviolet lamp projects into the crosslinking chamber.
JP61237080A 1986-10-07 1986-10-07 Apparatus for coating and crosslinking of optical fiber Granted JPS6395143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61237080A JPS6395143A (en) 1986-10-07 1986-10-07 Apparatus for coating and crosslinking of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61237080A JPS6395143A (en) 1986-10-07 1986-10-07 Apparatus for coating and crosslinking of optical fiber

Publications (2)

Publication Number Publication Date
JPS6395143A JPS6395143A (en) 1988-04-26
JPH0327498B2 true JPH0327498B2 (en) 1991-04-16

Family

ID=17010117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61237080A Granted JPS6395143A (en) 1986-10-07 1986-10-07 Apparatus for coating and crosslinking of optical fiber

Country Status (1)

Country Link
JP (1) JPS6395143A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345528A (en) * 1993-07-28 1994-09-06 At&T Bell Laboratories Method for enhancing the pullout strength of polymer-coated optical fiber
US6812057B2 (en) * 2000-07-07 2004-11-02 Nippon Sheet Glass Co., Ltd. Method of producing an optical module

Also Published As

Publication number Publication date
JPS6395143A (en) 1988-04-26

Similar Documents

Publication Publication Date Title
CN105060739B (en) A kind of adjustable fibre coating ultraviolet curing equipment of light intensity
US7322122B2 (en) Method and apparatus for curing a fiber having at least two fiber coating curing stages
JPH0455138B2 (en)
US5733607A (en) Method and apparatus for coating and curing fiberglass sleeving with an ultraviolet light curable acrylic
US6511715B2 (en) Method for UV curing a coating on a filament or the like
CN111016024B (en) Ultraviolet light crosslinked cable production line
CN105521932A (en) Optical fiber ribbon curing equipment
EP0319374A2 (en) Inert atmosphere cooler for optical fibers and method of using the same
JPH0327498B2 (en)
EA022385B1 (en) Method and device for heating polymer products
EP3165860A1 (en) Device and method for product drying
CA1075871A (en) Continuous curing device for longitudinally extended products
CN102623114A (en) Equipment for synchronously producing multiple fiber insulating sleeves with ultraviolet light curing technology
CA2709001C (en) Facility, oven and procedure for heating preformed tubes prior to their molecular orientation
CN101290108A (en) Lamp set
US3299468A (en) Material treating process and apparatus
EP0854121A1 (en) Method and apparatus for curing a fiber having at least two fiber coating curing stages separated by a cooling stage
JP6435915B2 (en) Manufacturing method and manufacturing apparatus for enameled wire
JP2017134951A (en) Manufacturing method and manufacturing device for enamel wire
JPS637830B2 (en)
JP4356154B2 (en) Optical fiber manufacturing method and manufacturing apparatus
JP3378704B2 (en) Optical fiber drawing coating method
JPH04240138A (en) Production of optical fiber
CN202584961U (en) Device using ultraviolet light curing technology to synchronously produce a number of fiber insulating sleeves
JP2006330234A (en) Manufacturing method and manufacture device of plastic coated optical fiber ribbon