JPH03274427A - Spectroscope - Google Patents

Spectroscope

Info

Publication number
JPH03274427A
JPH03274427A JP7751290A JP7751290A JPH03274427A JP H03274427 A JPH03274427 A JP H03274427A JP 7751290 A JP7751290 A JP 7751290A JP 7751290 A JP7751290 A JP 7751290A JP H03274427 A JPH03274427 A JP H03274427A
Authority
JP
Japan
Prior art keywords
light
monitoring
negative high
photomultiplier tube
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7751290A
Other languages
Japanese (ja)
Inventor
Shiro Tsuji
史郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7751290A priority Critical patent/JPH03274427A/en
Publication of JPH03274427A publication Critical patent/JPH03274427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To measure at the high S/N even when the luminance of an exciting light to be monitored or an illuminating light is high by providing an extinction element with variable extinction rate at an optical path of an incident light entering a monitoring photomultiplier and, monitoring the impressed negative high pressure. CONSTITUTION:An exciting light 5 from an exciting spectroscope 6 is incident upon a flow cell 14 to which a liquid from a column for liquid chromatograph is guided. A fluorescent light 15 generated when a sample flowing in the flow cell 14 is excited by the exciting light 5 is incident upon a fluorescent spectroscope 16. The fluorescent light coming out from an exit slit 21 is detected by a measuring photomultiplier 22. In order to monitor the change of the luminance of a light source, a beam splitter 24 is provided at the optical axis of the exciting light 5 of the the exciting spectroscope 6. A part 5a of the separated exciting light 5 enters and is detected by a monitoring photomultiplier 28 through an extinction element 26 having variable extinction rate. If the element 26 is manually adjusted or is made automatically adjustable while the negative high pressure impressed to the photomultipliers 22, 28 is monitored, the impressed negative pressure can be raised nearly to a normal value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光源輝度の変化を補正しながら設定波長の励起
光による蛍光強度変動をモニタする液体クロマトグラフ
用などの蛍光モニタや、電気泳動ゲルの蛍光測定器など
の分光装置に関し、とくに光検出器として試料測定用光
電子増倍管の他に光源強度を監視するモニタ用光電子増
倍管を備え、モニタ用光電子増倍管の検出信号に応じて
光電子増倍管の負高圧を制御するダイノートフィードバ
ック方式の分光装置に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to fluorescence monitors for liquid chromatographs, etc., which monitor fluorescence intensity fluctuations due to excitation light of a set wavelength while correcting changes in light source brightness, and for electrophoresis gels. Regarding spectroscopic devices such as fluorescence measuring instruments, in particular, in addition to a photomultiplier tube for sample measurement, a photomultiplier tube for monitoring is equipped as a photodetector to monitor the light source intensity, and the device responds to the detection signal of the photomultiplier tube for monitoring. This invention relates to a dinote feedback type spectrometer that controls the negative high pressure of a photomultiplier tube.

(従来の技術) 分光蛍光光度計などの分光装置においては、試料からの
蛍光や透過光又は反射光を検出する測定用光電子増倍管
の他に、光源の光量変化を監視するためのモニタ用光電
子増倍管を備え、光電子増倍管の負高圧をモニタ用光電
子増倍管の検出信号によって制御して光源強度の変化を
補正するダイノードフィードバック方式が用いられてい
る。
(Prior art) In spectroscopic instruments such as spectrofluorometers, in addition to measurement photomultiplier tubes that detect fluorescence, transmitted light, or reflected light from a sample, there are also photomultiplier tubes used for monitoring purposes to monitor changes in the light intensity of a light source. A dynode feedback system is used in which a photomultiplier tube is provided and the negative high voltage of the photomultiplier tube is controlled by a detection signal from a monitoring photomultiplier tube to correct changes in light source intensity.

(発明が解決しようとする課題) 光電子増倍管は信号成分である光電流とノイズ成分であ
る暗電流との比(S/N比)は負高圧が高い程良好であ
る。一方、ダイノードフィードバック方式では、使用す
る励起光の設定可能波長範囲内で最も輝度の低い領域で
も光電子増倍管印加負高圧が規定値(最大許容値)以下
となるように設定しなければならず、そのため第7図に
示されるように、モニタ用光電子増倍管に入射する参照
光が輝度の低い波長である場合には負高圧が高く設定さ
れるが、輝度が高い波長の場合には負高圧が低く設定さ
れ、負高圧が低いレベルでダイノードフィードバックが
かかることになる。このことは、検出器からみると最高
のS/N比で測定できる条件にはなっていないことを示
している。
(Problems to be Solved by the Invention) In a photomultiplier tube, the higher the negative high voltage, the better the ratio (S/N ratio) between the photocurrent, which is a signal component, and the dark current, which is a noise component. On the other hand, in the dynode feedback method, it is necessary to set the negative high voltage applied to the photomultiplier tube to be below the specified value (maximum allowable value) even in the lowest brightness region within the settable wavelength range of the excitation light used. Therefore, as shown in Figure 7, if the reference light incident on the monitor photomultiplier tube has a wavelength with low brightness, the negative high voltage is set high, but if the wavelength has high brightness, the negative high voltage is set high. The high pressure is set low, and dynode feedback is applied at a low level of negative high pressure. This indicates that, from the perspective of the detector, the conditions are not such that measurements can be made with the highest S/N ratio.

本発明はモニタされる励起光や照射光の輝度が高い状態
でもS/N比の高い状態で測定できるようにした分光装
置を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spectroscopic device that can perform measurements with a high S/N ratio even when the excitation light or irradiation light to be monitored has high brightness.

(課題を解決するための手段) 本発明は、ダイノー ドフィードバック方式の分光装置
において、モニタ用光電子増倍管への入射光路に減光率
可変の減光素子を設けるとともに、光電子増倍管に印加
される負高圧を監視するモニタ装置を設け、負高圧が許
容値を超えない範囲内で高くなるように前記減光素子の
減光率を調節するようにした。
(Means for Solving the Problems) The present invention provides a dynode feedback type spectrometer in which a light attenuation element with a variable attenuation rate is provided in the optical path of incidence to a monitoring photomultiplier tube, and the photomultiplier tube is provided with a light attenuation element having a variable attenuation rate. A monitor device is provided to monitor the applied negative high pressure, and the light attenuation rate of the light attenuation element is adjusted so that the negative high pressure increases within a range that does not exceed a permissible value.

(作用) モニタ用光電子増倍管が励起分光器で分光された励起光
を監視するように設けられている場合、輝度の低い波長
で印加負高圧が規定値に近いレベルに設定されているも
のとすると、輝度の高い波長になるとモニタ用光電子増
倍管に入射する光量が増えて負高圧が低くなる。そこで
、減光素子の減光率が高くされて負高圧が規定値の近く
まで上げられる。
(Function) When a monitoring photomultiplier tube is installed to monitor the excitation light separated by an excitation spectrometer, the applied negative high voltage is set to a level close to the specified value at a wavelength with low brightness. Assuming this, when the wavelength becomes high in brightness, the amount of light incident on the monitoring photomultiplier tube increases and the negative high voltage decreases. Therefore, the light attenuation rate of the light attenuation element is increased to raise the negative high pressure to near the specified value.

(実施例) 第1図は本発明を蛍光モニタに適用した一実施例を表わ
している。
(Embodiment) FIG. 1 shows an embodiment in which the present invention is applied to a fluorescence monitor.

2は光源のキセノンランプ、4は集光用凹面鏡であり、
キセノンランプ2からの光は励起分光器6に入射する。
2 is a xenon lamp as a light source, 4 is a concave mirror for condensing light,
Light from the xenon lamp 2 enters an excitation spectrometer 6.

10は′励起分光器6の入口スリット、12は出口スリ
ット、8は分散素子としての凹面回折格子である。
10 is an entrance slit of the excitation spectrometer 6, 12 is an exit slit, and 8 is a concave diffraction grating as a dispersion element.

14は液体クロマトグラフのカラム流出液が導かれるフ
ローセルであり、励起分光器6からの励起光5はフロー
セル14に入射する。フローセル14を流れる試料が励
起光5で励起されて発生する蛍光15は、蛍光分光器1
6に入射する。20は蛍光分光器16の入口スリット、
18は分散素子である凹面回折格子、21は出口スリッ
トである。出口スリット21を呂だ蛍光は測定用光電子
増倍管22により検出される。
Reference numeral 14 denotes a flow cell into which the column effluent of the liquid chromatograph is guided, and the excitation light 5 from the excitation spectrometer 6 is incident on the flow cell 14 . Fluorescence 15 generated when the sample flowing through the flow cell 14 is excited by the excitation light 5 is detected by the fluorescence spectrometer 1.
6. 20 is an entrance slit of the fluorescence spectrometer 16;
18 is a concave diffraction grating which is a dispersion element, and 21 is an exit slit. Fluorescence passing through the exit slit 21 is detected by a photomultiplier tube 22 for measurement.

光源輝度の変動をモニタするために、励起分光器6の励
起光5の光軸にはビームスプリッタ24が設けられてい
る。ビームスプリッタ24で分離された励起光5の一部
5aは減光率が可変の減光素子26を経てモニタ用光電
子増倍管28に入射し検出される。減光素子26は空間
的に光の通過量を変化させることのできるものであり、
例えばカメラの絞り機構のように、光が透過する穴の断
面積が変化する機構を用いることができる。
In order to monitor variations in light source brightness, a beam splitter 24 is provided on the optical axis of the excitation light 5 of the excitation spectrometer 6. A portion 5a of the excitation light 5 separated by the beam splitter 24 passes through a light attenuation element 26 whose light attenuation rate is variable, enters a monitoring photomultiplier tube 28, and is detected. The light attenuation element 26 is capable of spatially changing the amount of light passing through.
For example, a mechanism that changes the cross-sectional area of a hole through which light can pass, such as a camera's aperture mechanism, can be used.

モニタ用光電子増倍管28の検出信号によりダイノート
フィードバック方式で光電子増倍管22と光電子増倍管
28の負高圧が調節される。
The negative high pressure of the photomultiplier tube 22 and the photomultiplier tube 28 is adjusted in accordance with the detection signal of the monitoring photomultiplier tube 28 using a die note feedback method.

第2図は第1図におけるダイノードフィードバック方式
の測定系を表わしている。
FIG. 2 shows the dynode feedback type measurement system in FIG. 1.

測定用光電子増倍管22の検出信号はプリアンプ3oで
増幅された後、過電流保護回路32を経て記録計34に
記録される。モニタ用光電子増倍管28の検出信号はプ
リアンプ36で増幅され、コンパレータ38で参照電圧
Vrと比較され、コンパレータ38の出力信号はDC/
DC変換器の負高圧発生器4oに入力される。負高圧発
生器40からは光電子増倍管22,28に負高圧−Vd
が印加され、コンパレータ38におけるモニタ用光電子
増倍管28の増幅された検出信号が参照電圧Vrと等し
くなるようにフィードバックがかけられる。
The detection signal from the measurement photomultiplier tube 22 is amplified by a preamplifier 3o, and then passed through an overcurrent protection circuit 32 and recorded on a recorder 34. The detection signal of the monitor photomultiplier tube 28 is amplified by the preamplifier 36 and compared with the reference voltage Vr by the comparator 38, and the output signal of the comparator 38 is DC/
It is input to the negative high voltage generator 4o of the DC converter. A negative high voltage -Vd is applied from the negative high voltage generator 40 to the photomultiplier tubes 22 and 28.
is applied, and feedback is applied so that the amplified detection signal of the monitoring photomultiplier tube 28 in the comparator 38 becomes equal to the reference voltage Vr.

負高圧発生器4oには負高圧−Vdをモニタするために
レベルモニタ42が設けられている。レベルモニタ42
は、負高圧が設定値(規定値よりやや低い値)に達した
ことを知らせる機能を持ったものであり5例えば第3図
に示されるような回路とすることができる。
A level monitor 42 is provided in the negative high voltage generator 4o to monitor the negative high voltage -Vd. Level monitor 42
The circuit has a function of notifying that the negative high voltage has reached a set value (a value slightly lower than the specified value), and can be configured as a circuit as shown in FIG. 3, for example.

第3図において、44は比較部であり、負高圧発生器4
0からの負高圧−Vdが抵抗回路で分割されて印加され
る。比較部44は例えば増幅器46とコンパレータ48
とを備え、コンパレータ48の非反転入力端子には負高
圧設定値−voが印加されている。コンパレータ48の
出力端子にはモニタ用ランプ50が接続されている。
In FIG. 3, 44 is a comparison section, and the negative high pressure generator 4
A negative high voltage -Vd from 0 is divided by a resistor circuit and applied. The comparison unit 44 includes, for example, an amplifier 46 and a comparator 48.
A negative high voltage setting value -vo is applied to the non-inverting input terminal of the comparator 48. A monitor lamp 50 is connected to the output terminal of the comparator 48.

第3図のレベルモニタでは、負高圧が設定値に到達する
とモニタランプ50が点灯する。
In the level monitor shown in FIG. 3, the monitor lamp 50 lights up when the negative high pressure reaches the set value.

第1図から第3図に示された実施例の動作について説明
する。
The operation of the embodiment shown in FIGS. 1 to 3 will be explained.

励起分光器6の励起波長のうち、最も輝度の低い波長で
光電子増倍管22,28の印加負高圧が規定値の近くの
設定値になるように設定されているものとする。
It is assumed that among the excitation wavelengths of the excitation spectrometer 6, the negative high voltage applied to the photomultiplier tubes 22 and 28 is set to a set value close to the specified value at the wavelength with the lowest brightness.

励起分光器6の励起波長をある波長に設定したとき、励
起光5のモニタ輝度が高くなって負高圧が低下すると、
レベルモニタ42の点灯が消える。
When the excitation wavelength of the excitation spectrometer 6 is set to a certain wavelength, when the monitor brightness of the excitation light 5 increases and the negative high pressure decreases,
The lighting of the level monitor 42 goes out.

そこで、減光素子26を調節して減光率を上げると、モ
ニタ用光電子増倍管28への入射光量が減少して負高圧
が上がってくる。負高圧が設定値まで到達するとレベル
モニタ42のランプ50が点灯するので、その状態で減
光素子26を設定する。
Therefore, when the light attenuation rate is increased by adjusting the light attenuation element 26, the amount of light incident on the monitoring photomultiplier tube 28 decreases, and the negative high pressure increases. When the negative high pressure reaches the set value, the lamp 50 of the level monitor 42 lights up, so the dimming element 26 is set in that state.

上記の実施例は測定者が負高圧をレベルモニタ42でモ
ニタしながら手動で減光素子26を調節する例を示して
いるが、減光素子26が自動的に調節可能な機構であれ
ば、負高圧モニタ値を用いて減光素子26を最適に自動
的に設定することができる。
The above embodiment shows an example in which the measurer manually adjusts the light attenuation element 26 while monitoring the negative high pressure with the level monitor 42, but if the light attenuation element 26 is a mechanism that can be automatically adjusted, The dimming element 26 can be automatically and optimally set using the negative high pressure monitor value.

第4図は減光素子の調節を自動化する場合の例を表わし
たものである。
FIG. 4 shows an example of automating the adjustment of the dimming element.

比較部60が設けられ、負高圧発生器4oからの負高圧
−Vdを設定値−voと比較し、負高圧−Vdが設定値
と等しくなるまで減光素子26を自動的に作動させる。
A comparator 60 is provided, which compares the negative high voltage -Vd from the negative high pressure generator 4o with a set value -vo, and automatically operates the dimming element 26 until the negative high voltage -Vd becomes equal to the set value.

自動的に調節可能な減光素子としては5例えば第5図に
示されるように、波長依存性をもたないNDフィルタ5
2をモータ54の回転軸に取りつけた機構を用いること
ができる。モータ54は例えばステッピングモータであ
り、モータ54を回転させることによりNDフィルタ5
2を透過する参照光5aの光量を変化させることができ
る。
An example of an automatically adjustable light attenuation element is an ND filter 5 that does not have wavelength dependence, as shown in FIG. 5, for example.
2 attached to the rotating shaft of the motor 54 can be used. The motor 54 is, for example, a stepping motor, and by rotating the motor 54, the ND filter 5
The amount of reference light 5a that passes through 2 can be changed.

減光素子26としては、他にも例えば第6図に示される
ように、厚みのある板に多数の光透過孔がその板の面に
垂直な方向にあけられたフィルタ板56を用い、フィル
タ板56の面内方向にモータ58の回転軸がくるように
フィルタ板56をモータ58に取りつけたものでもよい
。参照光5aをこのフィルタ板56に入射させて透過さ
せ、モータ58によりフィルタ板56の面と参照光5a
の入射方向とのなす角度を変えることにより、フィルタ
板56を透過する参照光5aの光量を変化させることが
できる。
As the light attenuation element 26, for example, as shown in FIG. 6, a filter plate 56 in which a large number of light transmission holes are formed in a thick plate in a direction perpendicular to the plane of the plate may be used. The filter plate 56 may be attached to the motor 58 so that the rotation axis of the motor 58 is aligned in the in-plane direction of the plate 56. The reference light 5a is made incident on the filter plate 56 and transmitted, and the motor 58 separates the reference light 5a from the surface of the filter plate 56.
By changing the angle between the reference beam 5a and the incident direction of the reference beam 5a, the amount of the reference beam 5a that passes through the filter plate 56 can be changed.

カメラで自動絞り機構として一般的に採用されているよ
うな絞り機構でも自動的に透過光量を変化させることが
できる。
Even a diaphragm mechanism, such as the one commonly used in cameras, can automatically change the amount of transmitted light.

(発明の効果) 本発明ではダイノードフィードバック方式の分光装置に
おいて、モニタ用光電子増倍管に入射する参照光の輝度
が低い状態のときに負高圧が最大許容値の近くになるよ
うに設定しておき、光源輝度が高い波長など、モニタ用
光電子増倍管に入射する参照先の強度が高くなったとき
は減光素子の減光率を上げて負高圧を高いレベルに維持
するようにしたので、モニタ用光電子増倍管の入射光量
が変化してもS/N比を高いレベルに維持することがで
きる。
(Effects of the Invention) In the present invention, in a dynode feedback type spectrometer, the negative high pressure is set to be close to the maximum allowable value when the brightness of the reference light incident on the monitoring photomultiplier tube is low. In addition, when the intensity of the reference target incident on the monitor photomultiplier tube becomes high, such as at a wavelength with high light source brightness, the attenuation rate of the attenuation element is increased to maintain the negative high pressure at a high level. Even if the amount of light incident on the monitoring photomultiplier tube changes, the S/N ratio can be maintained at a high level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を  蛍光モニタに適用した一実施例を
表わす要部斜視図、第2図は同実施例における測定系を
表わす回路図、第3図は第2図におけるレベルモニタの
一例を表わす回路図、第4図は減光素子を自動的に調節
する実施例の制御部を示すブロック図、第5図及び第6
図はそれぞれ自動調節可能な減光素子の例を表わす構成
図である。第7図は従来のダイノードフィードバンク方
式における光源輝度と負高圧設定を示す図である。 2・・・・・キセノンランプ、6・・・・・励起分光器
、8゜18・・・・・凹面回折格子、14・・・・フロ
ーセル、16・・・・・蛍光分光器、22・・・・・測
定用光電子増倍管、26・・・・・・減光素子、28・
・・・・・モニタ用光電子増倍管、42・・・・レベル
モニタ。 第2図 第3図 第4図 −V。
Fig. 1 is a perspective view of the main parts of an embodiment in which the present invention is applied to a fluorescence monitor, Fig. 2 is a circuit diagram showing a measurement system in the same embodiment, and Fig. 3 is an example of the level monitor in Fig. 2. FIG. 4 is a block diagram showing the control section of an embodiment that automatically adjusts the dimming element, and FIGS.
Each figure is a configuration diagram showing an example of an automatically adjustable dimming element. FIG. 7 is a diagram showing the light source brightness and negative high voltage setting in the conventional dynode feed bank system. 2...Xenon lamp, 6...Excitation spectrometer, 8°18...Concave diffraction grating, 14...Flow cell, 16...Fluorescence spectrometer, 22... ... photomultiplier tube for measurement, 26 ... attenuation element, 28.
...Photomultiplier tube for monitor, 42...Level monitor. Figure 2, Figure 3, Figure 4-V.

Claims (1)

【特許請求の範囲】[Claims] (1)試料測定用光電子増倍管の他に光源強度を監視す
るモニタ用光電子増倍管を備え、モニタ用光電子増倍管
の検出信号に応じて光電子増倍管の負高圧を制御するダ
イノードフィードバック方式の分光装置において、前記
モニタ用光電子増倍管への入射光路に減光率可変の減光
素子を設けるとともに、前記負高圧を監視するモニタ装
置を設け、負高圧が許容値を超えない範囲内で高くなる
ように前記減光素子の減光率を調節するようにしたこと
を特徴とする分光装置。
(1) A dynode that is equipped with a photomultiplier tube for monitoring to monitor the light source intensity in addition to the photomultiplier tube for sample measurement, and that controls the negative high pressure of the photomultiplier tube according to the detection signal of the photomultiplier tube for monitoring. In a feedback type spectrometer, a light attenuation element with a variable attenuation rate is provided in the optical path of incidence to the monitoring photomultiplier tube, and a monitor device for monitoring the negative high pressure is provided so that the negative high pressure does not exceed a permissible value. A spectroscopic device characterized in that the light attenuation rate of the light attenuation element is adjusted so that it becomes high within a range.
JP7751290A 1990-03-26 1990-03-26 Spectroscope Pending JPH03274427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7751290A JPH03274427A (en) 1990-03-26 1990-03-26 Spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7751290A JPH03274427A (en) 1990-03-26 1990-03-26 Spectroscope

Publications (1)

Publication Number Publication Date
JPH03274427A true JPH03274427A (en) 1991-12-05

Family

ID=13636021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7751290A Pending JPH03274427A (en) 1990-03-26 1990-03-26 Spectroscope

Country Status (1)

Country Link
JP (1) JPH03274427A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255993A (en) * 2006-03-22 2007-10-04 Kobe Steel Ltd Separation refining analyzer
US7583369B2 (en) 2007-05-16 2009-09-01 Shimadzu Corporation Fluorescence spectrophotometer
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2012068146A (en) * 2010-09-24 2012-04-05 Shimadzu Corp Spectrophotofluorometer
JP2015087108A (en) * 2013-10-28 2015-05-07 株式会社島津製作所 Fourier transformation spectrophotometer and light quantity control method
JP2015125067A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Fluorometry device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255993A (en) * 2006-03-22 2007-10-04 Kobe Steel Ltd Separation refining analyzer
US7583369B2 (en) 2007-05-16 2009-09-01 Shimadzu Corporation Fluorescence spectrophotometer
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2012068146A (en) * 2010-09-24 2012-04-05 Shimadzu Corp Spectrophotofluorometer
JP2015087108A (en) * 2013-10-28 2015-05-07 株式会社島津製作所 Fourier transformation spectrophotometer and light quantity control method
JP2015125067A (en) * 2013-12-26 2015-07-06 東ソー株式会社 Fluorometry device

Similar Documents

Publication Publication Date Title
US4241998A (en) Spectrophotometer
US5512757A (en) Spectrophotometer and optical system therefor
JPH087098B2 (en) Calibration of a polychromatic light source with one or more spectrally filtered photodetector currents
US4781456A (en) Absorption photometer
US5497230A (en) Spectroradiometer
JPS58103625A (en) Photometer
CN110824080B (en) Spectroscopic detector
JPH03274427A (en) Spectroscope
US4536091A (en) Absorbance monitor
JP3960256B2 (en) Atomic absorption spectrophotometer
JPH0331726A (en) Light source compensating mechanism for spectroscope
JP3469569B2 (en) Flow cell
JPH0249645B2 (en)
US5239359A (en) Absorbance monitor
JPS5813303Y2 (en) Bunko Koudokei
JP2002521656A (en) Method for testing the function of a spectrometer and a spectrometer having a fault detection device
JP3203624B2 (en) Laser fluorescence detector
JP2000352556A (en) Spectroscopic analysis apparatus
JPS5839915A (en) Measuring apparatus of spectral sensitivity of optical sensor
JPH10104153A (en) Absorbance detector
JP2895816B2 (en) ICP emission spectrometer
JPH05113369A (en) Spectral photometer
JPH08159876A (en) Spectrometric apparatus
JPS6315535B2 (en)
JPS5979125A (en) Specific photometric fluorophotometer