JPH03273216A - Space light modulator and production thereof - Google Patents

Space light modulator and production thereof

Info

Publication number
JPH03273216A
JPH03273216A JP7377990A JP7377990A JPH03273216A JP H03273216 A JPH03273216 A JP H03273216A JP 7377990 A JP7377990 A JP 7377990A JP 7377990 A JP7377990 A JP 7377990A JP H03273216 A JPH03273216 A JP H03273216A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
polymer
spatial light
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7377990A
Other languages
Japanese (ja)
Other versions
JP2959032B2 (en
Inventor
Akio Takimoto
昭雄 滝本
Hirobumi Wakemoto
博文 分元
Narihiro Sato
成広 佐藤
Fumiko Yokoya
横谷 文子
Junko Asayama
純子 朝山
Kuni Ogawa
小川 久仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7377990A priority Critical patent/JP2959032B2/en
Priority to EP19910104437 priority patent/EP0449117A3/en
Publication of JPH03273216A publication Critical patent/JPH03273216A/en
Priority to US08/090,638 priority patent/US5486442A/en
Priority to US08/453,061 priority patent/US5654367A/en
Priority to US08/450,909 priority patent/US5876891A/en
Priority to US08/451,727 priority patent/US5597889A/en
Application granted granted Critical
Publication of JP2959032B2 publication Critical patent/JP2959032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the optical switching characteristic suitable for an optical arithmetic unit and to enable the stable operation by forming a photoconductive layer of a spacific high polymer. CONSTITUTION:The photoconductive layer is formed of the high polymer expressed by formula I. In the formula I, n>=2, i=1, 2,..., n; X1 is any of O, S, SE, and Te; Y1 is an arom.or substd. arom. group. The high polymer expressed by the formula I has a high photosensitivity and can be changed in the film quality by the same high polymer in order to function the polymer as a unidirectionally oriented film. The dielectric constant of this high polymer has the value approximate to the value of a liquid crystal layer when this high polymer is used as the oriented film of an optical modulating element. The formation of the area of liquid crystal picture elements to the same area for photodetection in device design is then possible. The photoconductive layer is formed on the substrate surface without forming patterns in this way and the stable optical switching characteristic is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 光演算装置または投射型デイスプレィなど
に用いられる空間光変調素子に関するものであム 従来技術 従来の液晶を用いた空間光変調素子のなかで、光書き込
み型のものとして、アモルファスシリコン、CdS等の
光導電層とネマチック液晶を積層されたものが提案され
ていも 発明が解決しようとする課題 光導電層と液晶層の組合せによる空間光変調素子は 光
導電層により光照射されることで液晶配向状態を制御す
ム この光導電層にアモルファスシリコン、CdS等の
無機感光材料を使用した場合、液晶画素面積に対する光
導電層受光面積の比及び膜厚はスイッチング機能を果た
す様に設計されも 液晶の誘電率εLe、光導電層の誘
電率εPHとしたと東 以下の関係式を満足する様に設
計すも εLCS LC/ d tc <  εpssPH/d
psよって例えば光導電層としてアモルファスシリコン
のεptt〜11を考えると、 εLC〜3としてS+
、c:SPH〜1:0.1(dLc〜5μdPH〜1μ
と仮定する)となも よって有効に入射光を使えないと
いう短所があム また光導電層と液晶層の間には絶縁層
である配向膜があり、界面における電荷蓄積が大きな問
題となム 課題を解決するための手段 対向する導電性電極で液晶層及び光導電層をはさんだ液
晶セルにおいて、光導電層を一般式(イ)で表される高
分子とすム また液晶層をはさむ配向膜の少なくとも一方を一般式(
ロ)で表せられる高分子層とすもさらに 液晶を挟む導
電性電極を形成された基板上に第一層の一般式(ロ)を
形成し 加熱処理を施し 続いて第二層の一般式(ロ)
の高分子を形成し第一層の加熱温度以下の温度で熱処理
することにより空間光変調素子を製造すも 作用 一般式(イ)で表される高分子は高い光感度を有し な
かでも一般式(ロ)で表せられるポリイミド膜である場
合は液晶層の配向膜としても機能すも 我々は一般式(
イ)、 (ロ)の高分子が結晶性の増加で著しい感度増
加につながることを発明しtも  一方配向膜として機
能させるのに同一高分子で膜質を変化させることでも可
能であL 例えば一般式(ロ)で表せられるポリイミド
膜の場合、結晶化温度とイミド化温度の差を使う。光導
電層としての膜は導電性基板上に前駆体のポリアミック
酸を塗布 イミド化させた眞 更に高温の高分子の融点
で結晶化させム 配向膜としての第2の層は光導電層上
に同一のポリアミック酸を塗布 イミド化で形成すも 
配向処理はラビング法で行う。この方法では高分子形成
を溶媒中からの塗布法とした力i 真空蒸着法によって
もよしもこの高分子を光変調素子の配向膜とした場合第
1にその誘電率が液晶層に近いεPM〜4を持板デバイ
ス設計上 液晶画素面積と受光面積を同一にできも こ
のことは光導電層を基板面にパターン形成することなく
成膜できも また配向膜として機能する高分子(ロ)はキャリア伝達
能力に優れ 膜内に電荷蓄積が少なく、安定な光スイツ
チング特性を示す。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a spatial light modulation element used in an optical arithmetic device or a projection display. Although a photo-writing type device in which a photoconductive layer such as amorphous silicon or CdS and a nematic liquid crystal are laminated has been proposed, the problem to be solved by the invention is spatial light modulation by the combination of a photoconductive layer and a liquid crystal layer. The device controls the alignment state of the liquid crystal by being irradiated with light through the photoconductive layer.If an inorganic photosensitive material such as amorphous silicon or CdS is used for this photoconductive layer, the ratio of the light-receiving area of the photoconductive layer to the area of the liquid crystal pixel and The film thickness is designed to fulfill the switching function.If the dielectric constant of the liquid crystal is εLe, and the dielectric constant of the photoconductive layer is εPH, it is designed to satisfy the following relational expression: εLCS LC/d tc < εpssPH/d
ps Therefore, for example, if we consider εptt~11 of amorphous silicon as the photoconductive layer, then S+ as εLC~3
, c:SPH~1:0.1(dLc~5μdPH~1μ
Therefore, the disadvantage is that the incident light cannot be used effectively.Also, there is an alignment film, which is an insulating layer, between the photoconductive layer and the liquid crystal layer, and charge accumulation at the interface becomes a major problem. Means for Solving the Problem In a liquid crystal cell in which a liquid crystal layer and a photoconductive layer are sandwiched between opposing conductive electrodes, the photoconductive layer is made of a polymer represented by the general formula (A) and the liquid crystal layer is aligned between the layers. At least one of the membranes has the general formula (
A first layer of the general formula (b) is formed on a substrate on which conductive electrodes are formed, sandwiching a liquid crystal, and a polymer layer represented by (b) is heated, followed by a second layer of the general formula ( B)
A spatial light modulator is manufactured by forming a polymer and heat-treating it at a temperature lower than the heating temperature of the first layer.The polymer represented by the general formula (a) has high photosensitivity. In the case of a polyimide film expressed by the formula (b), it also functions as an alignment film for the liquid crystal layer.
We discovered that the polymers described in a) and (b) lead to a significant increase in sensitivity due to increased crystallinity.On the other hand, it is also possible to make the same polymer function as an alignment film by changing its film quality. In the case of a polyimide film expressed by formula (b), the difference between the crystallization temperature and imidization temperature is used. The film as a photoconductive layer is formed by coating a precursor polyamic acid on a conductive substrate, imidizing it, and then crystallizing it at a high temperature at the melting point of the polymer.The second layer as an alignment film is formed on the photoconductive layer. Coating the same polyamic acid and forming it by imidization
The alignment treatment is performed by a rubbing method. In this method, the polymer is formed using a coating method from a solvent.It is also possible to use a vacuum evaporation method.If this polymer is used as an alignment film for a light modulation element, firstly, the dielectric constant is εPM~ which is close to that of the liquid crystal layer. 4. In designing the holding plate device, it is possible to make the liquid crystal pixel area and the light-receiving area the same. This also means that the photoconductive layer can be formed without patterning on the substrate surface, and the polymer (b) that functions as an alignment film is a carrier. It has excellent transmission ability, little charge accumulation within the film, and exhibits stable optical switching characteristics.

実施例 本発明の実施例について、図面を参照しながら説明すも 第1図に本発明の空間光変調素子の一実施例の断面図を
示す。素子の構tl;L  透明絶縁性基板lO1(例
えばガラス)上に透明導電性電極102(例えばITO
lSnOx)があり、高分子(イ)の光導電層103を
積層したものと、通常の配向膜105を有する基板とで
液晶104をサンドイッチするものであム 光導電層1
03上に配向膜0 I ○ 液晶層の材料としてζ友 例えばネマチック液晶強誘電
液晶 液晶高分子があも 配向膜としては各種ポリイミド膜があも実施例1 第1図の空間光変調素子に於て、透明絶縁性基板101
としてガラス基板を使用し これに透明導電性電極10
2として0.1〜0.5μm厚のIT○をスパッタリン
グ法により成膜し 光導電層103を形成すも 光導電
層103の材料にはベンゾフェノンテトラカルボン酸二
無水物(以下BPDAと称すも )とオリゴパラフェニ
レンスルフィドジアミン(重合度nのオリゴマー〇場合
、5DA−nと称す:&>から重合される光導電性ポリ
イミド(BPDA−Phn)を使った ポリイミドの前
駆体であるポリアミック酸の台底i&BPDAと5DA
−nを溶媒ジメチルアセトアミド(DMAcと称す)中
で行う。このポリアミック酸をスピナーにより前出基板
面に1〜lOμmの範囲で塗布すも 塗布後、基板を熱
処理炉に入t1..300℃2時間の加熱処理を施す。
Embodiment An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a sectional view of an embodiment of the spatial light modulation element of the present invention. Element structure tl;L A transparent conductive electrode 102 (e.g. ITO) is placed on a transparent insulating substrate lO1 (e.g. glass).
A liquid crystal 104 is sandwiched between a laminated photoconductive layer 103 of polymer (A) and a substrate having an ordinary alignment film 105.Photoconductive layer 1
For example, nematic liquid crystal, ferroelectric liquid crystal, and liquid crystal polymer are used as materials for the liquid crystal layer, while various polyimide films are used as the alignment film. The transparent insulating substrate 101
A glass substrate is used as a transparent conductive electrode 10 on this.
2, IT○ with a thickness of 0.1 to 0.5 μm is formed by a sputtering method to form a photoconductive layer 103. The material of the photoconductive layer 103 is benzophenonetetracarboxylic dianhydride (hereinafter referred to as BPDA). and oligoparaphenylene sulfide diamine (oligomer with polymerization degree n, referred to as 5DA-n). i&BPDA and 5DA
-n in the solvent dimethylacetamide (referred to as DMAc). This polyamic acid was applied to the surface of the substrate using a spinner to a thickness of 1 to 10 μm. After coating, the substrate was placed in a heat treatment furnace for t1. .. Heat treatment is performed at 300°C for 2 hours.

この過程でポリイミド膜はイミド化と結晶化がなされも
 他方の基板107にはポリビニルアルコールを塗布乾
燥させて〜100OAの膜を得も ラヒ゛ンク゛処理は
両基板に施す。この基板をセルギャップ5〜7μmで張
り合わせ、液晶材料LI○XN9150(チッソ石油化
学社製〉を封入すも この液晶パネルに白色光を照射し
その光スイツチング特性を評価し1゜尚両IT○電極間
には印加電圧して交流と直流とを重畳させも 第2図には印加電圧として直流成分Vocのみを印加し
 暗時1601uxから明時16001uXと十倍の光
量を照射した時の液晶配向状態を静電容量Cで表した 
光照射時に感光層103の電気抵抗が減少し 液晶層1
04に印可される電界が強まることで液晶分子は基板に
対して垂直に配向すム この変化は静電容量の増加とな
4VDC−4vで最大のコントラストを与えも 第3図は更に交流成分Vacを重畳させた場合であも 
照射光を単色光にした場合の分光感度特性を第4図に示
す。光導電性材料のBPDA−Ph3は光吸収特性に対
応した充電流特性を有すも可視光波長領域では600n
m近傍まで感度域があも第5図には波長400nmを照
射する時の光照射エネルギー依存性を示した 印加電圧
一定の条件で照射光強度が増加することで配向状態は非
線形的に応答すム 実施例2 実施例1開俵 光導電性ポリイミド膜としてBPDA−
Ph3を採用して空間光変調素子を作製し九 素子構成
は第1図と同じである力t 光導電層103上に配向膜
を積層した二層構成にし?。
In this process, the polyimide film is imidized and crystallized, and the other substrate 107 is coated with polyvinyl alcohol and dried to obtain a film of ~100 OA.A raw linking process is applied to both substrates. These substrates were pasted together with a cell gap of 5 to 7 μm, and a liquid crystal material LI○ Although alternating current and direct current are superimposed with an applied voltage in between, Figure 2 shows the liquid crystal alignment state when only the direct current component Voc is applied as the applied voltage and 10 times the amount of light is irradiated from 1601 ux in the dark to 16001 ux in the bright. is expressed as capacitance C
When irradiated with light, the electrical resistance of the photosensitive layer 103 decreases, and the liquid crystal layer 1
As the electric field applied to VDC becomes stronger, the liquid crystal molecules align perpendicularly to the substrate. Even if you superimpose
Fig. 4 shows the spectral sensitivity characteristics when the irradiation light is monochromatic light. BPDA-Ph3, a photoconductive material, has charge current characteristics that correspond to light absorption characteristics, but in the visible light wavelength region, it has a charge current characteristic of 600 nm.
Figure 5 shows the dependence on light irradiation energy when irradiating with a wavelength of 400 nm.The alignment state responds nonlinearly as the irradiation light intensity increases under the condition that the applied voltage is constant. Example 2 Example 1 Open bale BPDA- as photoconductive polyimide film
A spatial light modulator was fabricated using Ph3.9 The device configuration was the same as that shown in Figure 1.A two-layer structure was used in which an alignment film was laminated on the photoconductive layer 103. .

ポリアミック酸をスピナーにより透明電極IT○102
上に塗布し 乾燥i  300℃4時間空気中で加熱す
も このときポリイミド膜は結晶化すもこの膜上に同じ
ポリアミック酸を100OA塗布し 乾燥&  200
℃1時間加熱し イミド化膜を得も この第2の層はア
モルファス膜であも対向する基板は上記後半の第2のイ
ミド化膜105を直接電極106上に形成すも この基
板をラビング処理L 両基板間に液晶を封入すも実施例
1同様作製した空間光変調素子の光応答特性を評価し亀
 第6図に結果を示す。
Transparent electrode IT○102 using a spinner with polyamic acid
The polyimide film is then crystallized. Apply 100 OA of the same polyamic acid on top of the crystallized plum film, dry and heat for 4 hours in the air at 300°C.
℃ for 1 hour to obtain an imidized film. Although this second layer is an amorphous film, the second imidized film 105 mentioned above is directly formed on the electrode 106 on the opposing substrate. This substrate is rubbed. The optical response characteristics of the spatial light modulator manufactured in the same manner as in Example 1 were evaluated, except that a liquid crystal was sealed between both substrates.The results are shown in FIG.

実施例3 光導電性ポリイミドM(よ その結晶法 配向性に依っ
て光感度 液晶配向性が大きく変化すもこの膜制御には
 ポリイミド膜の前駆体であるポリアミック酸の合成条
件及びポリアミノ酸からポリイミドへの加熱イミド化あ
るいは結晶化の条件に依って可能であ4  BPDA−
Ph3を使用しポリアミック酸合皮条件として原料のB
PDAと5DA−3の合皮モル比率を変化させfニー 
またイミド化及び結晶化の制御に加熱温度として、30
0℃近傍で変化させtも ポリアミック酸の合成には通常BPDAと5DA−3の
モル比率はl:lであ迄 X=BPDA/ (BPDA
+5DA−3)とモル比率を定義す、4  X>0.5
の条件では高分子合成にとってはカルボン酸が過剰であ
る場合になる。Xを0、5近傍で変化させたときの加熱
後の結晶化状態の変化をX線回折パターンの第7図に示
す。加熱条件は300℃2時間一定とす、LX≦0.5
ではアモルファス膜であるのに対してX>0.5で結晶
膜となム 更にX>0.5の範囲であってし その比率
の増加で面間隔d=4.OAのd=4.8Aに対するX
線散乱強度比が増加すも その様子を示したのが第8図
であム 面間隔d=4.8Aはポリイミド分子の隣接分
子の面間隔に対応すも よってXが0.5に近い条件の
結晶膜は基板に対して分子が平行に並ぶ配向性を示すの
に対して、Xの増加は結晶粒がランダムに配向する膜で
あもXと、そのポリアミック酸の塗布膜を結晶化させる
加熱温度による光感度特性の変化を第9図に示す。Xの
増加に依って、光感度の著しい増加の得られる加熱温度
領域は広が4X=0.51の場合300±20℃である
のに対してX=O,S6は300±50℃と広がも ポリイミド膜の配向性と液晶層をこのポリイミド膜で挟
むときの配向性の相関を評価しtも  評価方法(よ 
条件の異なったポリイミド塗布膜(膜厚1000A)を
ラビング処理して液晶材料としてゲストホストタイプの
 を封入しf、  このパネルの配向方向に偏向した光
と、直行方向に偏向した光の入射に対する吸収から得ら
れる二色性比で配向度を定義すも ポリイミド膜の配向
度Y=I4゜8/ CI 4.8+ I 4.0)  
(I 4.8はd=4.8Aの散乱強度 I4.0はd
=4.  OAの散乱強度を表す。)に対する二色性比
り、  R,の関係を第1O図に示す。結晶膜の得られ
る領域では工4.8の散乱強度比の大きい膜はど液晶配
向性は良1.% 光感度特性と配向特性より空間光変調素子のポリイミド
膜としての最適条件は配向度Yの最大値を与える結晶膜
であ、L  X=0、5近傍で加熱条件を最適化した結
K  Y=0.8の膜を得た この成膜条件に依ってガ
ラス/IT○電極上に単層のポリイミド膜5μmを得t
ラ  他方のポリイミド膜は同一条件で100OAとし
f、:、、  この両基板で液晶を封入し起 印加電圧
として交流VAC=4vとし?、:、  400nmの
光照射による光スイツチング特性を第11図に示す。
Example 3 Photoconductive polyimide M (Other crystallization method) The photosensitivity and liquid crystal orientation change greatly depending on the orientation.To control this film, the synthesis conditions of polyamic acid, which is the precursor of the polyimide film, and the synthesis of polyamino acid to polyimide were used. It is possible depending on the conditions of thermal imidization or crystallization of 4BPDA-
Using Ph3, raw material B is used as a polyamic acid synthetic leather condition.
f knee by changing the synthetic leather molar ratio of PDA and 5DA-3.
In addition, the heating temperature is 30°C to control imidization and crystallization.
For the synthesis of polyamic acid, the molar ratio of BPDA and 5DA-3 is usually 1:1.
+5DA-3) and define the molar ratio, 4X>0.5
Under these conditions, the carboxylic acid is in excess for polymer synthesis. FIG. 7 shows the X-ray diffraction pattern showing the change in the crystallization state after heating when X is changed around 0 and 5. Heating conditions are constant at 300℃ for 2 hours, LX≦0.5
In this case, it is an amorphous film, but when X>0.5, it becomes a crystalline film.Furthermore, in the range of X>0.5, as the ratio increases, the interplanar spacing d=4. X for d=4.8A of OA
Figure 8 shows how the line scattering intensity ratio increases.The plane spacing d=4.8A corresponds to the plane spacing between adjacent molecules of polyimide molecules, so the condition is such that X is close to 0.5. The crystalline film exhibits an orientation in which molecules are aligned parallel to the substrate, whereas an increase in FIG. 9 shows changes in photosensitivity characteristics depending on heating temperature. As X increases, the heating temperature range in which a significant increase in photosensitivity can be obtained expands.In the case of 4X=0.51, it is 300±20℃, whereas in the case of X=O, S6, it is as wide as 300±50℃. The correlation between the orientation of the polyimide film and the orientation when the liquid crystal layer is sandwiched between the polyimide films was evaluated.
A polyimide coating film (thickness 1000A) under different conditions is rubbed and a guest-host type is encapsulated as a liquid crystal material.The absorption of incident light polarized in the orientation direction of this panel and light polarized in the perpendicular direction is The degree of orientation is defined by the dichroic ratio obtained from: Degree of orientation of polyimide film Y=I4゜8/ CI 4.8 + I 4.0)
(I4.8 is the scattering intensity of d=4.8A, I4.0 is d
=4. It represents the scattering intensity of OA. ) and the dichroic ratio, R, are shown in Figure 1O. In the region where a crystal film is obtained, a film with a large scattering intensity ratio of 4.8 has a good liquid crystal orientation of 1. % From the photosensitivity characteristics and orientation characteristics, the optimum condition for the polyimide film of the spatial light modulator is a crystal film that gives the maximum value of the degree of orientation Y, and the result obtained by optimizing the heating conditions near L Based on these film forming conditions, a single layer polyimide film of 5 μm thick was obtained on the glass/IT○ electrode.
A The other polyimide film was set to 100 OA under the same conditions, and the liquid crystal was sealed in both substrates, and the applied voltage was set to AC VAC = 4 V? , :, Figure 11 shows the optical switching characteristics caused by 400 nm light irradiation.

実施例4 光導電性ポリイミド膜の材料検討を行つf、  カルボ
ン酸としてBPDA、  PMDA(ピロメリット酸二
無水物)、BIDA(ビフェニルテトラカルボン酸二無
水物)の3種数 ジアミンとして5DA−3、5,7の
3種類である。各々のポリイミド膜を配向膜と光導電膜
とを兼ねる構造で使(\その光感度特性を比較しヘ パ
ネルに印加する電圧は交流4vであり、透過率がon状
態とoff状態の中間の状態になるのに必要な光エネル
ギー密度の逆数で表現すも 第12図に結果を示す。
Example 4 Materials for a photoconductive polyimide film were investigated. Three types of carboxylic acids: BPDA, PMDA (pyromellitic dianhydride), and BIDA (biphenyltetracarboxylic dianhydride). 5DA-3 as a diamine. There are three types: , 5, and 7. Each polyimide film is used in a structure that doubles as an alignment film and a photoconductive film. Figure 12 shows the results.

実施例5 実施例1の空間光変調素子を使って光ニューラルネット
ワークを構成し その機能動作を確認し九 第13図に
構成を示も 逆伝搬型学習法(パックプロパゲーション
法)を用いており、マイクロレンズアレイ122、12
4、学習マスクパターン123、本実施例の空間光変調
素子による光しきい値素子125からなん 入力画像1
21は7×8のマトリックスでアルファベット26文字
を表示すも 学習マスクパターン123は49×64の
マトリックスからなり、BP法で求めた8階調表示を透
過光強度で表現できるように透過率を変化させも 光し
きい値素子125は7×8のマトリックスであり、各画
素にはマイクロレンズアレイ124で7×8ケのマスク
パターンからの透過光が集光されていも に示す光非線
形特性に依って液晶シャッターが動作すム このシステ
ムを用いてアルファベット26文字の連想させたところ
100%の認識率で回答しtも 実施例6 第14図に示す反射型空間光変調素子を作製しtラ  
透明絶縁性基板201のガラス上にIT○電極202の
形成されたものの上に光導電層203としてBPDA−
Ph3を5μm形成し 光反射層205としてのA1の
金属薄膜を形成すも 尚書き込み光212として白色光
源を用いるため光導電層203で吸収されずに透過する
光を光吸収層204で吸収させも 液晶層207を配向
膜206、208で挟仏 この反射型空間光変調素子で
投射型デイスプレィを構成したところ高コントラストな
映像を得た 実施例7 高速のスイッチング動作を実現するのに強誘電液晶を用
いた空間光変調素子を作成した パネル構成は第1図で
あも 液晶104には強誘電液晶FELIX−001(
ヘキスト社製)を用いセルギャップ2μ としt4  
印加電圧20vの駆形渡周波数1kHzとして白色光を
照射し その透過光の光強度の変化を評価し九 結果を
第15図に周波数応答性で示す。おのパネル特性は20
0μsecの応答が可能であも 発明の効果 本発明の空間光変調素子は光演算装置に適した光スイツ
チング特性を持杖 安定な動作を示も配向膜と光導電層
を兼ねる構造では製造が容易であり、膜質も電気抵抗が
低く空間電荷蓄積の影響が小さ(1投射型デイスプレィ
として用いた場合高コントラストな映像を提供すも
Example 5 An optical neural network was constructed using the spatial light modulator of Example 1, and its functional operation was confirmed.The configuration is shown in Figure 13.The back propagation learning method (pack propagation method) was used. , microlens arrays 122, 12
4. Input image 1 from the learning mask pattern 123 and the light threshold element 125 by the spatial light modulation element of this embodiment
21 displays 26 letters of the alphabet in a 7 x 8 matrix.Learning mask pattern 123 consists of a 49 x 64 matrix, and the transmittance is changed so that the 8-gradation display obtained by the BP method can be expressed by the transmitted light intensity. The optical threshold element 125 is a 7 x 8 matrix, and each pixel is focused with transmitted light from a 7 x 8 mask pattern by the microlens array 124. When the 26 letters of the alphabet were associated using this system, the recognition rate was 100%.Example 6 A reflective spatial light modulator shown in FIG.
A photoconductive layer 203 of BPDA-
Ph3 is formed to a thickness of 5 μm, and a metal thin film of A1 is formed as the light reflection layer 205. Furthermore, since a white light source is used as the writing light 212, the light that is transmitted without being absorbed by the photoconductive layer 203 may be absorbed by the light absorption layer 204. A liquid crystal layer 207 is sandwiched between alignment films 206 and 208. A projection display was constructed using this reflective spatial light modulator and a high-contrast image was obtained.Example 7 Ferroelectric liquid crystal was used to realize high-speed switching operation. Although the panel configuration in which the spatial light modulation element used was created is shown in Figure 1, the liquid crystal 104 is a ferroelectric liquid crystal FELIX-001 (
(manufactured by Hoechst) with a cell gap of 2 μ and t4
White light was irradiated with an applied voltage of 20 V and a driving frequency of 1 kHz, and changes in the light intensity of the transmitted light were evaluated.The results are shown in FIG. 15 in terms of frequency response. The panel characteristics of the ax are 20
Even though a response of 0 μsec is possible, the spatial light modulator of the present invention has optical switching characteristics suitable for optical processing devices.Although it exhibits stable operation, it is easy to manufacture with a structure that also serves as an alignment film and a photoconductive layer. The film quality is also low in electrical resistance, so the effect of space charge accumulation is small (it provides high contrast images when used as a single projection display).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光導電性高分子を用いた空間光変調素
子の一実施例の断面& 第2図及び第3図は実施例1に
おける第1図に示した空間光変調素子の印加電圧に対す
る光応答特性の変化を示した阻 第4図及び第5図は同
じ〈実施例1においての分光感度特性 入射光エネルギ
ーに対する応答特性を示す阻 第6図は実施例2におけ
る二層配向膜構造の空間光変調素子の入射光エネルギー
に対する応答特性を示す阻 第7図及び第8図は実施例
3におけるポリアミック酸台底条件の違いによる結晶性
変化を示す阻 第9図はその溶液よりamされるポリイ
ミド膜の熱処理温度に対する光感度変化を示した飄 第
10図はポリイミド膜の配向特性を示す@ 第11図は
最も配向性の高い膜を配向膜とする空間光変調素子の入
射光エネルギーに対する応答特性を示す飄 第12図は
実施例4におけるポリイミド膜の異なった空間光変調素
子の光スイッチングの分光感度特性を示す&第13図は
実施例5における光ニューラルネットワークの構!&&
  第14図は実施例6における反射型空間光変調素子
の構成断面は 第15図は実施例7における強誘電液晶
を用いた空間光変調素子の光スイッチングの周波数依存
性を示した図であム 101、107・・・・透明基板  102、106・
・・・透明電K   103・・・・光導電N、104
・・・・液晶  105・・・・配向膜  108・・
・・空間光変調素子、  109・・・・偏光子、  
110・・・・検光子、  111・・・・入射i  
 112・・・・出射光  201、210・・・・透
明基板  202、209・・・・透明電極  203
・・・・光導電層204・・・・光吸収凰  205・
・・・光反射凰206、208・・・・配向膜 207
・・・・液晶211・・・・読みだし光  212・・
・・信号光213・・・・偏光子、  214・・・・
検光子。
Figure 1 is a cross section of one embodiment of a spatial light modulator using the photoconductive polymer of the present invention & Figures 2 and 3 are cross sections of the spatial light modulator shown in Figure 1 in Example 1. Figures 4 and 5 show the same spectral sensitivity characteristics in Example 1. Figure 6 shows the response characteristics of the two-layer alignment film in Example 2. Figures 7 and 8 show the response characteristics of the spatial light modulator with the structure to incident light energy. Fig. 10 shows the orientation characteristics of the polyimide film with respect to the heat treatment temperature. Figure 12 shows the spectral sensitivity characteristics of optical switching of spatial light modulators with different polyimide films in Example 4. & Figure 13 shows the structure of the optical neural network in Example 5. &&
Figure 14 is a cross-sectional view of the configuration of the reflective spatial light modulator in Example 6. Figure 15 is a diagram showing the frequency dependence of optical switching of the spatial light modulator using ferroelectric liquid crystal in Example 7. 101, 107...Transparent substrate 102, 106...
...Transparent conductive K 103...Photoconductive N, 104
...Liquid crystal 105...Alignment film 108...
...Spatial light modulation element, 109...Polarizer,
110...Analyzer, 111...Incidence i
112... Emitted light 201, 210... Transparent substrate 202, 209... Transparent electrode 203
...Photoconductive layer 204...Light absorption layer 205.
...Light reflecting screen 206, 208...Alignment film 207
...Liquid crystal 211...Reading light 212...
...Signal light 213...Polarizer, 214...
Analyzer.

Claims (7)

【特許請求の範囲】[Claims] (1)対向する導電性電極で液晶層及び光導電層をはさ
んだ液晶セルにおいて、光導電層が一般式(イ)で表さ
れる高分子よりなることを特徴とする空間光変調素子。 ▲数式、化学式、表等があります▼(イ) n≧2、i=1、2、・・・、n X_i:O、S、Se、Teのいずれか Y_i:芳香族或は置換芳香族基
(1) A spatial light modulation element in which a liquid crystal layer and a photoconductive layer are sandwiched between opposing conductive electrodes, wherein the photoconductive layer is made of a polymer represented by general formula (A). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(a) n≧2, i=1, 2,..., n X_i: Any of O, S, Se, Te Y_i: Aromatic or substituted aromatic group
(2)高分子が一般式(ロ)で表せられるポリイミドで
有ることを特徴とする請求項1記載の空間光変調素子。 ▲数式、化学式、表等があります▼(ロ) Z:芳香族を含む基
(2) The spatial light modulator according to claim 1, wherein the polymer is polyimide represented by the general formula (b). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(b) Z: Group containing aromatic group
(3)液晶層が強誘電液晶であることを特徴とする請求
項1に記載の空間光変調素子。
(3) The spatial light modulator according to claim 1, wherein the liquid crystal layer is a ferroelectric liquid crystal.
(4)光導電層および液晶層の間に、ある波長の光に対
し光導電層よりも吸収係数の大きな光吸収層及び液晶層
を通過する光に対して反射率の大きな光反射層を有する
ことを特徴とする請求項1または2に記載の空間光変調
素子。
(4) Between the photoconductive layer and the liquid crystal layer, there is a light absorption layer that has a larger absorption coefficient than the photoconductive layer for light of a certain wavelength and a light reflection layer that has a higher reflectance for light that passes through the liquid crystal layer. The spatial light modulator according to claim 1 or 2, characterized in that:
(5)液晶層をはさむ配向膜の少なくとも一方が一般式
(ロ)で表せられる高分子層であることを特徴とする請
求項1記載の空間光変調素子。
(5) The spatial light modulator according to claim 1, wherein at least one of the alignment films sandwiching the liquid crystal layer is a polymer layer represented by the general formula (b).
(6)液晶層を挟む少なくとも一方の高分子層が二層以
上よりなり、最上層がアモルファス高分子であり、その
層より基板側の高分子層が結晶高分子であることを特徴
とする請求項5記載の空間光変調素子。
(6) A claim characterized in that at least one of the polymer layers sandwiching the liquid crystal layer is composed of two or more layers, the top layer is an amorphous polymer, and the polymer layer closer to the substrate than that layer is a crystalline polymer. Item 5. Spatial light modulation element according to item 5.
(7)液晶を挟む導電性電極を形成された基板上に第一
層の一般式(ロ)を形成し、加熱処理を施す。続いて第
二層の一般式2の高分子を形成し第一層の加熱温度以下
の温度で熱処理する空間光変調素子の製造方法。
(7) A first layer of the general formula (b) is formed on a substrate on which conductive electrodes sandwiching a liquid crystal are formed, and a heat treatment is performed. Subsequently, a second layer of a polymer represented by general formula 2 is formed and heat-treated at a temperature lower than the heating temperature of the first layer.
JP7377990A 1990-03-23 1990-03-23 Spatial light modulator and method of manufacturing the same Expired - Fee Related JP2959032B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP7377990A JP2959032B2 (en) 1990-03-23 1990-03-23 Spatial light modulator and method of manufacturing the same
EP19910104437 EP0449117A3 (en) 1990-03-23 1991-03-21 Organic polymer and preparation and use thereof
US08/090,638 US5486442A (en) 1990-03-23 1993-07-13 Organic polymer and preparation and use in crystal spatial light modulator
US08/453,061 US5654367A (en) 1990-03-23 1995-05-26 Organic polymer and preparation and use thereof
US08/450,909 US5876891A (en) 1990-03-23 1995-05-26 Photosensitive material and process for the preparation thereof
US08/451,727 US5597889A (en) 1990-03-23 1995-05-26 Organic polymer and preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7377990A JP2959032B2 (en) 1990-03-23 1990-03-23 Spatial light modulator and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03273216A true JPH03273216A (en) 1991-12-04
JP2959032B2 JP2959032B2 (en) 1999-10-06

Family

ID=13528032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7377990A Expired - Fee Related JP2959032B2 (en) 1990-03-23 1990-03-23 Spatial light modulator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2959032B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314673A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Polymer, highly transparent polyimide, resin composition and article
JP2007099951A (en) * 2005-10-05 2007-04-19 Dainippon Printing Co Ltd Low expansion polyimide, resin composition and article
US8088882B2 (en) 2005-03-31 2012-01-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof
KR20180001505A (en) * 2016-06-27 2018-01-04 비아비 솔루션즈 아이엔씨. High chroma flakes
JP2020086090A (en) * 2018-11-22 2020-06-04 三菱電機株式会社 Liquid crystal display device and method of manufacturing the same
GB2600452A (en) * 2020-10-30 2022-05-04 Sumitomo Chemical Co Polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314673A (en) * 2004-03-31 2005-11-10 Dainippon Printing Co Ltd Polymer, highly transparent polyimide, resin composition and article
US8088882B2 (en) 2005-03-31 2012-01-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof
US8742059B2 (en) 2005-03-31 2014-06-03 Dai Nippon Printing Co., Ltd. Polymer precursor, high transparency polyimide precursor, polymer compound, resin composition and article using thereof
JP2007099951A (en) * 2005-10-05 2007-04-19 Dainippon Printing Co Ltd Low expansion polyimide, resin composition and article
KR20180001505A (en) * 2016-06-27 2018-01-04 비아비 솔루션즈 아이엔씨. High chroma flakes
JP2020086090A (en) * 2018-11-22 2020-06-04 三菱電機株式会社 Liquid crystal display device and method of manufacturing the same
GB2600452A (en) * 2020-10-30 2022-05-04 Sumitomo Chemical Co Polymer

Also Published As

Publication number Publication date
JP2959032B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
EP0400635B1 (en) Liquid crystal device
WO1997033191A1 (en) Method for liquid crystal alignment
US20180231867A1 (en) Lens device
JPH0254527B2 (en)
CN107092147A (en) A kind of reflective automatically controlled adjustable Terahertz liquid crystal wave plate and preparation method thereof
Darracq et al. Stable photorefractive memory effect in sol-gel materials
US5268780A (en) Liquid crystal device having a polyimide alignment film substituted with fluorine or a fluorine-containing group
JP2001330844A5 (en)
JPH03273216A (en) Space light modulator and production thereof
US5419931A (en) Liquid crystal device
US5400159A (en) Liquid crystal device having alignment film with particular surface energy difference before and after rubbing
US5576864A (en) Chiral smectic liquid crystal device having fluorine-containing polymeric alignment film with predetermined refractive index anisotropy after rubbing
KR100230436B1 (en) Optical alignment composition, aligment layer formed therefrom, liquid crystal device employing the alignment layer
EP0397153B1 (en) Chiral smectic liquid crystal device
US5121238A (en) Liquid crystal device
Harada et al. High-speed light modulation using complex refractive-index changes of electro-optic polymers
JPS62231937A (en) Liquid crystal element
JP2789595B2 (en) Liquid crystal electro-optical element
JPH06130351A (en) Liquid crystal lens
JP2000214424A (en) Production of optically rotating optical element panel
KR100260627B1 (en) Polymer orientation layer fabrication method for lcd
KR100260628B1 (en) Preparation of liquid crystal orienting polymer film by vacuum polymerization
JP3480375B2 (en) Reflective liquid crystal display and its manufacturing method
Kamanina Nano-structuration influence on the polyimide-based spatial light modulator’s parameters
JPH03274259A (en) Production of organic thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees