JPH03273999A - Parachute homing device - Google Patents

Parachute homing device

Info

Publication number
JPH03273999A
JPH03273999A JP2071927A JP7192790A JPH03273999A JP H03273999 A JPH03273999 A JP H03273999A JP 2071927 A JP2071927 A JP 2071927A JP 7192790 A JP7192790 A JP 7192790A JP H03273999 A JPH03273999 A JP H03273999A
Authority
JP
Japan
Prior art keywords
parachute
vertical
control signal
horizontal
target point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2071927A
Other languages
Japanese (ja)
Other versions
JPH07110639B2 (en
Inventor
Tetsuo Sato
哲夫 佐藤
Satoru Yasunobu
哲 安延
Tsuneaki Yoshimura
恒明 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIKON PARASHIYUUTO SYST YUGEN
Mitsui Engineering and Shipbuilding Co Ltd
Toshiba Electro Wave Products Co Ltd
Original Assignee
EIKON PARASHIYUUTO SYST YUGEN
Mitsui Engineering and Shipbuilding Co Ltd
Toshiba Tesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EIKON PARASHIYUUTO SYST YUGEN, Mitsui Engineering and Shipbuilding Co Ltd, Toshiba Tesco Corp filed Critical EIKON PARASHIYUUTO SYST YUGEN
Priority to JP2071927A priority Critical patent/JPH07110639B2/en
Publication of JPH03273999A publication Critical patent/JPH03273999A/en
Publication of JPH07110639B2 publication Critical patent/JPH07110639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/105Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for unpowered flight, e.g. glider, parachuting, forced landing

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To automatically guide a parachute to a target point by receiving the emitted radio waves from the target point by a target tracking device and controlling the strap of the parachute when the parachute loaded with goods is dropped from an aircraft at a remote and high altitude. CONSTITUTION:A transmitter device 2 for emitting radio waves is disposed in a determined position on the ground 1, and a target tracking device 5 is loaded on a parachute capable of running and flying as a rectangular parachute 1 through a strap 4. The target tracking device 5 is formed of a pair or plural pairs of receiver antenna elements for detecting the horizontal azimuth information and vertical descent angle information to the transmitter device 2 (target point), a signal processing circuit for outputting such horizontal control signal and vertical control signal as making the slippage between the horizontal azimuth information and vertical descent angle information and preset horizontal and vertical approach angles to zero, and a servo system for automatically controlling the strap 4 of the parachute by the horizontal control signal and vertical control signal.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は滑空飛行できるパラシュートを目標地点に自動
誘導するパラシュートホーミング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a parachute homing device that automatically guides a parachute capable of gliding flight to a target point.

(従来の技術) 従来、滑空飛行できるパラシュートを目標地点に自動的
に誘導するパラシュートホーミング装置はない。従って
、遠方、高高度からのバラシュド投下はできず、風向、
風速を考慮して、目標地点上空の低高度からの投下が一
般的である。
(Prior Art) Conventionally, there is no parachute homing device that automatically guides a parachute that can glide to a target point. Therefore, it is not possible to drop Balashud from far away or at high altitudes, and the wind direction
Taking wind speed into consideration, it is common to drop from a low altitude above the target point.

尚、ラジコンによりアマチュアが地上から遠隔操作する
ことが考えられる程度である。
However, it is only conceivable that amateurs could remotely control the system from the ground using radio controls.

(発明が解決しようとする課題) 従来は、パラシュートホーミング装置がないため、航空
機から物資を積載し−たパラシュートを遠方、高高度か
ら投下することができないため、無人物資輸送が困難で
ある。特に、見通しの悪い霧や夜間等では困難である。
(Problems to be Solved by the Invention) Conventionally, since there is no parachute homing device, it is not possible to drop a parachute loaded with supplies from an aircraft from a distance or at a high altitude, making unmanned cargo transportation difficult. This is especially difficult in foggy conditions with poor visibility or at night.

本発明は上記の点に鑑みてなされたもので、滑空飛行で
きるパラシュートを目標地点に自動的に誘導することに
より、航空機から物資を積載したパラシュートを遠方、
高高度から投下することができるため、無人物資輻送が
でき、特に昼間ばかりでなく、見通しの悪い霧や夜間等
でもパラシュートで投下でき、また、有人の場合でも自
動制御で正確に目標地点に到達できるパラシュートホー
ミング装置を提供することを目的とする。
The present invention has been made in view of the above points, and by automatically guiding a parachute that can glide to a target point, a parachute loaded with supplies can be transported from an aircraft to a long distance.
Since it can be dropped from high altitudes, unmanned cargo delivery is possible, and it can be dropped by parachute not only during the day, but also in foggy conditions or at night with poor visibility.Also, even when manned, it can be automatically controlled to accurately reach the target point. The purpose is to provide a parachute homing device that can reach

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するために、地上の所定位置に
設置され電波を放射する送信装置と、この送信装置から
の電波を受信して目標地点に対する水平方位角情報及び
垂直降下角情報を検出する水平方向及び垂直方向にそれ
ぞれ設けられた一対もしくは複数対の受信アンテナ素子
と、前記水平方位角情報及び垂直降下角情報と予め設定
された水平及び垂直進入角とのずれがOになるような水
平制御信号及び垂直制御信号を出力する信号処理回路と
、前記水平制御信号及び垂直制御信号によりパラシュー
トのストラップを自動制御するサーボ系とよりなる滑空
飛行できるパラシュートに搭載された目標追尾装置とを
具備することを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problem) In order to achieve the above object, the present invention includes a transmitting device installed at a predetermined position on the ground and emitting radio waves, and a transmitting device that receives the radio waves from the transmitting device. one or more pairs of receiving antenna elements provided in the horizontal and vertical directions for detecting horizontal azimuth angle information and vertical descent angle information with respect to the target point; It consists of a signal processing circuit that outputs a horizontal control signal and a vertical control signal such that the deviation from the horizontal and vertical approach angles is O, and a servo system that automatically controls the parachute strap based on the horizontal control signal and vertical control signal. This system is characterized by comprising a target tracking device mounted on a parachute capable of gliding flight.

(作 用) 上記手段によれば、送信装置の覆域内及びパラシュート
の最大到達覆域内に投下されたパラシュートは、目標地
点からの放射電波を目標追尾装置が受信し、目標地点ま
での水平方位角情報及び垂直降下角情報を検出し、予め
設定された水平及び垂直進入角と比較し、そのずれが○
になるようサーボ系によりパラシュートのストラップを
制御することにより、パラシュートを目標地点に自動的
に誘導する。
(Function) According to the above means, the parachute dropped within the coverage area of the transmitting device and within the maximum coverage area of the parachute receives radio waves radiated from the target point by the target tracking device, and determines the horizontal azimuth angle to the target point. Detect information and vertical descent angle information, compare it with preset horizontal and vertical approach angles, and check if the deviation is ○
By controlling the straps of the parachute using a servo system, the parachute is automatically guided to the target point.

(実施例) 以下図面を参照して本発明の実施例を詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明パラシュートホーミング装置の一実施例
を示す機能構成図であり、地面1上の所定位置には電波
を発射する送信装置2が設置される。一方、長形パラシ
ュートのように滑空飛行できるパラシュート3にはスト
ラップ4を介して目標追尾装置5が搭載される。前記目
標追尾装置5は送信装置2からの電波を受信して送信装
置2(目標地点)に対する水平方位角情報及び垂直降下
角情報を検出する水平方向及び垂直方向にそれぞれ設け
られた一対もしくは複数対の受信アンテナ素子と、前記
水平方位角情報及び垂直降下角情報と予め設定された水
平及び垂直進入角とのずれが0になるような水平制御信
号及び垂直制御信号を出力する信号処理回路と、前記水
平制御信号及び垂直制御信号によりパラシュートのスト
ラップ4を自動制御するサーボ系とより構成される。パ
ラシュート3は左右2本のストラップ4を有し、水平方
向制御(左右いずれか1つのストラップを引き左右のバ
ランスを変える)および降下率制御(左右2本のストラ
ップを同時に同じ張力で引く)を行うことができる。前
記ストラップ4は目標追尾装置5のサーボ系と連動され
る。6はパラシュート3と送信装置2(目標地点)を結
ぶグライドスロープであり、θ0はグライドスロープ6
と地面1との角度である。
FIG. 1 is a functional configuration diagram showing an embodiment of the parachute homing device of the present invention, in which a transmitting device 2 for emitting radio waves is installed at a predetermined position on the ground 1. On the other hand, a target tracking device 5 is mounted via a strap 4 on a parachute 3 that can glide like a long parachute. The target tracking device 5 includes one or more pairs provided in the horizontal direction and the vertical direction, which receive radio waves from the transmitting device 2 and detect horizontal azimuth angle information and vertical descent angle information with respect to the transmitting device 2 (target point). a signal processing circuit that outputs a horizontal control signal and a vertical control signal such that a deviation between the horizontal azimuth angle information and vertical descent angle information and preset horizontal and vertical approach angles becomes 0; It is comprised of a servo system that automatically controls the strap 4 of the parachute based on the horizontal control signal and vertical control signal. The parachute 3 has two straps 4 on the left and right, and performs horizontal direction control (pulling one strap on the left or right to change the balance between the left and right) and descent rate control (pulling the two straps on the left and right at the same time with the same tension). be able to. The strap 4 is interlocked with a servo system of a target tracking device 5. 6 is a glide slope connecting the parachute 3 and the transmitter 2 (target point), and θ0 is the glide slope 6
is the angle between and the ground 1.

第2図は本発明に係る目標追尾装置の一例を示す系統図
であり、7.8は送信装置からの電波を受信して送信装
置(目標地点)に対する水平方位角情報を検出する水平
方向に設けられた1対の受信アンテナ素子であり、20
.21は送信装置からの電波を受信して送信装置(目標
地点)に対する垂直方位角情報を検出する垂直方向に設
けられた1対の受信アンテナ素子である。一方の受信ア
ンテナ素子7.20の出力はそれぞれ対応した位相補正
回路9,22を介して合成器10.23に加えられる。
FIG. 2 is a system diagram showing an example of a target tracking device according to the present invention, and 7.8 is a system diagram showing an example of a target tracking device according to the present invention. a pair of receiving antenna elements provided, 20
.. Reference numeral 21 denotes a pair of receiving antenna elements arranged in the vertical direction for receiving radio waves from the transmitting device and detecting vertical azimuth information with respect to the transmitting device (target point). The output of one receiving antenna element 7.20 is applied to a combiner 10.23 via corresponding phase correction circuits 9 and 22, respectively.

この合成器10.23にはそれぞれ対応した他方の受信
アンテナ素子8,21の出力が加えられる。合成器10
の出力のうち一対の受信アンテナ素子7.8が同相で受
信した場合の受信パターンΣは第1のミクサ11に加え
られてローカル信号発生回路13からのローカル信号と
混合され中間周波信号(IF)となって後、第1の中間
周波増幅器15で増幅されて信号処理回路16に加えら
れる。また、各合成器10.23の出力のうち一対の受
信アンテナ素子7と8,20と21が逆相で受信した場
合の受信パターンΔはそれぞれ対応した第2Φミクサ1
2,24に加えられてローカル信号発生回路13からの
ローカル信号と混合され中間周波信号(IF)となって
後、それぞれ対応した第2の中間周波増幅器14゜25
で増幅されて信号処理回路16に加えられる。
The outputs of the other corresponding receiving antenna elements 8, 21 are added to the combiner 10.23. Synthesizer 10
The reception pattern Σ obtained when the pair of reception antenna elements 7.8 receives the output in the same phase is added to the first mixer 11 and mixed with the local signal from the local signal generation circuit 13 to form an intermediate frequency signal (IF). After that, the signal is amplified by the first intermediate frequency amplifier 15 and applied to the signal processing circuit 16. In addition, the reception pattern Δ when a pair of receiving antenna elements 7 and 8, 20 and 21 receives the output in opposite phases among the outputs of each combiner 10.23 is determined by the corresponding second Φ mixer 1.
2 and 24 and mixed with the local signal from the local signal generation circuit 13 to become an intermediate frequency signal (IF), the signal is then sent to the corresponding second intermediate frequency amplifier 14, 25.
The signal is amplified and applied to the signal processing circuit 16.

この信号処理回路16からはフラッグ(FLAG)信号
Sl、 コース制御信号S2.及びバス制御信号S3が
出力されパラシュートのストラップと連動したサーボ系
17に加えられる。サーボ系17はフラッグ信号Sl、
 コース制御信号S2.及びバス制御信号S3によりパ
ラシュートのストラップを自動制御してパラシュートを
自動的に送信装置(目標地点)に到達させる。
The signal processing circuit 16 outputs a flag (FLAG) signal Sl, a course control signal S2. A bus control signal S3 is output and applied to a servo system 17 that is linked to the parachute strap. The servo system 17 receives a flag signal Sl,
Course control signal S2. The strap of the parachute is automatically controlled by the bus control signal S3, and the parachute automatically reaches the transmitting device (target point).

前記フラッグ信号S1は、目標追尾装置が送信装置から
電波を受信し、目標検出の信号処理を行うために充分な
電界強度を得たか否かを判断するための1または0の信
号を出力する。
The flag signal S1 outputs a 1 or 0 signal for determining whether or not the target tracking device receives radio waves from the transmitting device and has obtained a sufficient electric field strength to perform signal processing for target detection.

出力1の時、制御信号を連続して出力する。When the output is 1, the control signal is output continuously.

出力0の時、垂直螺旋降下信号を出力する。When the output is 0, a vertical spiral descent signal is output.

コース制御信号S2は、目標地点方向とパラシュートの
進行方向のずれを示すコース制御信号を出力する。
The course control signal S2 outputs a course control signal indicating a deviation between the direction of the target point and the direction of movement of the parachute.

バス制御信号S3は、パラシュートと目標地点を結ぶ信
号が、垂直面に於いて仰角θ0 (例えば滑空比3.7
の場合、θo−16°)を示す制御信号を出力する。尚
、θ。は滑空比によって設定を変えることができる。
The bus control signal S3 is a signal connecting the parachute and the target point at an elevation angle θ0 in the vertical plane (for example, a glide ratio of 3.7
In this case, a control signal indicating θo-16°) is output. Furthermore, θ. The settings can be changed depending on the glide ratio.

電源はバッテリ18及び直流電源19よりなり直流電力
(DC)を出力する。
The power source includes a battery 18 and a DC power source 19 and outputs DC power.

第3図は本発明に係る送信装置の一例を示し、地上の送
信装置は、発信・制御部26から無変調搬送波(CW)
信号を出力し、送信部27を介して送信アンテナ28か
ら垂直偏波を用いて全方向に電波として輻射する。
FIG. 3 shows an example of a transmitting device according to the present invention.
The signal is output and radiated as radio waves in all directions from the transmitting antenna 28 via the transmitter 27 using vertically polarized waves.

IWの送信出力で、受信点の電界強度が120μV /
 m 、送信アンテナの設置高1/4波長の時の電波の
通達距離を第6図に示す。
The electric field strength at the receiving point is 120 μV /
Figure 6 shows the transmission distance of radio waves when the installation height of the transmitting antenna is 1/4 wavelength.

電源はバッテリ2つ及び直流電源30よりなり直流電力
(D C)を出力する。
The power source consists of two batteries and a DC power source 30, and outputs DC power (DC).

次に、目標追尾装置による目標検出について説明する。Next, target detection by the target tracking device will be explained.

即ち、第4図に示すように、一対の受信アンテナ素子7
.8をそれぞれ水平および垂直に間隔dで配列し、・送
信電波を受信する。
That is, as shown in FIG. 4, a pair of receiving antenna elements 7
.. 8 are arranged horizontally and vertically at intervals of d, and receive transmitted radio waves.

■ 一対の受信アンテナ素子7,8が同相で受信した場
合、受信パターンΣは Σ−K cos(d/2 ・ β ・ s1nθ)ただ
し、 K:定数 θ:水平角または垂直角で、第4図の目標地点201と
パラシュート進行方向Aとの角度β:位相定数(−2π
/λ)  λ:波長又、送信アンテナ間との位相差Φは Φ−d β sinθ ■ 一対の受信アンテナ素子7,8が逆相で受信した場
合、受信パターンΔは Δ−Ksin(d/2  ・ β ・ sinθ)尚、
第5図は一対の受信アンテナ素子7,8の間隔dをλ/
2とした時のΣ、Δ、Φの特性の一例を示す。第5図か
ら イ、  ΔまたはΦ特性はパラシュートの進行方向と目
標地点の方向が一致する角度θ−00でOの値となるた
め、水平方位角および垂直降下角情報となる。
■ When a pair of receiving antenna elements 7 and 8 receive signals in the same phase, the reception pattern Σ is Σ-K cos(d/2 · β · s1nθ), where K: constant θ: horizontal angle or vertical angle, as shown in Fig. 4 Angle β between the target point 201 and the parachute traveling direction A: Phase constant (-2π
/λ) λ: Wavelength Also, the phase difference Φ between the transmitting antennas is Φ-d β sinθ ■ When a pair of receiving antenna elements 7 and 8 receive in opposite phases, the reception pattern Δ is Δ-Ksin(d/2・ β ・ sin θ) Furthermore,
FIG. 5 shows the distance d between the pair of receiving antenna elements 7 and 8 as λ/
An example of the characteristics of Σ, Δ, and Φ when the value is 2 is shown below. From FIG. 5A, the Δ or Φ characteristic takes the value O at the angle θ-00 where the direction of travel of the parachute and the direction of the target point coincide, so it becomes horizontal azimuth angle and vertical descent angle information.

口、 水平方位角情報はθ−00が目標地点であるため
ΔまたはΦが常に0の値となるよう左右ストラップの水
平方向制御を行う。
Since the horizontal position angle information is θ-00 as the target point, the left and right straps are controlled in the horizontal direction so that Δ or Φ always has a value of 0.

ハ、 垂直降下角はパラシュートの滑空性能によって設
定する。例えば滑空比3.7のパラシュートの場合、降
下角θ。は θo  >  jan−’1 / 3.7−15.1 
’となりθ。−16°に設定し、θ。−160になるよ
う左右のストラップの降下率制御を行う。
C. The vertical descent angle is determined by the glide performance of the parachute. For example, in the case of a parachute with a glide ratio of 3.7, the descent angle θ. is θo >jan-'1/3.7-15.1
' and θ. -16°, θ. Control the descent rate of the left and right straps to -160.

二、  Σパターンはθ−00で最大値を示すため最小
受信レベルの制限、即ちフラッグ信号として使用する。
2. Since the Σ pattern shows a maximum value at θ-00, it is used to limit the minimum reception level, that is, as a flag signal.

これによりコース制御信号およびパス制御信号を安定さ
せる。
This stabilizes the course control signal and the path control signal.

ホ、 また、ΣパターンはΦ、Δの極性が反転(左右、
上下の逆転)を防ぐために基準位相信号として使用する
E, Also, in the Σ pattern, the polarity of Φ and Δ is reversed (left and right,
Used as a reference phase signal to prevent vertical reversal.

[発明の効果コ 以上述べたように本発明によれば、滑空飛行できるパラ
シュートを目標地点に自動的に誘導することにより、航
空機から物資を積載したパラシュートを遠方、高高度か
ら投下することができるため、無人物資輻送ができ、特
に昼間ばかりでなく、見通しの悪い霧や夜間等でもパラ
シュートで投下でき、また、有人の場合でも自動制御で
正確に目標地点に到達できるパラシュートホーミング装
置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, by automatically guiding a parachute that can glide to a target point, it is possible to drop a parachute loaded with supplies from an aircraft from a distance and at a high altitude. To provide a parachute homing device that enables unmanned material transportation, can be dropped by parachute not only during the day, but also in foggy conditions with poor visibility, at night, etc., and can accurately reach a target point under automatic control even when manned. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す機能構成図、第2図は
本発明に係る目標追尾装置の一例を示す系統図、第3図
は本発明に係る送信装置の一例を示す系統図、第4図は
本発明に係る目標追尾装置の目標検出を説明するための
図、第5図は本発明に係るΣ、Δ、Φの特性の一例を示
す特性図、第6図は本発明に係る送信装置の通達距離の
一例を示す特性図である。 2・・・送信装置、3・・・パラシュート、4・・・ス
トラップ、5・・・目標追尾装置、7.8・・・一対の
受信アンテナ素子、16・・・信号処理回路、17・・
・サーボ系。
FIG. 1 is a functional configuration diagram showing an embodiment of the present invention, FIG. 2 is a system diagram showing an example of a target tracking device according to the invention, and FIG. 3 is a system diagram showing an example of a transmitting device according to the invention. , FIG. 4 is a diagram for explaining target detection of the target tracking device according to the present invention, FIG. 5 is a characteristic diagram showing an example of the characteristics of Σ, Δ, and Φ according to the present invention, and FIG. 6 is a diagram for explaining target detection of the target tracking device according to the present invention. It is a characteristic diagram which shows an example of the notification distance of the transmitting device based on FIG. 2... Transmitting device, 3... Parachute, 4... Strap, 5... Target tracking device, 7.8... Pair of receiving antenna elements, 16... Signal processing circuit, 17...
・Servo system.

Claims (1)

【特許請求の範囲】[Claims]  地上の所定位置に設置され電波を放射する送信装置と
、この送信装置からの電波を受信して目標地点に対する
水平方位角情報及び垂直降下角情報を検出する水平方向
及び垂直方向にそれぞれ設けられた一対もしくは複数対
の受信アンテナ素子と、前記水平方位角情報及び垂直降
下角情報と予め設定された水平及び垂直進入角とのずれ
が0になるような水平制御信号及び垂直制御信号を出力
する信号処理回路と、前記水平制御信号及び垂直制御信
号によりパラシュートのストラップを自動制御するサー
ボ系とよりなる滑空飛行できるパラシュートに搭載され
た目標追尾装置とを具備することを特徴とするパラシュ
ートホーミング装置。
A transmitting device is installed at a predetermined position on the ground and emits radio waves, and a transmitter is installed in the horizontal and vertical directions to receive the radio waves from this transmitting device and detect horizontal azimuth angle information and vertical descent angle information with respect to the target point. A signal that outputs a horizontal control signal and a vertical control signal such that the deviation between the horizontal azimuth angle information, the vertical descent angle information, and the preset horizontal and vertical approach angles is zero. A parachute homing device comprising a processing circuit and a target tracking device mounted on a parachute capable of gliding flight, comprising a servo system that automatically controls straps of the parachute based on the horizontal control signal and the vertical control signal.
JP2071927A 1990-03-23 1990-03-23 Parachute homing equipment Expired - Lifetime JPH07110639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071927A JPH07110639B2 (en) 1990-03-23 1990-03-23 Parachute homing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071927A JPH07110639B2 (en) 1990-03-23 1990-03-23 Parachute homing equipment

Publications (2)

Publication Number Publication Date
JPH03273999A true JPH03273999A (en) 1991-12-05
JPH07110639B2 JPH07110639B2 (en) 1995-11-29

Family

ID=13474651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071927A Expired - Lifetime JPH07110639B2 (en) 1990-03-23 1990-03-23 Parachute homing equipment

Country Status (1)

Country Link
JP (1) JPH07110639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416019B1 (en) * 2000-12-12 2002-07-09 The United States Of America As Represented By The Secretary Of The Navy Precision parachute recovery system
KR20040005390A (en) * 2002-07-10 2004-01-16 김왕진 Remote control parafoil air delivery system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223296U (en) * 1988-08-01 1990-02-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0223296U (en) * 1988-08-01 1990-02-15

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416019B1 (en) * 2000-12-12 2002-07-09 The United States Of America As Represented By The Secretary Of The Navy Precision parachute recovery system
KR20040005390A (en) * 2002-07-10 2004-01-16 김왕진 Remote control parafoil air delivery system

Also Published As

Publication number Publication date
JPH07110639B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US8056860B2 (en) Method and system for inflight refueling of unmanned aerial vehicles
US4418350A (en) Two-axis antenna direction control system
US9423495B1 (en) Ship-based over-the-horizon radar
US20090073049A1 (en) Ultra compact UHF Satcom antenna
US20220406203A1 (en) End-to-end unmanned control system of aircraft navigation and surveillance systems
JPH03273999A (en) Parachute homing device
US4540139A (en) Passive missile homing system
JPH0333671A (en) Communication system for helicopter
JP3002612B2 (en) Radio wave arrival direction / polarization measurement antenna device, radio wave arrival direction / polarization measurement device, and antenna pointing device
Jenvey et al. A portable monopulse tracking antenna for UAV communications
US3394375A (en) Automatic tracking system for linearly polarized electromagnetic waves
RU2285933C1 (en) System for determining spatial position of object
Tanaka et al. Antenna and tracking system for land vehicles on satellite communications
US4232316A (en) Aircraft landing-guiding apparatus
Engel et al. A directive type of radio beacon and its application to navigation
JP3097876B2 (en) Directional antenna control device
KR102358015B1 (en) Antenna system that automatically tracks and controls drones on the ground
JPH0690281B2 (en) Flight control device
JP7341549B1 (en) Ground station antenna device
JP2002250762A (en) Antenna directing apparatus
McGuffin Aircraft Antenna Pointing with COTS Components
Ilcev Antenna systems for mobile satellite applications
Siatchoua et al. An inexpensive electronically steerable antenna for mobile applications in L-band
Brueckmann Suppression of undesired radiation of directional HF antennas and associated feed lines
CN114616529A (en) Unmanned aerial vehicle landing method, cabin, unmanned aerial vehicle, system, equipment and storage medium