JPH03274680A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH03274680A
JPH03274680A JP2073296A JP7329690A JPH03274680A JP H03274680 A JPH03274680 A JP H03274680A JP 2073296 A JP2073296 A JP 2073296A JP 7329690 A JP7329690 A JP 7329690A JP H03274680 A JPH03274680 A JP H03274680A
Authority
JP
Japan
Prior art keywords
ions
zinc
electrolyte
battery
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2073296A
Other languages
Japanese (ja)
Inventor
Kenichi Takahashi
健一 高橋
Hajime Sudo
一 須藤
Masanori Ichida
正典 市田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2073296A priority Critical patent/JPH03274680A/en
Publication of JPH03274680A publication Critical patent/JPH03274680A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent dendrite short and prevent the deterioration of a negative pole, and prevent the drop of the activity of MnO2 so as to improve cycle life, capacity, and output by making electrolyte contain Mn ions and carboxyl anions. CONSTITUTION:In a secondary battery where MnO2, as positive electrode substance, zinc sulfate aqueous solution, as electrolyte, and Zn, a negative pole active substance, are used, Mn ions and carboxyl anions are contained in the electrolyte. As the carboxyl ions, acetic acid ions, formic acid ions, or the like can be used. It is to be desired that the ions other than sulfuric acid ions, acetic acid ions, Mn ions, and Zn ions should not exist. It is to be desired that the concentrations of the Mn ions and carboxyl anions should be, though depending upon the concentration of sulfuric acid Zn, within 0.01 to 1M, respectively.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は正極活物質に二酸化マンガン、電解液として硫
酸亜鉛水溶液、負極活物質に亜鉛を用いる二次電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a secondary battery using manganese dioxide as a positive electrode active material, an aqueous zinc sulfate solution as an electrolyte, and zinc as a negative electrode active material.

[従来の技術] 電池は電子機器や電気機器の電源として広く用いられて
いる。最近、各種電気機器および電子機器の小型高性能
化、ポータプル化、パーソナル化に伴い、長時間使用で
き、しかも経済的な二次電池の需要が急増している。
[Prior Art] Batteries are widely used as power sources for electronic and electrical equipment. BACKGROUND ART Recently, as various electrical and electronic devices have become smaller and more sophisticated, portable, and personalized, the demand for economical secondary batteries that can be used for a long time has been rapidly increasing.

従来、この種の分野ではニッケル・カドミウム二次電池
が商品化され、さらにアルカリ亜鉛二次電池などが研究
されている。特に、負極活物質に亜鉛を用いるアルカリ
亜鉛二次電池は、エネルギー密度が大きく、安価で経済
性に優れているという利点を有する。
Hitherto, in this type of field, nickel-cadmium secondary batteries have been commercialized, and alkaline zinc secondary batteries are also being researched. In particular, an alkaline zinc secondary battery using zinc as a negative electrode active material has the advantages of high energy density, low cost, and excellent economic efficiency.

しかし、アルカリ亜鉛二次電池は、亜鉛極の特性劣化が
大きく、サイクル寿命が短いという欠点を有するため、
未だ商品化されていない。
However, alkaline zinc secondary batteries have the drawbacks of large deterioration of the zinc electrode characteristics and short cycle life.
It has not been commercialized yet.

また最近では、正極活物質に二酸化マンガン、負極活物
質に亜鉛を用いる電池において、電解液に硫酸亜鉛水溶
液を用いることによって、二次電池として使用できるこ
とが明らかになっている(例えば、特開昭61−248
370号を参照)。
In addition, it has recently become clear that a battery that uses manganese dioxide as the positive electrode active material and zinc as the negative electrode active material can be used as a secondary battery by using a zinc sulfate aqueous solution as the electrolyte (for example, 61-248
370).

この系の二次電池は、アルカリ亜鉛二次電池と同様にエ
ネルギー密度が大きく、安価で経済性に優れているとい
う利点を有する。
This type of secondary battery has the advantages of high energy density, low cost, and excellent economic efficiency, similar to alkaline zinc secondary batteries.

しかし、この系の二次電池も負極活物質として亜鉛を用
いているため、亜鉛極の表面状態の微妙な違いにより、
充電・放電の繰り返しに伴って亜鉛のデンドライト状(
樹脂状)の結晶が生成して正極方向へ成長じて、最終的
にはセパレーターを貫通して内部短絡(デンドライトシ
ョート)を起こし、負極の劣化が生ずるという問題があ
った。
However, since this type of secondary battery also uses zinc as the negative electrode active material, due to subtle differences in the surface condition of the zinc electrode,
With repeated charging and discharging, zinc dendrites (
There was a problem in that crystals (resin-like) were formed and grew toward the positive electrode, eventually penetrating the separator and causing an internal short circuit (dendritic short), resulting in deterioration of the negative electrode.

さらに、この系の二次電池は、充電・放電の繰り返しに
伴って、正極における二酸化マンガンの電気化学的反応
が低下し、二次電池のサイクル寿命が短くなるという問
題があった。
Furthermore, this type of secondary battery has a problem in that the electrochemical reaction of manganese dioxide at the positive electrode decreases with repeated charging and discharging, resulting in a shortened cycle life of the secondary battery.

[発明が解決しようとする課題] 本発明の目的は、負極活物質に亜鉛を用いる二次電池に
おけるデンドライトショートを防止することで負極の劣
化を防止し、さらに、充電・放電の繰り返しに伴って起
こる二酸化マンガンの電気化学的活性度の低下を防ぐこ
とによって、サイクル寿命が長く、高容量および高出力
の二次電池を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to prevent deterioration of the negative electrode by preventing dendrite short circuit in secondary batteries that use zinc as the negative electrode active material, and to prevent deterioration of the negative electrode due to repeated charging and discharging. The object of the present invention is to provide a secondary battery with a long cycle life, high capacity, and high output by preventing the electrochemical activity of manganese dioxide from decreasing.

[課題を解決するための手段] 本発明者らは、上記課題を解決するために鋭意検討を行
った結果、正極活物質として二酸化マンガン、電解質と
して硫酸亜鉛、負極活物質として亜鉛を用いる弱酸性系
二次電池において、電解液中にマンガンイオンおよびカ
ルボキシルアニオンを含有させることにより、上記の課
題を解決できることを見出し本発明を完成するに至った
ものである。すなわち、本発明は、正極活物質として二
酸化マンガン、電解液として硫酸亜鉛水溶液、負極活物
質として亜鉛を用いる二次電池において、電解液中にマ
ンガンイオンおよびカルボキシルアニオンを含有するこ
とを特徴とする二次電池である。
[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have developed a weakly acidic solution using manganese dioxide as a positive electrode active material, zinc sulfate as an electrolyte, and zinc as a negative electrode active material. The present inventors have discovered that the above-mentioned problems can be solved by incorporating manganese ions and carboxyl anions into the electrolyte of the secondary battery, and have completed the present invention. That is, the present invention provides a secondary battery using manganese dioxide as a positive electrode active material, a zinc sulfate aqueous solution as an electrolyte, and zinc as a negative electrode active material, which is characterized in that the electrolyte contains manganese ions and carboxyl anions. Next battery.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の二次電池の電解液は硫酸亜鉛を主たる電解質と
し、該水溶液にマンガンイオンおよびカルボキシルアニ
オンが共存するような塩を添加溶解することにより作製
される。このような塩としては、例えば、マンガンイオ
ンは酢酸塩、硫酸塩として、一方、カルボキシルアニオ
ンはマンガン塩、亜鉛塩として添加することがあげられ
るがこれらに限定されるものではない。ここにカルボキ
シルアニオンとしては酢酸イオンや蟻酸イオン等があげ
られる。なお、二酸化マンガンの電気化学的活性度の低
下や亜鉛の析出・溶解の効率の低下をさらに防ぎ、かつ
繰り返し安定性が低下するのをさらに防ぐためには、電
解液中には硫酸イオン、酢酸イオン、マンガンイオンお
よび亜鉛イオン以外のイオンがないことが好ましいので
、電解液には硫酸マンガンと酢酸亜鉛との両方を添加す
ること、または、酢酸マンガンを添加することが好まし
い。主たる電解質である硫酸亜鉛は、0.5Mから飽和
の間の任意の濃度でよいが、取り出し電流および取り出
し容量が大きいことなどの理由から2M以上であること
が好ましい。また、マンガンイオン、カルボキシルアニ
オンの濃度は、硫酸亜鉛の濃度にもよるが、それぞれ0
.01MからIMの間であることが好ましい。0.01
M未満であるとマンガンイオン、カルボキシルアニオン
添加の効果がほとんどないおそれがあり、一方、2Mを
超えると硫酸亜鉛の溶解度が低下し電解液中に存在する
亜鉛イオンの濃度が小さくなって充電電圧の上昇をもた
らし、溶媒である水を分解し、繰り返し安定性が低下す
るおそれがある。さらに、マンガンイオンが低い過電圧
で充電酸化され、また、カルボキシルアニオンは電解液
の水素イオン濃度を一定に保つためには、電解液中のマ
ンガンイオンとカルボキシルアニオンのモル比が1:5
から5=4の間に調整されていることが好ましい。
The electrolytic solution for the secondary battery of the present invention uses zinc sulfate as the main electrolyte, and is prepared by adding and dissolving a salt in which manganese ions and carboxyl anions coexist in the aqueous solution. Examples of such salts include, but are not limited to, adding manganese ions as acetates and sulfates, and adding carboxyl anions as manganese salts and zinc salts. Examples of carboxyl anions include acetate ions and formate ions. In addition, in order to further prevent a decrease in the electrochemical activity of manganese dioxide and a decrease in the efficiency of zinc precipitation and dissolution, as well as to further prevent a decrease in repeated stability, sulfate ions and acetate ions are added to the electrolyte. Since it is preferable that there be no ions other than manganese ions and zinc ions, it is preferable to add both manganese sulfate and zinc acetate or to add manganese acetate to the electrolytic solution. The concentration of zinc sulfate, which is the main electrolyte, may be at any concentration between 0.5M and saturation, but it is preferably 2M or more for reasons such as large extraction current and extraction capacity. In addition, the concentration of manganese ion and carboxyl anion depends on the concentration of zinc sulfate, but each is 0.
.. Preferably, it is between 01M and IM. 0.01
If it is less than M, the effect of adding manganese ions and carboxyl anions may be negligible, while if it exceeds 2M, the solubility of zinc sulfate will decrease and the concentration of zinc ions present in the electrolyte will decrease, resulting in a decrease in the charging voltage. This may lead to increase in the amount of water, decompose the solvent water, and reduce cyclic stability. Furthermore, in order for manganese ions to be charged and oxidized at a low overvoltage, and for carboxyl anions to maintain a constant hydrogen ion concentration in the electrolyte, the molar ratio of manganese ions and carboxyl anions in the electrolyte should be 1:5.
It is preferable that the adjustment is made between 5=4.

本発明の二次電池の負極活物質として用いられる亜鉛は
特に限定されるものではないが、その純度は99%以上
のものであることが好ましい。また、その形状は特に限
定するものではないが、亜鉛極の有効電極表面積は大き
いことが好ましいので、粒状亜鉛あるいは電解により析
出させた亜鉛極を用いることが好ましい。
Zinc used as the negative electrode active material of the secondary battery of the present invention is not particularly limited, but preferably has a purity of 99% or more. Further, although the shape is not particularly limited, it is preferable that the effective electrode surface area of the zinc electrode is large, so it is preferable to use granular zinc or a zinc electrode deposited by electrolysis.

本発明の二次電池の正極活物質として用いられる二酸化
マンガンとしては、天然二酸化マンガン、化学二酸化マ
ンガン、電解二酸化マンガンなどがあげられるが、この
うち電池の正極活物質として活性の高い電解二酸化マン
ガンを用いることが好ましい。また、これらの二酸化マ
ンガンはそのまま用いることもできるが、アセチレンブ
ラックなどの導電性炭素粉末を混合して用いれば、導電
性の向上や電解液の保持性の向上を図ることができるの
で好ましい。さらに、このような正極活物質をプレス成
型して正極としたり、スクリーン印刷などの方法により
薄膜とし、任意形状の正極とするために、これらの正極
活物質に結着剤などを混合してもよい。
Examples of manganese dioxide used as the positive electrode active material of the secondary battery of the present invention include natural manganese dioxide, chemical manganese dioxide, and electrolytic manganese dioxide. It is preferable to use Further, although these manganese dioxides can be used as they are, it is preferable to use them in combination with conductive carbon powder such as acetylene black, since it is possible to improve the conductivity and the retention of the electrolyte. Furthermore, these positive electrode active materials can be press-molded into a positive electrode, or made into a thin film by a method such as screen printing, and a binder or the like can be mixed with these positive electrode active materials in order to create a positive electrode in an arbitrary shape. good.

[実施例] 本発明をさらに詳細に説明するために以下に実施例をあ
げるが、本発明はこれらに限定されるものではない。
[Examples] Examples are given below to explain the present invention in more detail, but the present invention is not limited thereto.

実施例1 1gの電解二酸化マンガンと0.1gのケッチエンブラ
ックからなる正極合剤、ガラス繊維製濾紙からなるセパ
レーター、そして純度99%の亜鉛板からなる負極を用
いて第1図に示すセルを作製した。これに電解液として
2Mの硫酸亜鉛および0.5Mの酢酸マンガンからなる
水溶液3rrlを滴下含浸させ、電池を作製した。
Example 1 The cell shown in Figure 1 was constructed using a positive electrode mixture consisting of 1 g of electrolytic manganese dioxide and 0.1 g of Ketchen Black, a separator made of glass fiber filter paper, and a negative electrode made of a 99% pure zinc plate. Created. This was impregnated with 3rrl of an aqueous solution consisting of 2M zinc sulfate and 0.5M manganese acetate as an electrolytic solution dropwise to produce a battery.

上記のようにして作製した電池の放電試験を25℃で、
放電終止電圧は0.3Vとし、10mAの定電流にて行
なった。放電後、10mAで充電電圧が1.9vになる
まで充電を行なった。
A discharge test of the battery prepared as described above was carried out at 25°C.
The discharge end voltage was 0.3V, and the discharge was carried out at a constant current of 10mA. After discharging, charging was performed at 10 mA until the charging voltage reached 1.9 V.

この放電・充電の操作を1サイクルとして、電池のサイ
クル寿命試験を行ない、電池容量のサイクル変化を調べ
た。その結果を表1に示す。
A cycle life test of the battery was performed using this discharging/charging operation as one cycle, and cycle changes in battery capacity were investigated. The results are shown in Table 1.

実施例2 電解液として2Mの硫酸亜鉛、0.2Mの酢酸亜鉛およ
び0.5Mの硫酸マンガンからなる水溶液を用いた以外
は実施例1と同様にして電池を作製した。そして、この
電池について実施例1と同様の条件の下でサイクル寿命
試験を行ない、電池容量のサイクル変化を調べた。その
結果を表1に合わせて示す。
Example 2 A battery was produced in the same manner as in Example 1, except that an aqueous solution consisting of 2M zinc sulfate, 0.2M zinc acetate, and 0.5M manganese sulfate was used as the electrolyte. A cycle life test was then conducted on this battery under the same conditions as in Example 1, and cycle changes in battery capacity were investigated. The results are also shown in Table 1.

実施例3 電解液として2Mの硫酸亜鉛、0.5Mの酢酸亜鉛およ
び0.2Mの硫酸マンガンからなる水溶液を用いた以外
は実施例1と同様にして電池を作製した。そして、この
電池について実施例1と同様の条件の下でサイクル寿命
試験を行ない、電池容量のサイクル変化を調べた。その
結果を表1に合わせて示す。
Example 3 A battery was produced in the same manner as in Example 1 except that an aqueous solution consisting of 2M zinc sulfate, 0.5M zinc acetate, and 0.2M manganese sulfate was used as the electrolyte. A cycle life test was then conducted on this battery under the same conditions as in Example 1, and cycle changes in battery capacity were investigated. The results are also shown in Table 1.

実施例4 電解液として2Mの硫酸亜鉛および0.5Mの蟻酸マン
ガンからなる水溶液を用いた以外は実施例1と同様にし
て電池を作製した。そして、この電池について実施例1
と同様の条件の下でサイクル寿命試験を行ない、電池容
量のサイクル変化を調べた。その結果を表1に合わせて
示す。
Example 4 A battery was produced in the same manner as in Example 1 except that an aqueous solution consisting of 2M zinc sulfate and 0.5M manganese formate was used as the electrolyte. Example 1 for this battery
A cycle life test was conducted under the same conditions as above, and the cycle change in battery capacity was investigated. The results are also shown in Table 1.

実施例5 電解液として2Mの硫酸亜鉛、0.5Mの蟻酸亜鉛およ
び0.2Mの硫酸マンガンからなる水溶液を用いた以外
は実施例1と同様にして電池を作製した。そして、この
電池について実施例1と同様の条件の下でサイクル寿命
試験を行ない、電池容量のサイクル変化を調べた。その
結果を表1に合わせて示す。
Example 5 A battery was produced in the same manner as in Example 1 except that an aqueous solution consisting of 2M zinc sulfate, 0.5M zinc formate, and 0.2M manganese sulfate was used as the electrolyte. A cycle life test was then conducted on this battery under the same conditions as in Example 1, and cycle changes in battery capacity were investigated. The results are also shown in Table 1.

実施例6 5mgの電解二酸化マンガンと2.5mgのケッチエン
ブラックを充分に混合し、サンプルを作製した。これを
第2図に示したセルに入れ、対極を純度99%の亜鉛板
、参照極を飽和塩化ナトリウムカロメル電極とし、2M
の硫酸亜鉛および0゜5Mの酢酸マンガンを含む電解液
中で、室温において二酸化マンガンのサイクリックポル
タモグラムを調べた。得られたポルタモグラムを0,6
Vから−0,1v対飽和塩化ナトリウムカロメル電極ま
での電位範囲で4図式積分することによって見積もられ
た二酸化マンガンの還元電気量と繰り返し回数との関係
を第3図に示す。
Example 6 A sample was prepared by sufficiently mixing 5 mg of electrolytic manganese dioxide and 2.5 mg of Ketchen Black. This was placed in the cell shown in Figure 2, the counter electrode was a 99% pure zinc plate, the reference electrode was a saturated sodium chloride calomel electrode, and 2M
The cyclic portammogram of manganese dioxide was investigated at room temperature in an electrolyte containing 0.5M zinc sulfate and 0.5M manganese acetate. The obtained portamogram is 0.6
FIG. 3 shows the relationship between the amount of reduction electricity of manganese dioxide and the number of repetitions, estimated by four-diagram integration in the potential range from V to -0.1 V versus a saturated sodium chloride calomel electrode.

比較例1 電解液として2Mの硫酸亜鉛のみからなる水溶液を用い
た以外は実施例1と同様にして電池を作製した。そして
、この電池について実施例1と同様の条件の下でサイク
ル寿命試験を行ない、電池容量のサイクル変化を調べた
。その結果を表1に合わせて示す。この結果、電池のサ
イクル容量低下は、正極活物質の活性度の低下と負極の
デンドライト発生による電極の脱落であることがわかっ
た。
Comparative Example 1 A battery was produced in the same manner as in Example 1 except that an aqueous solution consisting only of 2M zinc sulfate was used as the electrolyte. A cycle life test was then conducted on this battery under the same conditions as in Example 1, and cycle changes in battery capacity were investigated. The results are also shown in Table 1. As a result, it was found that the decrease in the cycle capacity of the battery was caused by the decrease in the activity of the positive electrode active material and the detachment of the electrode due to the generation of dendrites in the negative electrode.

比較例2 電解液として2Mの硫酸亜鉛を用いた以外は実施例6と
同様のセルを構成し、そのサイクリックポルタモグラム
を調べ、二酸化マンガンの繰り返し安定性を調べた。そ
の結果を第3図に合わせて示す。
Comparative Example 2 A cell similar to that of Example 6 was constructed except that 2M zinc sulfate was used as the electrolyte, and its cyclic portamogram was examined to examine the cyclic stability of manganese dioxide. The results are also shown in FIG.

[発明の効果コ 以上の説明から明らかなように、本発明によれば、デン
ドライトショートを防止して負極の劣化を防止すること
ができ、さらに、充電・放電の繰り返しに伴って起こる
二酸化マンガンの電気化学的活性度の低下を防止するこ
とができるので、サイクル寿命を長くすることができ、
かつ高容量および高出力の二次電池を得ることができる
。しかも、この二次電池は電解液中にマンガンイオンを
含むために過充電にも強い電池となる。
[Effects of the Invention] As is clear from the above explanation, according to the present invention, it is possible to prevent dendrite short circuit and deterioration of the negative electrode, and furthermore, it is possible to prevent deterioration of the negative electrode due to repeated charging and discharging. Since it is possible to prevent a decrease in electrochemical activity, cycle life can be extended,
In addition, a secondary battery with high capacity and high output can be obtained. Moreover, since this secondary battery contains manganese ions in the electrolyte, it is resistant to overcharging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で用いた試験セルの断面を示す図、第
2図は実施例6で用いたセルの断面を示す図、第3図は
二酸化マンガンの還元電気量と繰り返し回数との関係を
示す図である。 図において、番号は以下のものを示す。 1・・・セル外装、2・・・正極集電体、3・・・正極
合剤、4・・・ガラスセパレータ、5・・・負極、6・
・・負極集電体、7・・・正極端子、8・・・負極端子
、9・・・スペーサ、10・・・正極集電体、11・・
・テフロンセル、12・・・サンプル、13・・・ガラ
スセパレータ、14・・・キャピラリー
Figure 1 is a diagram showing a cross section of the test cell used in Example 1, Figure 2 is a diagram showing a cross section of a cell used in Example 6, and Figure 3 is a diagram showing the relationship between the amount of electricity reduced and the number of repetitions of manganese dioxide. It is a figure showing a relationship. In the figures, the numbers indicate the following: DESCRIPTION OF SYMBOLS 1... Cell exterior, 2... Positive electrode current collector, 3... Positive electrode mixture, 4... Glass separator, 5... Negative electrode, 6...
... Negative electrode current collector, 7... Positive electrode terminal, 8... Negative electrode terminal, 9... Spacer, 10... Positive electrode current collector, 11...
・Teflon cell, 12...sample, 13...glass separator, 14...capillary

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質として二酸化マンガン、電解液として
硫酸亜鉛水溶液、負極活物質として亜鉛を用いる二次電
池において、電解液中にマンガンイオンおよびカルボキ
シルアニオンを含有することを特徴とする二次電池。
(1) A secondary battery using manganese dioxide as a positive electrode active material, a zinc sulfate aqueous solution as an electrolyte, and zinc as a negative electrode active material, characterized in that the electrolyte contains manganese ions and carboxyl anions.
JP2073296A 1990-03-26 1990-03-26 Secondary battery Pending JPH03274680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2073296A JPH03274680A (en) 1990-03-26 1990-03-26 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2073296A JPH03274680A (en) 1990-03-26 1990-03-26 Secondary battery

Publications (1)

Publication Number Publication Date
JPH03274680A true JPH03274680A (en) 1991-12-05

Family

ID=13514060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2073296A Pending JPH03274680A (en) 1990-03-26 1990-03-26 Secondary battery

Country Status (1)

Country Link
JP (1) JPH03274680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547964A (en) * 2019-09-11 2022-11-16 中国科学院大▲連▼化学物理研究所 Neutral zinc manganese secondary battery and electrolyte
WO2023234283A1 (en) * 2022-06-01 2023-12-07 国立大学法人山口大学 Aqueous electrolytic liquid and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547964A (en) * 2019-09-11 2022-11-16 中国科学院大▲連▼化学物理研究所 Neutral zinc manganese secondary battery and electrolyte
WO2023234283A1 (en) * 2022-06-01 2023-12-07 国立大学法人山口大学 Aqueous electrolytic liquid and secondary battery

Similar Documents

Publication Publication Date Title
JP4605989B2 (en) Positive and negative interaction electrode formulations for zinc-containing cells with alkaline electrolyte
JP2000077093A (en) Zinc sulfate (ii) aqueous solution secondary battery added with manganese salt (ii) and carbon powder
US8968925B2 (en) Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
US4869977A (en) Electrolyte additive for lithium-sulfur dioxide electrochemical cell
KR20000001242A (en) Secondary cell with zinc sulfate aqueous solution
CN113270577B (en) Aqueous zinc ion battery and positive electrode material
CN105140575A (en) High voltage battery containing aqueous electrolyte
CN112960703A (en) Preparation method of lithium ion battery anode core-shell material with concentration gradient
JP2009094034A (en) Aqueous lithium secondary battery
JP2008053222A (en) Nickel hydroxide powder, nickel oxyhydroxide powder, manufacturing method of these and alkaline dry battery
KR100301091B1 (en) Zinc Sulfate Aqueous Secondary Battery with Manganese (II) Salt
JPH03274680A (en) Secondary battery
CN108511812A (en) A kind of mixing water system lithium cell electrolyte solution and preparation method
CN114243127A (en) Aqueous electrolyte with low dissolved oxygen, preparation method thereof and aqueous ion battery
JP3004431B2 (en) Zinc anode active material
US20210408610A1 (en) High voltage rechargeable Zn-MnO2 battery
KR100276965B1 (en) Zinc sulfate (II) aqueous solution secondary battery containing manganese salt (II) and carbon powder
CA1055566A (en) Load leveling battery device
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
CN113299937B (en) Method for recycling waste zinc-manganese dry batteries and directly using waste zinc-manganese dry batteries in rechargeable zinc-manganese batteries
JP6813016B2 (en) Alkaline batteries and electrolytes for alkaline batteries
JPWO2010004718A1 (en) Electrolytic manganese dioxide for lithium primary battery, production method thereof and lithium primary battery using the same
JPH0384868A (en) Secondary cell
JPH02177269A (en) Battery
CN117638259A (en) Aqueous zinc ion half-cell electrolyte, full-cell electrolyte and aqueous zinc ion battery