JPH0327485B2 - - Google Patents

Info

Publication number
JPH0327485B2
JPH0327485B2 JP61285850A JP28585086A JPH0327485B2 JP H0327485 B2 JPH0327485 B2 JP H0327485B2 JP 61285850 A JP61285850 A JP 61285850A JP 28585086 A JP28585086 A JP 28585086A JP H0327485 B2 JPH0327485 B2 JP H0327485B2
Authority
JP
Japan
Prior art keywords
water
tower
silica
gelling
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61285850A
Other languages
Japanese (ja)
Other versions
JPS6360105A (en
Inventor
Jinjun Cho
Chinko Boku
Oko Kin
Yasutoshi Kin
Hisanori U
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKOKU ENERUGII KENKYUSHO
Original Assignee
KANKOKU ENERUGII KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKOKU ENERUGII KENKYUSHO filed Critical KANKOKU ENERUGII KENKYUSHO
Publication of JPS6360105A publication Critical patent/JPS6360105A/en
Publication of JPH0327485B2 publication Critical patent/JPH0327485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、球型シリカゲルの製造方法及びその
装置に関する。 [従来の技術及び問題点] シリカゲルは、吸収剤及び触媒担体を始めとし
て種々の産業分野で使用されている。例えば、過
去においては加工食品、医薬品の防湿剤として使
用されていたが、近年では電子産業や精密機械産
業の生産製品の内部の防湿剤として利用されてい
るのみならず、生活用品にも広く使用されてい
る。また、かかるシリカゲルは使用目的に応じて
その強力な吸収能を利用し、特殊な物質内に含有
された微量の水分塩を検知する監視剤にも使用さ
れている。 ところで、上述したシリカゲルは従来より水ガ
ラス製造の中間段階である半乾燥状態のシリカヒ
ドロゲルを破砕して250℃程度に乾燥させること
によつて破砕型のシリカゲルを製造する方法が知
られている。このような破砕型のシリカゲルは、
使用目的によつては利用されているものの、以下
に説明する背景から球型のシリカゲルが要求され
ている。 即ち、破砕型シリカゲルはその形状が一定では
ない。このため、かかるシリカゲルを加工食品や
医薬品の防湿剤として使用した場合、特に運搬中
にシリカゲルの粒子相互でその荒い表面同志が衝
突されて破砕され、小さい破砕粒子等が製品に不
純物として混入する。その結果、製品不良を招い
たり、人体に悪影響を及ぼすため、防湿剤として
使用することが不向きであつた。こうした破砕粒
子の製品中への混入を防止するために破砕型シリ
カゲルを包装することが考えられるが、包装費用
によるコストの増大を招く。また、前記破砕型シ
リカゲルはシリカゲルの製造中の別細な破砕粒子
を選別して廃棄する等の繁雑な作業を必要とす
る。更に、破砕型のシリカゲルは粒子間の不規則
な面の接触によつて遊動化速度が増加されたり、
遊動化による混合の効果が少なく、反応が低下し
て最終生成物の変換効率が低下するため、生産効
率、コストの面でも問題があつた。 このようなことから、球型シリカゲルを製造す
る技術が開発されている。その一つとして、水ガ
ラスと硫酸を混合してシリカヒドロゾルを造り、
これをゾルと混合されない高温の有機溶媒が収容
されたゲル化塔に噴射する方法がある。この方法
において、ゾルはゲル化塔内で表面張力の差異に
より球型化され、この球型を維持する間、安定な
ゲルに変化されるのを利用して球型シリカヒドロ
ゲルが製造される。かかる操業過程においては、
水ガラスの成分であるNa2OとH2SO4のモル比率
の変化によるPH変動、ゲル化時間の変動を示す第
5図より明らかなようにPH値が約3以上で容易に
ゲル化されるので、それより低いPH値でシリカヒ
ドロゲルを製造することが考えられるが、ゲル化
所要時間が20秒間以下であるので、シリカヒドロ
ゾルの混合器からゲル化塔の注入部までの移送時
間を20秒間以内にする必要があり、これより長い
時間移送させると、移送管内でゲル化されてシリ
カヒドロゲルの製造が困難となる。なお、第5図
中のAはシリカヒドロゾルの製造に際してSiO2
が18重量%含む水ガラスと12規定の硫酸を用い、
前記Na2O/H2SO4のモル比率を変化させた場合
の特性線、Bはシリカヒドロゾルの製造に際して
SiO2が12重量%含む水ガラスと7規定の硫酸を
用い、前記Na2O/H2SO4のモル比率を変化させ
た場合の特性線、Cはシリカヒドロゾルの製造に
際してSiO2が9.3重量%含む水ガラスと4.5規定の
硫酸を用い、前記Na2O/H2SO4のモル比率を変
化させた場合の特性線である。一方、シリカヒド
ロゾルのPH値を3以下に調節することが考えられ
るが、ゲル化の所要時間が一挙に2時間以上と長
くなるため、ゾルを高温の有機溶媒中に噴射させ
ても安定なゲルを生成できず、次の洗浄工程での
取扱いが困難となる。従つて、シリカヒドロゾル
のPH値を3を略瞬時にゲル化されながらPH値6ま
でに調節する必要があるが、この差異硫酸と水ガ
ラスの混合誤差が2%以内であつて水ガラスの
SiO2濃度が上昇するに伴つて略0.5%まで現象さ
れるため、PH値の調節が困難となる。 その他の方法として、ゲル化塔の上部に配置し
たノズルで既に造られた水ガラスと硫酸を夫々注
入して瞬間的に混合することによりシリカヒドロ
ゾルを製造し、このゾルをゲル化塔に分散する方
法がある。しかしながら、かかる方法ではPH値の
ゲル化所要時間に影響を及ぼすので、ノズル中の
PH値を調節してゲル化所要時間を数秒間乃至数十
秒間と低くするために水ガラスと硫酸の供給範囲
の誤差を夫々±1.0%以内にする必要がある。こ
うした条件が満たされないと、ゲル化塔内におい
てもゲル化されないが、噴射口が詰まつて球型の
シリカヒドロゲルの製造が困難となる。従つて、
かかる方法は水ガラスの濃度又はゲルの表面積を
制御可能なPH調節剤である硫酸を供給するポンプ
の流れが変動する場合があるので、多量にシリカ
ゲルを製造することは不可能で工業的に利用する
ことは不適当である。 また、シリカヒドロゾルを製造する工程におい
て、水ガラス中のNa2Oと硫酸との酸アルカリ反
応で熱が発生し、この熱によつてゾルの温度が上
昇してゾルの生成前に沈殿物が形成される。この
ような沈殿物が生じると、最終製品であるシリカ
ゲルの外観が悪化し、吸湿性も低下する等のシリ
カゲルの品質低下を招くばかりか、乾燥工程に際
して不均一な乾燥が生じて製造されたシリカゲル
に亀裂が発生したり、崩れ易くなつたりする。 従来では、上述した沈澱物の生成を防ぐために
約5℃まで冷却する必要があるが、これは0℃の
冷却水を必要とし、球型シリカゲルの製造価格の
高騰の一因となる。 本発明は、上記従来の問題点を解決するために
なされたもので、比較的高い温度でシリカヒドロ
ゾルを生成することを可能として反応物質である
水ガラスと硫酸の混合比率を拡大して流量等の変
動が生じても安定してシリカゲルを製造し得る方
法並びにその製造装置を提供しようとするもので
ある。 [問題点を解決するための手段及び作用] 本願第1の発明は、7〜9規定の硫酸水溶液と
SiO2濃度が10〜16重量%の水ガラスを反応させ
て少なくとも24時間の間ゲル化されないPH2〜
2.5のシリカヒドロゾルを生成する工程と、この
シリカヒドロゾルを50〜80℃の加熱水が循環され
る熱交換器に所望時間滞留するように通過させて
熱的熟成を行なう工程と、ゲル化塔内に底部側の
水層と共に収容され、前記熱交換器より高い温度
に維持された有機溶媒中に前記熱的熟成後のシリ
カヒドロゾルをノズルを通して噴射して球型、ゲ
ル化を行なう工程と、ゲル化塔の底部の水層に沈
降した球型シリカヒドロゲルを水と共に取出し、
分離する工程とを具備したことを特徴とする球型
シリカゲルの製造方法である。 上記シリカヒドロゾルは、PH値を2〜2.5の範
囲とし、24時間の間で安定である必要がある。こ
の場合、既述した第5図に示すように水ガラスと
硫酸の混合比率は拡大され、ある程度の注入量の
変動に対しても容易ににPH値を調節できる。 上記シリカヒドロゾルを有機溶媒中に噴射させ
る前に50〜80℃の加熱水が循環される熱交換器を
通すのは、次のような理由によるものである。即
ち、前記PH値のシリカヒドロゾルにおいてゲル化
時間が極めて遅く、そのままゲル化塔の有機溶媒
に噴射しても充分にゲル化されない。このため、
シリカヒドロゾルを50〜80℃の加熱水が循環され
る熱交換器を通して熱的熟成を行なうことによ
り、ゲル化所要時間は極めて短くなつてPH値が高
い場合と同様な現象を表わす。換言すれば、熱的
熟成を行なつたシリカヒドロゾルを該熟成温度よ
り高い温度の有機溶媒にノズルを通して噴射、分
散させることによつて球型化がなされると共に、
球型状態を維持しながらゲル化され、所望のシリ
カヒドロゲルが得られる。 上記有機溶媒の温度は、熱的熟成後のシリカヒ
ドロゾルを充分にゲル化させる観点から、熱的熟
成温度より高い温度に設定する必要がある。な
お、該有機溶媒はその温度を均一に維持すると共
に、該有機溶媒に生成されたシリカヒドロゲルの
沈降速度を低下させてシリカヒドロゾルをゲル化
させるに必要な充分な時間を与え、更に強度の高
い球型シリカヒドロゲルを得るために上向移送、
循環させることが望ましい。 また、本願第2の発明は7〜9規定の硫酸水溶
液とSiO2濃度10〜16重量%の水ガラスが供給さ
れ、少なくとも24時間の間ゲル化されないPH2〜
2.5のシリカヒドロゾルを生成するゾル製造器と、
下部に水層が、この上に有機溶媒が収容されるゲ
ル化塔と、このゲル化塔の上方に配置され、前記
ゾル製造器と連結してそのシリカヒドロゾルが供
給されると共に前記ゲル化塔の有機溶媒に熱的熟
成後のシリカヒドロゾルを噴射するノズルを有す
る熱交換器と、前記ゲル化塔の下部に連結され、
球型シリカヒドロゲルを水と共に取出し、輸送す
る輸送管と、この輸送管により輸送された水から
球型シリカヒドロゲルを分離する手段とを具備し
たことを特徴とする球型シリカゲルの製造装置で
ある。 以下、本願第2の発明の製造装置について第1
図〜第4図を参照して説明する。 第1図は本発明の球型シリカゲルの製造装置を
示す概略図、第2図は第1図のゾル製造器の要部
拡大図、第3図は第1図の熱交換器の拡大図、第
4図は第3図の熱交換器の要部拡大断面図であ
る。図中の1は、例えば96重量%の濃硫酸を7〜
9規定の硫酸水溶液にするための第1の希釈槽、
図中の2は例えばSiO2濃度が28〜30重量%の水
ガラスをSiO2濃度10〜16に希釈するための第2
の希釈槽である。前記第1の希釈槽1は、ポンプ
3が介装された硫酸供給管4を介してゾル製造器
5に連結されている。このゾル製造器5は、第1
図及び第2図に示すように20℃前後の冷却水が循
環される配管6が付設され、かつ前記供給管4が
上部に連結された水冷式反応槽7を備えている。
この反応槽7内には、二段羽根を有する撹拌機8
が設けられている。前記反応槽7の下部には、三
方バルブ9を介して循環用バイパス管10が連結
されている。このバイパス管10には、吸入側に
撹拌用インペラー11、吐出側に噴射口12を
夫々形成した混合ポンプ13が介装されている。
また、前記第2の希釈槽2はポンプ14を介装し
た水ガラス供給管15を介して前記混合ポンプ1
3の吸入側の前記バイパス管10に連結されてい
る。なお、バイパス管10は生成されたシリカヒ
ドロゾルの該管内への滞留を防止するために傾斜
構造になつている。かかるゾル製造器5は、次の
ような動作がなされる。即ち、配管6より冷却水
を循環させて反応槽7の外壁温度を20℃前後とし
て、後述する水ガラスと硫酸水溶液の反応により
生じる反応熱の上昇を防ぐ。つづいて、三方バル
ブ9をバイパス管10側に切換え、第1の希釈槽
1の硫酸水溶液を硫酸供給管4から水冷式反応槽
7に供給すると共に、混合ポンプ13を駆動して
該硫酸水溶液をバイパス管10を通じて循環させ
ながら第2の希釈槽2内の水ガラスを水ガラス供
給管15から該混合ポンプ13の吸入側のバイパ
ス管1に供給する。こうして供給された硫酸水溶
液及び水ガラスは、前記混合ポンプ13のインペ
ラー11により瞬間的に激しく混合され、更に該
混合ポンプ13の吐出側の噴射口12からの反応
槽7への噴射及び二段羽根を有する撹拌機8の撹
拌により一層効果的な混合がなされる。このよう
な効率的な撹拌、混合により反応槽7内での沈澱
物の生成が回避され、量産化に適した高濃度の水
ガラスの供給が可能となる。 また、前記ゾル製造器5は前記三方バルブ9の
配管16を介してゲル化塔17上方に配置された
熱交換器18の上部に連結されている。前記配管
16には、流量計19が介装されている。前記熱
交換器18は、前記ゾル製造器5のシリカヒドロ
ゾルを加熱熟成するもので、その加熱は恒温槽2
0の加熱水をポンプ21により循環させることに
よりなされる。前記熱交換器18は、第3図及び
第4図に示すように前記加熱水が循環される本体
容器22を備えている。この本体容器22には、
前記ゾル製造器5のシリカヒドロゾルを流通させ
る複数本の熱交換チユーブ23が上下方向に貫通
されており、該容器22のチユーブ23出入り口
付近にはチユーブ23を液密にシール、固定する
ための治具24a,24bが設けられている。前
記各熱交換チユーブ23の下端には、継手25が
夫々取付けられており、各継手25にはリング状
のゴムパツキン26が夫々介装されている。前記
各継手25には、ゴムチユーブ27が嵌着され、
かつこれらゴムチユーブ27の下端にはノズル2
8が夫々挿着されている。これらノズル28は、
夫々前記ゲル化塔17の上方に配置した固定板2
9の連結部30に挿着されている。 更に、前記ゲル化塔17の下部には水層31
が、該水層31上に有機溶媒32が夫々収容され
ている。このゲル化塔17の前記水層31上の側
壁部分には、循環管33の一端側が連結され、か
つ該循環管33の他端側は該ゲル化塔17上部側
壁に連結されている。この循環管33にはポンプ
34及びヒータ35が介装されている。こうした
循環管33を付設することによりゲル化塔17内
の有機溶媒32が上向移送、循環させると共に、
90〜100℃に加熱される。また、前記ゲル化塔1
7の下部には三方継手36を介して該ゲル化塔1
7内の水層31をシリカヒドロゲルと共に輸送す
る輸送管37が連結されている。この輸送管37
の一端には、貯蔵槽38が取着されており、該貯
蔵槽38の上方には採集網39が配置されてい
る。前記輸送管37の他端は、前記採集網39に
延出されている。前記貯蔵槽38と三方継手36
との間の前記輸送管37には、ポンプ40が介装
されている。なお、輸送管37によりシリカヒド
ロゲルと共に輸送された水はシリカヒドロゲルの
採集網39での分離において貯蔵槽38に溜めら
れ、輸送管37を通して再度ゲル化塔17に戻さ
れる。 しかして、本発明によれば所定濃度の硫酸水溶
液と所定のSiO2濃度の水ガラスを反応させ、少
なくとも24時間の間ゲル化されないPH2〜2.5の
シリカヒドロゾルを生成し、このシリカヒドロゾ
ルを熱交換器を通じて流通しながら徐々に加熱す
ると共に熱的熟成を行なつた後、このゾルをノズ
ルを通してゲル化塔内の有機溶媒に直接噴射させ
ることによつて、容易にゲル化させつつ球型化で
きる。その際の熱交換器に供給される加熱水の温
度と、水ガラスのNa2Oと硫酸のモル比率、ゲル
化所要時間及びゲル化される温度との関係は下記
第1表の通りである。
[Industrial Application Field] The present invention relates to a method for producing spherical silica gel and an apparatus therefor. [Prior Art and Problems] Silica gel is used in various industrial fields including absorbents and catalyst supports. For example, in the past it was used as a moisture-proofing agent in processed foods and pharmaceuticals, but in recent years it has been used not only as a moisture-proofing agent inside products produced in the electronics and precision machinery industries, but also widely used in household goods. has been done. Depending on the purpose of use, silica gel is also used as a monitoring agent to detect minute amounts of water salts contained in special substances, making use of its strong absorption ability. By the way, the above-mentioned silica gel has conventionally been known to be produced by crushing semi-dry silica hydrogel, which is an intermediate step in the production of water glass, and drying it at about 250°C to produce crushed silica gel. This type of crushed silica gel is
Although it is used for some purposes, spherical silica gel is required from the background explained below. That is, the shape of crushed silica gel is not constant. For this reason, when such silica gel is used as a moisture proofing agent for processed foods or pharmaceuticals, the rough surfaces of the silica gel particles collide with each other and crush them, especially during transportation, and small crushed particles etc. are mixed into the product as impurities. As a result, it is not suitable for use as a moisture-proofing agent because it causes product defects and has a negative effect on the human body. In order to prevent such crushed particles from being mixed into the product, it is conceivable to package the crushed silica gel, but this results in an increase in packaging costs. Furthermore, the crushed silica gel requires complicated operations such as sorting and disposing of separate crushed particles during the production of silica gel. In addition, the mobilization rate of crushed silica gel is increased due to the irregular surface contact between particles.
There were also problems in terms of production efficiency and cost because the effect of mixing due to mobility was small, the reaction was reduced, and the conversion efficiency of the final product was reduced. For this reason, techniques for producing spherical silica gel have been developed. One of them is to create silica hydrosol by mixing water glass and sulfuric acid.
There is a method of injecting this into a gelling tower containing a high temperature organic solvent that is not mixed with the sol. In this method, the sol is sphericalized in a gelation tower due to the difference in surface tension, and while maintaining this spherical shape, it is transformed into a stable gel to produce a spherical silica hydrogel. In this operating process,
As is clear from Figure 5, which shows pH fluctuations and gelation time fluctuations due to changes in the molar ratio of Na 2 O and H 2 SO 4 , which are the components of water glass, gelation occurs easily when the PH value is about 3 or higher. Therefore, it is possible to produce silica hydrogel at a lower pH value, but since the gelation time is less than 20 seconds, the transfer time from the silica hydrosol mixer to the injection part of the gelation tower is The transfer time must be within 20 seconds; if the transfer time is longer than this, it will gel in the transfer tube, making it difficult to produce silica hydrogel. In addition, A in FIG. 5 indicates SiO 2 during the production of silica hydrosol.
Using water glass containing 18% by weight and 12N sulfuric acid,
The characteristic line B is obtained when the molar ratio of Na 2 O / H 2 SO 4 is changed, and B is the characteristic line when the molar ratio of Na 2 O / H 2 SO 4 is changed.
Characteristic line C is obtained when the molar ratio of Na 2 O / H 2 SO 4 is changed using water glass containing 12% by weight of SiO 2 and 7N sulfuric acid. This is a characteristic line when the molar ratio of Na 2 O/H 2 SO 4 is changed using water glass containing 4.5 N sulfuric acid and 4.5 N sulfuric acid. On the other hand, it is possible to adjust the PH value of silica hydrosol to 3 or less, but this increases the time required for gelation, which takes more than 2 hours, and the sol is not stable even if it is injected into a high-temperature organic solvent. A gel cannot be formed and handling in the next washing step becomes difficult. Therefore, it is necessary to adjust the pH value of the silica hydrosol from 3 to 6 while gelling it almost instantaneously, but the mixing error of sulfuric acid and water glass must be within 2% and the pH value of water glass must be adjusted to 6.
As the SiO 2 concentration increases, it decreases to about 0.5%, making it difficult to adjust the PH value. Another method is to produce silica hydrosol by injecting already made water glass and sulfuric acid into a nozzle placed at the top of the gelling tower and mixing them instantly, and then dispersing this sol in the gelling tower. There is a way to do it. However, this method affects the gelation time required for the PH value, so
In order to adjust the pH value and reduce the gelation time from several seconds to several tens of seconds, it is necessary to keep the error in the supply range of water glass and sulfuric acid within ±1.0%. If these conditions are not met, gelation will not occur in the gelation tower, but the injection port will become clogged, making it difficult to produce spherical silica hydrogel. Therefore,
In this method, the flow of the pump that supplies sulfuric acid, which is a PH regulator that can control the concentration of water glass or the surface area of the gel, may fluctuate, so it is impossible to produce silica gel in large quantities and it is not suitable for industrial use. It is inappropriate to do so. In addition, in the process of producing silica hydrosol, heat is generated by the acid-alkali reaction between Na 2 O and sulfuric acid in water glass, and this heat increases the temperature of the sol, causing precipitation to occur before the sol is formed. is formed. When such precipitates occur, not only does the appearance of the final product silica gel deteriorate and the quality of the silica gel decreases, such as a decrease in hygroscopicity, but also uneven drying occurs during the drying process, resulting in the production of silica gel. cracks may develop or become prone to collapse. Conventionally, in order to prevent the formation of the above-mentioned precipitate, it is necessary to cool the product to about 5° C., but this requires cooling water at 0° C., which contributes to the increase in the manufacturing price of spherical silica gel. The present invention was made to solve the above-mentioned conventional problems, and it is possible to generate silica hydrosol at a relatively high temperature and increase the mixing ratio of water glass and sulfuric acid, which are reactants, to increase the flow rate. It is an object of the present invention to provide a method and apparatus for producing silica gel that can stably produce silica gel even when such fluctuations occur. [Means and effects for solving the problem] The first invention of the present application is based on a sulfuric acid aqueous solution of 7 to 9 N.
PH2 ~ which does not gel for at least 24 hours by reacting water glass with SiO2 concentration of 10~16% by weight
Step 2.5 of producing a silica hydrosol, thermally aging the silica hydrosol by passing it through a heat exchanger in which heated water of 50 to 80°C is circulated so that it stays for a desired time, and gelling. A step of injecting the thermally aged silica hydrosol through a nozzle into an organic solvent contained in a column together with a water layer on the bottom side and maintained at a higher temperature than the heat exchanger to form a sphere and gel it. Then, the spherical silica hydrogel that had settled in the water layer at the bottom of the gelation tower was taken out along with the water.
This is a method for producing spherical silica gel, characterized by comprising a step of separating. The silica hydrosol needs to have a pH value in the range of 2 to 2.5 and be stable for 24 hours. In this case, as shown in FIG. 5, the mixing ratio of water glass and sulfuric acid is increased, and the PH value can be easily adjusted even if the injection amount fluctuates to some extent. The reason why the silica hydrosol is passed through a heat exchanger in which heated water of 50 to 80°C is circulated before being injected into the organic solvent is as follows. That is, the gelation time of silica hydrosol having the above-mentioned pH value is extremely slow, and even if it is directly injected into the organic solvent of the gelation tower, it will not be gelled sufficiently. For this reason,
By subjecting the silica hydrosol to thermal aging through a heat exchanger in which heated water of 50 to 80° C. is circulated, the time required for gelation becomes extremely short, and a phenomenon similar to that observed when the pH value is high is exhibited. In other words, by injecting and dispersing the thermally aged silica hydrosol into an organic solvent at a temperature higher than the aging temperature through a nozzle, the silica hydrosol is spheroidized, and
The desired silica hydrogel is obtained by gelling while maintaining the spherical shape. The temperature of the organic solvent needs to be set higher than the thermal ripening temperature from the viewpoint of sufficiently gelling the silica hydrosol after thermal ripening. In addition, the organic solvent maintains the temperature uniformly, reduces the sedimentation rate of the silica hydrogel produced in the organic solvent, provides sufficient time necessary for gelling the silica hydrosol, and further increases the strength. Upward transfer to obtain highly spherical silica hydrogels,
It is desirable to circulate. In addition, the second invention of the present application is such that a sulfuric acid aqueous solution of 7 to 9 N and water glass with a SiO 2 concentration of 10 to 16% by weight are supplied, and a pH of 2 to 100 ml is not gelled for at least 24 hours.
A sol maker that produces 2.5 silica hydrosol,
An aqueous layer is disposed at the bottom, a gelling tower is placed above the gelling tower containing an organic solvent, and the gelling tower is connected to the sol manufacturer to supply the silica hydrosol and the gelling tower. a heat exchanger having a nozzle for injecting the thermally aged silica hydrosol into the organic solvent of the column; and a heat exchanger connected to the lower part of the gelation column,
This apparatus for producing spherical silica gel is characterized by comprising a transport pipe for taking out and transporting spherical silica hydrogel together with water, and means for separating the spherical silica hydrogel from the water transported by the transport pipe. Hereinafter, the first part regarding the manufacturing apparatus of the second invention of the present application will be explained.
This will be explained with reference to FIGS. FIG. 1 is a schematic diagram showing the spherical silica gel manufacturing apparatus of the present invention, FIG. 2 is an enlarged view of the main parts of the sol manufacturing device in FIG. 1, and FIG. 3 is an enlarged view of the heat exchanger in FIG. 1. FIG. 4 is an enlarged sectional view of a main part of the heat exchanger shown in FIG. 3. 1 in the figure means, for example, 96% by weight concentrated sulfuric acid
a first dilution tank for making a 9N sulfuric acid aqueous solution;
2 in the figure is, for example, a second water glass for diluting water glass with a SiO 2 concentration of 28 to 30% by weight to a SiO 2 concentration of 10 to 16%.
This is a dilution tank. The first dilution tank 1 is connected to a sol manufacturer 5 via a sulfuric acid supply pipe 4 in which a pump 3 is installed. This sol manufacturing device 5 has a first
As shown in FIG. 2, a water-cooled reaction tank 7 is provided with a pipe 6 through which cooling water of about 20° C. is circulated, and the supply pipe 4 is connected to the upper part.
Inside this reaction tank 7, there is a stirrer 8 having two stages of blades.
is provided. A circulation bypass pipe 10 is connected to the lower part of the reaction tank 7 via a three-way valve 9. This bypass pipe 10 is interposed with a mixing pump 13 having a stirring impeller 11 on the suction side and an injection port 12 on the discharge side.
Further, the second dilution tank 2 is connected to the mixing pump 1 via a water glass supply pipe 15 equipped with a pump 14.
It is connected to the bypass pipe 10 on the suction side of No. 3. Note that the bypass pipe 10 has an inclined structure to prevent the generated silica hydrosol from staying in the pipe. The sol manufacturing device 5 operates as follows. That is, cooling water is circulated through piping 6 to maintain the temperature of the outer wall of reaction tank 7 at around 20° C., thereby preventing an increase in reaction heat caused by the reaction between water glass and sulfuric acid aqueous solution, which will be described later. Next, the three-way valve 9 is switched to the bypass pipe 10 side, and the sulfuric acid aqueous solution in the first dilution tank 1 is supplied from the sulfuric acid supply pipe 4 to the water-cooled reaction tank 7, and the mixing pump 13 is driven to remove the sulfuric acid aqueous solution. The water glass in the second dilution tank 2 is supplied from the water glass supply pipe 15 to the bypass pipe 1 on the suction side of the mixing pump 13 while being circulated through the bypass pipe 10. The sulfuric acid aqueous solution and water glass thus supplied are instantaneously and vigorously mixed by the impeller 11 of the mixing pump 13, and are further injected into the reaction tank 7 from the injection port 12 on the discharge side of the mixing pump 13 and the two-stage impeller. More effective mixing can be achieved by stirring with the stirrer 8 having the following. Such efficient stirring and mixing prevents the formation of precipitates in the reaction tank 7, making it possible to supply highly concentrated water glass suitable for mass production. Further, the sol manufacturer 5 is connected to the upper part of a heat exchanger 18 disposed above the gelling tower 17 via the pipe 16 of the three-way valve 9. A flow meter 19 is installed in the piping 16 . The heat exchanger 18 heats and matures the silica hydrosol in the sol manufacturing device 5, and the heating is carried out in the constant temperature bath 2.
This is done by circulating heated water of 0.0 liters using the pump 21. The heat exchanger 18 includes a main body container 22 through which the heated water is circulated, as shown in FIGS. 3 and 4. This main container 22 includes
A plurality of heat exchange tubes 23 through which the silica hydrosol of the sol manufacturing device 5 circulates are penetrated in the vertical direction, and near the entrance and exit of the tubes 23 of the container 22, there are holes for sealing and fixing the tubes 23 in a liquid-tight manner. Jigs 24a and 24b are provided. A joint 25 is attached to the lower end of each heat exchange tube 23, and a ring-shaped rubber gasket 26 is interposed in each joint 25, respectively. A rubber tube 27 is fitted into each joint 25,
At the lower ends of these rubber tubes 27 are nozzles 2.
8 are inserted respectively. These nozzles 28 are
Fixing plate 2 disposed above the gelling tower 17, respectively
It is inserted into the connecting portion 30 of No. 9. Furthermore, an aqueous layer 31 is provided at the bottom of the gelling tower 17.
However, an organic solvent 32 is accommodated on the aqueous layer 31, respectively. One end of a circulation pipe 33 is connected to the side wall portion of the gelation tower 17 above the water layer 31, and the other end of the circulation pipe 33 is connected to the upper side wall of the gelation tower 17. A pump 34 and a heater 35 are interposed in this circulation pipe 33. By providing such a circulation pipe 33, the organic solvent 32 in the gelling tower 17 is transported upward and circulated, and
Heated to 90-100℃. In addition, the gelling tower 1
The gelling tower 1 is connected to the lower part of the gelling tower 7 via a three-way joint 36.
A transport pipe 37 for transporting the aqueous layer 31 in 7 together with the silica hydrogel is connected. This transport pipe 37
A storage tank 38 is attached to one end, and a collection net 39 is arranged above the storage tank 38. The other end of the transport pipe 37 extends to the collection net 39. The storage tank 38 and the three-way joint 36
A pump 40 is interposed in the transport pipe 37 between the two. The water transported along with the silica hydrogel through the transport pipe 37 is collected in the storage tank 38 during separation in the silica hydrogel collection network 39, and is returned to the gelling tower 17 through the transport pipe 37. According to the present invention, a sulfuric acid aqueous solution with a predetermined concentration and water glass with a predetermined SiO 2 concentration are reacted to produce a silica hydrosol with a pH of 2 to 2.5 that does not gel for at least 24 hours. After gradually heating and thermally ripening the sol while flowing through a heat exchanger, this sol is directly injected into the organic solvent in the gelation tower through a nozzle, thereby easily gelling it and forming it into a spherical shape. can be converted into The relationship between the temperature of the heated water supplied to the heat exchanger, the molar ratio of Na 2 O and sulfuric acid in the water glass, the gelation time, and the gelation temperature is shown in Table 1 below. .

【表】 上記第1表より明らかな如く加熱水の温度が、
一定の場合、Na2O/H2SO4のモル比率は0.93〜
1.0まで変化させたにも拘らずゲル化所要時間は
略一定になつてゲル化される温度に相関する。こ
れは、混合モル比率を約7%まで変化させてもこ
れを熱的に熟成させれば略同じ時間、同じ温度で
ゲル化されことを意味する。従つて、混合範囲、
つまりPH値を極めて正確に制御しなくてもよく、
一定温度まで一定時間の間熱的熟成を行なえば容
易にゲル化される。かかる作用を利用してシリカ
ヒドロゾルをゲル化所要時間より若干短く熱的熟
成させた後、熟成させたシリカヒドロゾルを熟成
温度より高い温度の有機溶媒にノズルを通して噴
射させることによつて、球型を維持しつつゲル化
することができる。この際、混合比率の範囲が相
当に広がるので、工業的な利用が容易となる。こ
の後、得られたドロゲルを洗浄、乾燥することに
より充分な強度を有する球型シリカゲルを得るこ
とができる。また、本発明では、かかる球型シリ
カゲルを製造できる構造が簡単な製造装置を提供
できる。 [発明の実施例] 以下、本発明の実施例を前述した第1図〜第4
図の製造装置を参照して説明する。 実施例 1 まず、ゾル製造器5の配管6より冷却水を循環
させて冷却式反応槽7の外壁温度を20℃前後とし
た後、三方バルブ9をバイパス管10側に切換
え、第1の希釈槽1の9Nの硫酸水溶液50に硫
酸供給管4から水冷式反応槽7に供給すると共
に、混合ポンプ13を駆動して該硫酸水溶液をバ
イパス管10を通じて循環させながら第2の希釈
槽2内のSiO2濃度12重量%の水ガラス(成分重
量比SiO2:Na2O=28:9)240を水ガラス供
給管15から該混合ポンプ13の吸入側のバイパ
ス管10に供給した。こうして供給された硫酸水
溶液及び水ガラスは、前記混合ポンプ13のイン
ペラー11により瞬間的に激しく混合され、更に
該混合ポンプ13の吐出側の噴射口12からの反
応槽7への噴射及び二段羽根を有する撹拌機8の
撹拌により一層効果的に混合されてシリカヒドロ
ゾルが調製された。このシリカヒドロゾルは、 Na2O/H2SO4のモル比率が0.984で、ゲル化所要
時間は少なくとも24時間であるPHが2.3のもので
あつた。 次いで、三方バルブ9を切換えてゾル製造器5
の反応槽7のシリカヒドロゾルを配管16を通し
て恒温槽20から加熱水が循環される温度75℃の
熱交換器18の各熱交換チユーブ23に供給し
た。この時、熱交換チユーブ23の内径を5cmと
し、前記シリカヒドロゾルのレイノルズNo.550〜
2000の範囲にしてシリカヒドロゾルの滞留時間を
5〜40分間とするために該チユーブ23の長さを
2mに設定し、更にチユーブ23の本体容器22
内に挿着する本数を7本とし、全体のシリカヒド
ロゾルの処理速度を6,12,25,30,40/hrに
設定した。つづいて、各熱交換チユーブ23下端
の連結されたノズル28を通して循環管33、ポ
ンプ34及びヒータ45により上向移送、循環さ
れるゲル化塔17の温度80℃の有機溶媒32に噴
射し、同有機溶媒32内で球型化させつつゲル化
させた。この後、ゲル化塔17底部の水層31に
沈降したシリカヒドロゲルを水と共に三方継手3
6を通して輸送管37に排出させ、ポンプ40を
作動することにより該シリカヒドロゲルを含む水
を採集網39に送り、ここでシリカヒドロゲルを
水から分離した。 しかして、熱交換器へのシリカヒドロゾルの処
理速度を6,12,25,30,40/hrと変化させる
ことにより得られたシリカヒドロゲルの堅固性及
ゲル状態を観察した。その結果を下記第2表に示
した。
[Table] As is clear from Table 1 above, the temperature of the heated water is
For a constant case, the molar ratio of Na 2 O / H 2 SO 4 is from 0.93 to
Even though it was changed up to 1.0, the time required for gelation remained approximately constant and correlated with the gelation temperature. This means that even if the mixing molar ratio is changed to about 7%, if it is thermally aged, gelation will occur for approximately the same time and at the same temperature. Therefore, the mixing range,
In other words, there is no need to control the PH value extremely accurately,
It is easily gelled by thermal aging at a certain temperature for a certain period of time. Taking advantage of this effect, the silica hydrosol is thermally aged for a period slightly shorter than the time required for gelation, and then the aged silica hydrosol is injected into an organic solvent at a temperature higher than the aging temperature through a nozzle to form spheres. It can be gelled while maintaining its shape. At this time, the range of mixing ratios is considerably expanded, making industrial use easier. Thereafter, by washing and drying the obtained drogel, a spherical silica gel having sufficient strength can be obtained. Furthermore, the present invention can provide a manufacturing apparatus with a simple structure that can manufacture such spherical silica gel. [Embodiments of the Invention] Hereinafter, the embodiments of the present invention will be described with reference to FIGS. 1 to 4.
This will be explained with reference to the manufacturing apparatus shown in the figure. Example 1 First, cooling water was circulated through the piping 6 of the sol manufacturer 5 to bring the temperature of the outer wall of the cooling reaction tank 7 to around 20°C, and then the three-way valve 9 was switched to the bypass pipe 10 side, and the first dilution was carried out. The 9N sulfuric acid aqueous solution 50 in the tank 1 is supplied from the sulfuric acid supply pipe 4 to the water-cooled reaction tank 7, and while the mixing pump 13 is driven to circulate the sulfuric acid aqueous solution through the bypass pipe 10, the sulfuric acid aqueous solution 50 in the second dilution tank 2 is supplied. Water glass with a SiO 2 concentration of 12% by weight (component weight ratio SiO 2 :Na 2 O=28:9) 240 was supplied from the water glass supply pipe 15 to the bypass pipe 10 on the suction side of the mixing pump 13 . The sulfuric acid aqueous solution and water glass thus supplied are instantaneously and vigorously mixed by the impeller 11 of the mixing pump 13, and are further injected into the reaction tank 7 from the injection port 12 on the discharge side of the mixing pump 13 and the two-stage impeller. The silica hydrosol was prepared by mixing more effectively by stirring with the stirrer 8 having the following. The silica hydrosol had a pH of 2.3 with a Na 2 O/H 2 SO 4 molar ratio of 0.984 and a gelation time of at least 24 hours. Next, switch the three-way valve 9 to turn on the sol maker 5.
The silica hydrosol in the reaction tank 7 was supplied through piping 16 to each heat exchange tube 23 of a heat exchanger 18 at a temperature of 75° C. through which heated water was circulated from a constant temperature bath 20. At this time, the inner diameter of the heat exchange tube 23 was set to 5 cm, and the silica hydrosol Reynolds No. 550~
2000, and the length of the tube 23 is set to 2 m in order to make the residence time of the silica hydrosol 5 to 40 minutes.
The number of silica hydrosols inserted into the chamber was 7, and the overall silica hydrosol processing rate was set at 6, 12, 25, 30, and 40/hr. Subsequently, the organic solvent 32 at a temperature of 80°C in the gelling tower 17, which is transferred upward and circulated by the circulation pipe 33, pump 34 and heater 45, is injected through the nozzle 28 connected at the lower end of each heat exchange tube 23. The mixture was formed into a sphere and gelled in an organic solvent 32. After this, the silica hydrogel precipitated in the water layer 31 at the bottom of the gelling tower 17 is transferred to the three-way joint 3 together with water.
6 into the transport pipe 37, and by operating the pump 40, the water containing the silica hydrogel was sent to the collection net 39, where the silica hydrogel was separated from the water. The solidity and gel state of the silica hydrogels obtained by changing the treatment rate of silica hydrosol into the heat exchanger to 6, 12, 25, 30, and 40/hr were observed. The results are shown in Table 2 below.

【表】 上記第2表中のNo.2のシリカヒドロゲルを水
洗、乾燥したところ、それらの工程で球型シリカ
ヒドロゲルは破砕されることなく、良好な強度を
有する球型シリカゲルを得ることができた。 更に、モル比率が0.931以下であるPH1.5〜2に
対してゲル化に伴なうシリカヒドロゲルの堅固性
を観察すると、加熱温度65℃でゲル化現象が40分
間以内に現われず、90℃付近ではゾルが沸騰して
冷却されてもゼリ状態となり、充分なゲル化がな
されない。 実施例 2 熱交換器の加熱水の温度を75℃、Na2O/
H2SO4のモル比率を0.984シリカヒドロゾルの熱
交換器への処理速度を12,18,25,30/hrと
し、ノズルを光景を変えた以外、実施例1と同様
な方法でシリカヒドロゲルを製造した。 得られた各シリカヒドロゲルの平均粒径を調べ
た。その結果を下記第3表に示した。
[Table] When the silica hydrogel No. 2 in Table 2 above was washed with water and dried, the spherical silica hydrogel was not crushed during these steps, and a spherical silica gel with good strength could be obtained. Ta. Furthermore, when observing the solidity of silica hydrogel accompanying gelation at a pH of 1.5 to 2 with a molar ratio of 0.931 or less, the gelation phenomenon did not appear within 40 minutes at a heating temperature of 65°C, and at 90°C. In the vicinity, the sol boils and becomes gelatinous even when cooled, and sufficient gelation is not achieved. Example 2 The temperature of the heated water in the heat exchanger was set to 75°C, Na 2 O/
The silica hydrogel was prepared in the same manner as in Example 1, except that the molar ratio of H 2 SO 4 was 0.984, the processing rate of the silica hydrosol to the heat exchanger was 12, 18, 25, and 30/hr, and the view of the nozzle was changed. was manufactured. The average particle size of each silica hydrogel obtained was examined. The results are shown in Table 3 below.

【表】 *は乱流でゲルの形態と大きさの差が甚し
い。
上記第3表中のNo.1〜3のシリカヒドロゲルを
水洗、乾燥したところ、それらの工程で球型シリ
カヒドロゲルは破砕されることなく、良好な強度
を有する球型シリカゲルを得ることができた。 [発明の効果] 以上詳述した如く、本発明によれば比較的高い
温度でシリカヒドロゾルを生成することを可能と
して反応物質である水ガラスと硫酸の混合比率を
拡大して流量等の変動が生じてもゲル化塔内で安
定してシリカヒドロゲルを生成でき、ひいてはゲ
ル化塔下部から水と共に取出したシリカヒドロゲ
ルを分離、洗浄、乾燥することにより安定した寸
法で強度の高い球型シリカゲルを簡単かつ量産的
に製造し得る方法、並びにかかる球型シリカゲル
を容易に製造し得る構造が簡単な装置を提供でき
る。
[Table] * indicates turbulent flow, and the difference in gel morphology and size is significant.
When the silica hydrogels Nos. 1 to 3 in Table 3 above were washed with water and dried, the spherical silica hydrogels were not crushed during these steps, and spherical silica gels with good strength could be obtained. . [Effects of the Invention] As detailed above, according to the present invention, it is possible to generate silica hydrosol at a relatively high temperature, and by increasing the mixing ratio of water glass and sulfuric acid, which are reactants, fluctuations in flow rate, etc. Silica hydrogel can be produced stably in the gelation tower even when water is generated, and by separating, washing, and drying the silica hydrogel taken out from the bottom of the gelation tower together with water, it is possible to produce spherical silica gel with stable dimensions and high strength. It is possible to provide a method that can be easily and mass-produced, and an apparatus with a simple structure that can easily manufacture such spherical silica gel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の球型シリカゲルの製造装置を
示す概略図、第2図は第1図のゾル製造器の要部
拡大図、第3図は第1図の熱交換器の拡大図、第
4図は第3図の熱交換器の要部拡大断面図、第5
図はNa2O/H2SO4のモル比とPH及びゲル化時間
との関係を示す特性図である。 1…第1の希釈槽、2…第2の希釈槽、5…ゾ
ル製造器、7…冷却式反応槽、8…撹拌機、10
…バイパス管、11…撹拌用インペラー、12…
噴射口、13…混合ポンプ、17…ゲル化塔、1
8…熱交換器、20…恒温槽、22…本体容器、
23…熱交換チユーブ、25…継手、28…ノズ
ル、31…水層、32…有機溶媒、33…循環
管、35…ヒータ、37…輸送管、39…採集
網。
FIG. 1 is a schematic diagram showing the spherical silica gel manufacturing apparatus of the present invention, FIG. 2 is an enlarged view of the main parts of the sol manufacturing device in FIG. 1, and FIG. 3 is an enlarged view of the heat exchanger in FIG. 1. Figure 4 is an enlarged cross-sectional view of the main parts of the heat exchanger in Figure 3;
The figure is a characteristic diagram showing the relationship between the molar ratio of Na 2 O/H 2 SO 4 and PH and gelation time. 1... First dilution tank, 2... Second dilution tank, 5... Sol manufacturer, 7... Cooling reaction tank, 8... Stirrer, 10
...Bypass pipe, 11...Agitating impeller, 12...
Injection port, 13...Mixing pump, 17...Gelification tower, 1
8... Heat exchanger, 20... Constant temperature bath, 22... Main container,
23... Heat exchange tube, 25... Joint, 28... Nozzle, 31... Water layer, 32... Organic solvent, 33... Circulation pipe, 35... Heater, 37... Transport pipe, 39... Collection network.

Claims (1)

【特許請求の範囲】 1 7〜9規定の硫酸水溶液とSiO2濃度が10〜
16重量%の水ガラスを反応させて少なくとも24時
間の間ゲル化されないPH2〜2.5のシリカヒドロ
ゾルを生成する工程と、このシリカヒドロゾルを
50〜80℃の加熱水が循環される熱交換器に所望時
間滞留するように通過させて熱的熟成を行なう工
程と、ゲル化塔内に底部側の水層と共に収容さ
れ、前記熱交換器より高い温度に維持された有機
溶煤中に前記熱的熟成後のシリカヒドロゾルをノ
ズルを通して噴射して球型、ゲル化を行なう工程
と、ゲル化塔の底部の水層に沈降した球型シリカ
ヒドロゲルを水と共に取出し、分離する工程とを
具備したことを特徴とする球型シリカゲルの製造
方法。 2 7〜9規定の硫酸水溶液とSiO2濃度10〜16
重量%の水ガラスが供給され、少なくとも24時間
の間ゲル化されないPH2〜2.5のシリカヒドロゾ
ルを生成するゾル製造器と、下部に水層が、この
上に有機溶媒が収容されるゲル化塔と、このゲル
化塔の上方に配置され、前記ゾル製造器と連結し
てそのシリカヒドロゾルが供給されると共に前記
ゲル化塔の有機溶媒に熱的熟成後のシリカヒドロ
ゾルを噴射するノズルを有する熱交換器と、前記
ゲル化塔の下部に連結され、球型シリカヒドロゲ
ルを水と共に取出し、輸送する輸送管と、この輸
送管により輸送された水から球型シリカヒドロゲ
ルを分離する手段とを具備したことを特徴とする
球型シリカゲルの製造装置。 3 ゾル製造器は、上部に硫酸供給管が連結され
た水冷式反応槽と、この反応槽内に設けられた撹
拌機と、前記反応槽の下部に三方バルブを介して
連結された循環用バイパス管と、このバイパス管
に介装され、吸入側に撹拌用インペラー、吐出側
に噴射口が夫々に形成された混合ポンプと、この
混合ポンプの吸入側の前記バイパス管に連結され
た水ガラス供給管とから構成されていることを特
徴とする特許請求の範囲第2項記載の球型シリカ
ゲルの製造装置。
[Claims] 1 7-9 normal sulfuric acid aqueous solution and SiO 2 concentration 10-9
reacting 16% by weight of water glass to produce a silica hydrosol with a pH of 2 to 2.5 that does not gel for at least 24 hours;
A step of thermally ripening the heated water at 50 to 80° C. by passing it through a circulating heat exchanger so as to stay there for a desired period of time; A process of injecting the thermally aged silica hydrosol through a nozzle into an organic soot maintained at a higher temperature to form a sphere and gel it, and a process of forming a sphere and gelling it into an aqueous layer at the bottom of the gelation tower. A method for producing spherical silica gel, comprising a step of taking out silica hydrogel together with water and separating it. 2 7-9 normal sulfuric acid aqueous solution and SiO 2 concentration 10-16
A sol maker that is supplied with % water glass and produces a silica hydrosol with a pH of 2 to 2.5 that does not gel for at least 24 hours, and a gelling tower that contains an aqueous layer at the bottom and an organic solvent above it. and a nozzle disposed above the gelling tower, connected to the sol manufacturer to supply the silica hydrosol, and injecting the thermally aged silica hydrosol into the organic solvent of the gelling tower. a heat exchanger having a heat exchanger; a transport pipe connected to the lower part of the gelling tower for taking out and transporting the spherical silica hydrogel together with water; and means for separating the spherical silica hydrogel from the water transported by the transport pipe. An apparatus for producing spherical silica gel, characterized by the following: 3. The sol manufacturer consists of a water-cooled reaction tank with a sulfuric acid supply pipe connected to the upper part, a stirrer installed in the reaction tank, and a circulation bypass connected to the lower part of the reaction tank via a three-way valve. a mixing pump installed in the bypass pipe and having a stirring impeller on the suction side and an injection port on the discharge side, and a water glass supply connected to the bypass pipe on the suction side of the mixing pump. 3. The apparatus for producing spherical silica gel according to claim 2, characterized in that the apparatus is comprised of a tube.
JP61285850A 1986-08-27 1986-11-29 Method and device for manufacturing spherical type silica gel Granted JPS6360105A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019860007121A KR890002546B1 (en) 1986-08-27 1986-08-27 Method and apparatus for production of globular silicagel
KR1986-7121 1986-08-27

Publications (2)

Publication Number Publication Date
JPS6360105A JPS6360105A (en) 1988-03-16
JPH0327485B2 true JPH0327485B2 (en) 1991-04-16

Family

ID=19251947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61285850A Granted JPS6360105A (en) 1986-08-27 1986-11-29 Method and device for manufacturing spherical type silica gel

Country Status (2)

Country Link
JP (1) JPS6360105A (en)
KR (1) KR890002546B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683020B1 (en) * 2005-06-15 2007-02-15 최의섭 Silica sol automatic manufacture equipment
KR101284702B1 (en) * 2011-01-20 2013-07-16 이엔비나노텍(주) Manufacturing device of nanoporous silica using filter media
KR101068107B1 (en) * 2011-03-16 2011-09-27 최성희 Automatic grouting manufacturing appratus and grouting injecting method

Also Published As

Publication number Publication date
KR890002546B1 (en) 1989-07-18
KR880002748A (en) 1988-05-11
JPS6360105A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
CA1197700A (en) Process and apparatus for freezing a liquid medium
US3872217A (en) Process for the manufacture of substantially spherical, silica-containing hydrogels
US3522004A (en) Process and apparatus for producing phosphoric acid from phosphate rock
FI83426C (en) FOERFARANDE FOER KONTINUERLIG FRAMSTAELLNING AV MICROCRYSTALLINE KITOSAN.
US3969266A (en) Microporous membrane process for making concentrated silica sols
US20050142059A1 (en) Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave
CN103159951A (en) Method and apparatus for preparing high temperature nylon
CN108046278A (en) A kind of method that tubular type continuous flow method prepares high specific surface area silica
KR100573343B1 (en) Improved Method for Preparing Low-Concentration Polyaluminosilicate Microgels
JPH0327485B2 (en)
US3503706A (en) Process for manufacturing ammonium polyphosphate
JPS6360104A (en) Method and device for manufacturing spherical type silica gel
CN108910916A (en) A kind of preparation method and its preparation system of ammonium acid fluoride
CA1103248A (en) Process for producing suspensions or solutions of cyanuric chloride in water
US3649175A (en) Treatment of phosphoric acid, process, apparatus and product
JPH0454619B2 (en)
CN212102643U (en) Equipment for three-stage semi-continuous synthesis of bis (trichloromethyl) carbonate
CN106622081A (en) Expandable graphite production device
US3734708A (en) Method for making ammonium phosphate fertilizer
US3330774A (en) Method and apparatus for preparing silica-alumina type spherical hydrogels
CN220412895U (en) Hydrofluoric acid continuous production device
CN206562304U (en) A kind of two fluid sprays method produces the device of nano silicon
CN215783355U (en) Device for continuously producing hydroxyl acetonitrile by using liquid-phase hydrocyanic acid
CN110452186A (en) The charging process and charging (feeding) equipment of solid urea and the production method and process units of melamine
CN206692325U (en) A kind of system of continuous production pulverulent water-soluble APP

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees