JPH0327482B2 - - Google Patents

Info

Publication number
JPH0327482B2
JPH0327482B2 JP57231228A JP23122882A JPH0327482B2 JP H0327482 B2 JPH0327482 B2 JP H0327482B2 JP 57231228 A JP57231228 A JP 57231228A JP 23122882 A JP23122882 A JP 23122882A JP H0327482 B2 JPH0327482 B2 JP H0327482B2
Authority
JP
Japan
Prior art keywords
furnace
carbon
hydrocarbon
present
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57231228A
Other languages
Japanese (ja)
Other versions
JPS59121108A (en
Inventor
Katsuo Shindo
Seiji Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP57231228A priority Critical patent/JPS59121108A/en
Publication of JPS59121108A publication Critical patent/JPS59121108A/en
Publication of JPH0327482B2 publication Critical patent/JPH0327482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高導電性カーボンの製造方法に関す
るものである。 本発明の方法を用いると、合成ガスの製造と同
時に極めて高いDBP吸油量(JIS K−6221に準
拠して測定され、サンプル量9gのカーボンにジ
ブチルフタレートが吸収される量〈ml〉を100g
のカーボン量に換算した値、この値が大きい程導
電性に優れる)を有する極めて優れた高導電性で
かつ灰分の少ないカーボンを収率よく、安定して
得ることができる。 従来から液状炭化水素を原料とする合成ガス製
造方法として部分酸化反応を利用するシエル法、
テキサコ法、フアウザー法などが知られている。
これらの部分酸化法の特徴は、いずれも原料炭化
水素が完全にガス化せず、副反応としてその一部
がカーボンの形で生成ガス中に混入することであ
る。この為、この副生カーボンを能率的に分離
し、如何に有効利用するかが重要な問題となつて
いた。これらの問題を解決すべく各種の試みがな
されており、実質的にカーボンを減少する技術な
どの開発も行われた。通常、経済的な方法とし
て、 リサイクルによる原料としての再利用 ゴム用カーボンとしての利用 等が行われている。しかしこれらの方法はカーボ
ンとして比較的DBP吸油量の低い、価値の低い
ものしか得られなかつた。価値の高い導電性カー
ボンの如きDBP吸油量の大きいカーボンは、得
られたとしても合成ガス製造に影響し、合成ガス
製造の運転が困難になり、経済性が劣るものとな
る。また、合成ガス製造時に副生するカーボン収
率は不安定で、しかも該カーボンの灰分が多く又
DBP吸油量の変動巾は大きく不安定なものであ
つた。 本発明者らは上記問題点を解決し、高導電性の
極めて高いDBP吸油量を有しかつ灰分含有量の
低いカーボンを経済的にかつ合成ガス製造には悪
影響を及ぼすことなく製造することを目的とし
て、原料液状炭化水素の性状、部分酸化法の処理
条件等について詳細に検討を行い本発明を完成し
た。 即ち、本発明は液状炭化水素を炉内において分
子状酸素及び水蒸気で部分酸化反応せしめて合成
ガス化と同時に高導電性カーボンを製造するにあ
たり、該炭化水素がナフサの熱分解副生油であり
かつその炭素原子/水素原子が重量比で12以上で
ありかつ該炉が、炉内温度範囲1300〜1450、炉内
圧力25〜35Kg/cm2、炉内へ供給される水蒸気の量
が該炭化水素1トン当り400〜800Kgの条件で運転
されることを特徴とする高導電性カーボンの製造
方法を提供するものである。 本発明の方法が適用される液状炭化水素を原料
とする部分酸化法は、該炭化水素を炉内で分子状
酸素及び水蒸気と反応せしめて合成ガスを製造す
ると同時にカーボンを副生するシエルガス化プロ
セス、テキサコガス化プロセス等がある。上記プ
ロセスは、例えばシエルガス化プロセスは、若林
幹雄、「重質油のガス化」(燃料協会編、1972年丸
善(株)刊)などにテキサコガス化プロセスは、真田
宏、石油学会誌、15、42〜46(1972)などに記載
されているものである。 本発明の方法を用いて製造される高導電性カー
ボンとは、DBP吸油量が350ml/100g以上、好ま
しくは400〜500ml/100gであり、灰分が0.3wt%
以下と低いものを言い、このカーボンはそれ自身
でも良好な導電性を示すが例えば、ポリ塩化ビニ
ル、ポリエチレン、ポリプロピレン、エチレンと
プロピレンとの共重合体等のポリオレフイン樹
脂、ナイロン、ポリスチレン、ゴム等に混練・混
合して使用する場合、その用いた樹脂等の表面抵
抗率、体積抵抗率を著しく低下させ、灰分が少な
い為得られる導電性材料の品質ムラの少ない優れ
た導電性材料を提供できるもののことを言う。 本発明の方法に用いられる炭素原子/水素原子
の重量比で9以上の液状炭化水素とは、例えばナ
フサの熱分解副生油(エチレンヘビーエンド)、
芳香族系液状炭化水素にカーボンを混合した液状
炭化水素(カーボンオイル)、芳香族系液状系炭
化水素にC重油なでを混合した混合オイルなど
の、元素分析により求めた炭素原子及び水素原子
の重量組成の比(炭素原子/水素原子)が9以上
の、部分酸化炉内へ供給する場合に液状の原料を
総称するものである。これらの中でも特に炭素原
子/水素原子の重量組成の比が12以上の例えばナ
フサの熱分解副生物であるエチレンヘビーエンド
が得られるカーボン中の灰分量を低くできるので
好ましい。炭素原子/水素原子の重量比が9未満
では、該炉内の処理条件を変更してもカーボンの
DBP吸油量が低下したり、又収量が小さくなる
など好ましいカーボンの製造を維持することが難
しい。上記原料の炭素原子/水素原子の重量比が
9以上であつても、固体状となつたり、高粘度の
液状炭化水素又はカーボンオイル等となつて該炉
への供給が困難となるものなどは好ましくない。
即ち、該炉内に供給する原料炭化水素は液状であ
つて供給時に、粘度30cst以下であることが好ま
しい。 本発明の方法は、部分酸化反応を行う炉が炉内
温度範囲が1300〜1450℃、好ましくは1360〜1420
℃、炉内圧力25〜80Kg/cm2、好ましくは25〜35
Kg/cm2、炉内へ供給される水蒸気の量が原料炭化
水素1トン当り400〜800Kg好ましくは450〜600Kg
の条件で運転される。これらの運転条件と前記原
料炭化水素の特徴とを同時に満たすことによつ
て、従来公知の条件では達成し得なかつた優れた
高導電性でしかも灰分の少ないカーボンを収量良
く製造し、しかも合成ガス製造には何ら悪影響を
与えないで製造工程の熱収支上好ましく経済的に
行うことを本発明は達成可能とした。本発明によ
るこの効果は、実用上非常に大きいものであり、
本発明の意義は大きい。 以下に実施例を挙げて本発明を更に具体的に説
明する。 原料液状炭化水素の性状が 初留温度 180〜190℃ 10%留出温度 205〜215℃ 50%留出温度 250〜260℃ 97%留出温度 320〜340℃ 粘 度(80℃) 約10cet 炭素原子/水素原子(重量比) 12.5 なるエチレンヘビーエンドをシエルガス化プロセ
スの炉に使用した。該炉の炉内温度1400℃、炉内
圧力30Kg/cm2で炉内へ供給する水蒸気の量を変化
させて反応させたときの合成ガス組成、カーボン
のDBP吸油量、カーボンの収量を表−1に示す。
The present invention relates to a method for producing highly conductive carbon. Using the method of the present invention, an extremely high DBP oil absorption (measured in accordance with JIS K-6221, the amount of dibutyl phthalate absorbed by a sample of 9 g of carbon (ml) can be reduced to 100 g at the same time as syngas production).
It is possible to stably obtain carbon with excellent high conductivity and low ash content, which has a value converted to the amount of carbon (the larger the value, the better the conductivity). The Shell process, which uses a partial oxidation reaction, has traditionally been used as a synthesis gas production method using liquid hydrocarbons as a raw material.
Known methods include the Texaco method and the Fauser method.
A feature of these partial oxidation methods is that in all of them, the raw material hydrocarbons are not completely gasified, and some of them are mixed into the produced gas in the form of carbon as a side reaction. Therefore, it has become an important problem to efficiently separate this by-product carbon and how to effectively utilize it. Various attempts have been made to solve these problems, including the development of techniques to substantially reduce carbon. Usually, economical methods include reuse as a raw material through recycling, and use as carbon for rubber. However, these methods could only yield carbon with relatively low DBP oil absorption and low value. Even if carbon with a large DBP absorption amount, such as highly valuable conductive carbon, can be obtained, it will affect synthesis gas production, making the operation of synthesis gas production difficult and making it less economical. In addition, the yield of carbon produced as a by-product during synthesis gas production is unstable, and the carbon has a high ash content.
The fluctuation range of DBP oil absorption was large and unstable. The inventors of the present invention have solved the above-mentioned problems and have attempted to produce carbon with high conductivity, extremely high DBP oil absorption, and low ash content economically and without adversely affecting synthesis gas production. For this purpose, the present invention was completed by conducting detailed studies on the properties of raw material liquid hydrocarbons, treatment conditions for partial oxidation, etc. That is, the present invention involves partially oxidizing liquid hydrocarbons with molecular oxygen and water vapor in a furnace to produce highly conductive carbon at the same time as synthesis gasification. and the carbon atom/hydrogen atom weight ratio is 12 or more, and the furnace has an internal temperature range of 1300 to 1450, an internal pressure of 25 to 35 kg/cm 2 , and an amount of steam supplied into the furnace that is within the carbonization range. The present invention provides a method for producing highly conductive carbon, which is characterized in that it is operated under conditions of 400 to 800 kg per ton of hydrogen. The partial oxidation method using liquid hydrocarbon as a raw material to which the method of the present invention is applied is a shell gasification process in which the hydrocarbon is reacted with molecular oxygen and water vapor in a furnace to produce synthesis gas and at the same time carbon is produced as a by-product. , Texaco gasification process, etc. For example, the shell gasification process is described by Mikio Wakabayashi, "Gasification of Heavy Oil" (edited by Japan Fuel Association, published by Maruzen Co., Ltd., 1972), and the Texaco gasification process is described by Hiroshi Sanada, Journal of the Japan Petroleum Institute, 15 . 42-46 (1972), etc. Highly conductive carbon produced using the method of the present invention has a DBP oil absorption of 350 ml/100 g or more, preferably 400 to 500 ml/100 g, and an ash content of 0.3 wt%.
Although this carbon exhibits good conductivity by itself, it can also be used with polyolefin resins such as polyvinyl chloride, polyethylene, polypropylene, copolymers of ethylene and propylene, nylon, polystyrene, rubber, etc. When used by kneading and mixing, the surface resistivity and volume resistivity of the resin etc. used are significantly reduced, and because the ash content is low, it is possible to provide an excellent conductive material with less uneven quality. say something The liquid hydrocarbons having a carbon atom/hydrogen atom weight ratio of 9 or more used in the method of the present invention include, for example, naphtha pyrolysis byproduct oil (ethylene heavy end),
Carbon and hydrogen atoms determined by elemental analysis, such as liquid hydrocarbon (carbon oil) that is a mixture of aromatic liquid hydrocarbon and carbon, and mixed oil that is a mixture of aromatic liquid hydrocarbon and C heavy oil. This is a general term for liquid raw materials with a weight composition ratio (carbon atoms/hydrogen atoms) of 9 or more when supplied to a partial oxidation furnace. Among these, it is particularly preferable because the ash content in the carbon from which ethylene heavy end, which is a byproduct of thermal decomposition of naphtha, for example, having a weight composition ratio of carbon atoms/hydrogen atoms of 12 or more can be obtained, can be reduced. If the weight ratio of carbon atoms/hydrogen atoms is less than 9, even if the processing conditions in the furnace are changed, carbon
It is difficult to maintain the desired carbon production as the DBP oil absorption decreases and the yield decreases. Even if the carbon atom/hydrogen atom weight ratio of the above raw materials is 9 or more, there are cases where it becomes solid or becomes a highly viscous liquid hydrocarbon or carbon oil, which makes it difficult to supply to the furnace. Undesirable.
That is, it is preferable that the raw material hydrocarbon fed into the furnace is in a liquid state and has a viscosity of 30 cst or less at the time of feeding. In the method of the present invention, the furnace for performing the partial oxidation reaction has an internal temperature range of 1300 to 1450°C, preferably 1360 to 1420°C.
°C, furnace pressure 25-80Kg/ cm2 , preferably 25-35
Kg/cm 2 , the amount of steam supplied into the furnace is 400 to 800 Kg, preferably 450 to 600 Kg per ton of raw material hydrocarbon.
It is operated under the following conditions. By satisfying these operating conditions and the characteristics of the feedstock hydrocarbon at the same time, carbon with excellent high conductivity and low ash content, which could not be achieved with conventionally known conditions, can be produced in good yield, and moreover, it can be produced using synthetic gas. The present invention has made it possible to perform the manufacturing process favorably and economically in terms of heat balance without any adverse effect on the manufacturing process. This effect of the present invention is extremely large in practice,
The significance of the present invention is great. The present invention will be explained in more detail with reference to Examples below. The properties of the raw material liquid hydrocarbon are initial distillation temperature 180-190℃ 10% distillation temperature 205-215℃ 50% distillation temperature 250-260℃ 97% distillation temperature 320-340℃ Viscosity (80℃) Approximately 10cet Carbon Ethylene heavy end with an atom/hydrogen atom (weight ratio) of 12.5 was used in the furnace of the shell gasification process. The table shows the synthesis gas composition, carbon DBP oil absorption, and carbon yield when the reactor was reacted with an internal temperature of 1400°C and an internal pressure of 30 kg/cm 2 by varying the amount of steam supplied to the furnace. Shown in 1.

【表】 次に、上述の例に用いた同じシエル炉で、炉内
温度1400℃、炉内圧力30Kg/cm2、炉内へ供給する
水蒸気の量を原料炭化水素1トン当り550Kg(ス
チーム比と記すことがある)とした時、原料炭化
水素の炭素原子/水素原子(重量比)を変化させ
て反応させた。その結果は表−2の通りであつ
た。
[Table] Next, using the same shell furnace used in the above example, the temperature inside the furnace is 1400℃, the pressure inside the furnace is 30Kg/cm 2 , and the amount of steam supplied to the furnace is 550Kg per ton of feedstock hydrocarbon (steam ratio ), the reaction was carried out by changing the carbon atom/hydrogen atom (weight ratio) of the raw material hydrocarbon. The results were as shown in Table-2.

【表】 次に、炭素原子/水素原子(重量比)が12.5の
炭化水素を原料とし、上記例と同じシエル炉で炉
内に供給する水蒸気の量を該原料1トン当り550
Kgと一定とした時、炉内温度又は炉内圧力を変化
させて反応させた。結果は表−3の通りであつ
た。
[Table] Next, using a hydrocarbon with a carbon atom/hydrogen atom (weight ratio) of 12.5 as a raw material, the amount of steam supplied to the furnace in the same shell furnace as in the above example is 550% per ton of the raw material.
When Kg was kept constant, the reaction was performed by changing the temperature or pressure inside the furnace. The results were as shown in Table 3.

【表】 上記例から、本発明の方法を用いれば極めて高
いDBP吸収量を有する高導電性カーボンを収率
よく、合成ガス製造には何ら影響を与えることな
く安定して得ることができる。
[Table] From the above examples, it is clear that by using the method of the present invention, highly conductive carbon having an extremely high DBP absorption amount can be stably obtained in good yield without any effect on synthesis gas production.

Claims (1)

【特許請求の範囲】 1 液状炭化水素を炉内において分子状酸素及び
水蒸気で部分酸化反応せしめて合成ガス化と同時
に高導電性カーボンを製造するにあたり、該炭化
水素がナフサの熱分解副生油でありかつその炭素
原子/水素原子が重量比で12以上でありかつ該炉
が、炉内温度範囲1300〜1450℃、炉内圧力25〜35
Kg/cm2、炉内へ供給される水蒸気の量が該炭化水
素1トン当り400〜800Kgの条件で運転されること
を特徴とする高導電性カーボンの製造方法。 2 該炉がシエル炉である特許請求の範囲第1項
記載の方法。
[Claims] 1. When liquid hydrocarbons are subjected to a partial oxidation reaction with molecular oxygen and water vapor in a furnace to produce highly conductive carbon at the same time as synthesis gasification, the hydrocarbons are a by-product oil of naphtha thermal decomposition. and the carbon atom/hydrogen atom weight ratio is 12 or more, and the furnace has an internal temperature range of 1300 to 1450°C and an internal pressure of 25 to 35°C.
Kg/cm 2 , and the amount of steam supplied into the furnace is 400 to 800 Kg per ton of the hydrocarbon. 2. The method according to claim 1, wherein the furnace is a shell furnace.
JP57231228A 1982-12-27 1982-12-27 Production of carbon having high electrical conductivity Granted JPS59121108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231228A JPS59121108A (en) 1982-12-27 1982-12-27 Production of carbon having high electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231228A JPS59121108A (en) 1982-12-27 1982-12-27 Production of carbon having high electrical conductivity

Publications (2)

Publication Number Publication Date
JPS59121108A JPS59121108A (en) 1984-07-13
JPH0327482B2 true JPH0327482B2 (en) 1991-04-16

Family

ID=16920323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231228A Granted JPS59121108A (en) 1982-12-27 1982-12-27 Production of carbon having high electrical conductivity

Country Status (1)

Country Link
JP (1) JPS59121108A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943078A (en) * 1972-08-30 1974-04-23
JPS5067804A (en) * 1973-10-16 1975-06-06
JPS5543103A (en) * 1978-09-19 1980-03-26 Texaco Development Corp Power generation and simultaneous production of synthetic gas consisting of h2 and co
JPS5710156A (en) * 1980-06-20 1982-01-19 Fuji Xerox Co Ltd Paper supply device of copying machine or the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4943078A (en) * 1972-08-30 1974-04-23
JPS5067804A (en) * 1973-10-16 1975-06-06
JPS5543103A (en) * 1978-09-19 1980-03-26 Texaco Development Corp Power generation and simultaneous production of synthetic gas consisting of h2 and co
JPS5710156A (en) * 1980-06-20 1982-01-19 Fuji Xerox Co Ltd Paper supply device of copying machine or the like

Also Published As

Publication number Publication date
JPS59121108A (en) 1984-07-13

Similar Documents

Publication Publication Date Title
US4340577A (en) Process for producing carbon black
US3957460A (en) Oxidation of coal-water slurry feed to hydrogasifier
JPS623879B2 (en)
US4076612A (en) Process for obtaining liquid fuel-oil and/or gaseous hydrocarbons from solid carbonaceous feed stocks
JPS59152992A (en) Thermal decomposition for producing olefin from hydrocarbon
US3097082A (en) Gasification of hydrocarbon fuel oils
JPS6060912A (en) Manufacture of electrically conductive carbon
US4191700A (en) Synthetic liquid fuels
JPH0327482B2 (en)
US2447004A (en) Sulfo compositions and their method of manufacture
US4025318A (en) Gasification of hydrocarbon feedstocks
JPS60197763A (en) Resistor containing carbon black blended therewith
JPS55145791A (en) Reforming of coal
US2698782A (en) Preparation of motor gasoline from carbonaceous feed material
EP0059772B1 (en) Crude oil cracking using partial combustion gases
US2217250A (en) Production of oil gas
CA1205632A (en) Synthesis gas production process
CA1073211A (en) Process for the preparation of synthesis gas
Ginter et al. Factors affecting the reactivity of chars and cokes during low-temperature (640. degree. C) steam gasification
US3954599A (en) Process for producing cracked gas and cracked oil from heavy hydrocarbons
JPS6065064A (en) Composition containing highly electrically conductive carbon black
CA1212968A (en) Thermal cracking process for producing olefins and synthetic gas from hydrocarbons
JPS6197364A (en) Production of highly electrically conductive carbon black
US3704332A (en) Pyrolysis of hydrocarbons
JPS593401B2 (en) Kangen gas no seizouhouhou