JPH03273208A - Semiconductor laser module - Google Patents

Semiconductor laser module

Info

Publication number
JPH03273208A
JPH03273208A JP7206890A JP7206890A JPH03273208A JP H03273208 A JPH03273208 A JP H03273208A JP 7206890 A JP7206890 A JP 7206890A JP 7206890 A JP7206890 A JP 7206890A JP H03273208 A JPH03273208 A JP H03273208A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
faraday rotator
lens
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7206890A
Other languages
Japanese (ja)
Inventor
Chitaka Konishi
小西 千隆
Tsutomu Tajima
勉 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7206890A priority Critical patent/JPH03273208A/en
Publication of JPH03273208A publication Critical patent/JPH03273208A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • G02B6/4208Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback using non-reciprocal elements or birefringent plates, i.e. quasi-isolators
    • G02B6/4209Optical features

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To facilitate production by providing a rectangular prism which can monitor forward reflected return light and a photodiode in a module and constituting the Faraday rotator of an optical isolator by winding a coil, etc. CONSTITUTION:This module is constituted of a semiconductor laser 11, a 1st lens 12 which converts the laser beam emitted from the semiconductor laser 11 to collimated beams of light of a prescribed diameter, the rectangular prism 13, a polarizer 14 which is formed by using a double refractive material having the moving distance of extraordinary light exceeding the prescribed diameter of the collimated beams of light, the Faraday rotator 15, an analyzer 16 which has the plane of polarization inclined by about 45 deg. with the plane of polarization of the polarizer 14, a 2nd lens 17 which converges the collimated beams of light, an optical fiber 18, the photodiode 19 which monitors the reflected light from the rectangular prism 13 and generates the photocurrent corresponding to the reflected light thereof, and the coil 20 which is wound on the Faraday rotor 15 and excites a DC magnetic field H by the DC current I passed according to the photocurrent from the photodiode 19. The difficulty in the optical axis adjustment of the Faraday rotator is decreased in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信、光計測等に適用され、電気信号を光信
号に変換する半導体レーザモジュールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser module that is applied to optical communication, optical measurement, etc., and converts an electrical signal into an optical signal.

〔従来の技術:・ 従来、高速PCM伝送やアナログ直接変調による画像伝
送システムでは、半導体レーザが用いられることはよく
知られている。しかし、このようなンステムでは光コネ
クタや他の光デバイス等からの反射光が半導体レーザに
再注入して生じる反射雑音の影響が大きく、このため反
射光の再注入を阻止するアイソレータを内蔵した半導体
レーザモジュールが開発されている。
[Conventional technology: It is well known that semiconductor lasers are conventionally used in image transmission systems using high-speed PCM transmission or analog direct modulation. However, in such systems, the influence of reflection noise caused by the reinjection of reflected light from optical connectors and other optical devices into the semiconductor laser is significant, so semiconductors with built-in isolators to prevent the reinjection of reflected light have a large effect. A laser module has been developed.

第2図は、このような従来の光アイソレータ内蔵半導体
レーザモジュールの構成を示したものである。半導体レ
ーザ1の出射光は、レンズ2により平行光に変換された
後、偏光子3および45゜ファラデー回転子4ならびに
検光子5から構成される光アイソレータを経て、レンズ
6により収束され、ファイバ7に結合される構成となっ
ており、反射光の再注入を阻止するようになっている。
FIG. 2 shows the configuration of such a conventional semiconductor laser module with a built-in optical isolator. The emitted light from the semiconductor laser 1 is converted into parallel light by a lens 2, passes through an optical isolator consisting of a polarizer 3, a 45° Faraday rotator 4, and an analyzer 5, is converged by a lens 6, and is transmitted to a fiber 7. The structure is such that the reflected light is prevented from being reinjected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述した従来の光アイソレータ内蔵の半導体
レーザモジュールでは、半導体レーザからの出射光が第
1のレンズ2により平行光に変換され、偏光子3および
45°フアラデ一回転子4ならびに検光子5から構成さ
れる光アイソレータを経て、第2のレンズ6により収束
され、ファイバ7に結合される構成となっており、45
°フアラデ一回転子4にはマグネット等により固定の直
流磁界が印加されている。このため、半導体レーザモジ
ュールを構成するうえで、偏光子3および検光子5の光
学面を調整するのに高精度が要され、製作難度が極めて
高く、製作時間も多く必要とする等の問題がある。
However, in the above-described conventional semiconductor laser module with a built-in optical isolator, the light emitted from the semiconductor laser is converted into parallel light by the first lens 2, and the light emitted from the semiconductor laser is converted into parallel light by the polarizer 3, the 45° Farade rotator 4, and the analyzer 5. After passing through an optical isolator, it is converged by a second lens 6 and coupled to a fiber 7.
A fixed DC magnetic field is applied to the Farade rotor 4 by a magnet or the like. For this reason, when constructing a semiconductor laser module, high precision is required to adjust the optical surfaces of the polarizer 3 and analyzer 5, which causes problems such as extremely high manufacturing difficulty and a long manufacturing time. be.

本発明はこのような事情に鑑みてなされたもので、製作
時のファラデー回転子の光軸調整に対する難度の軽減お
よび自由度の拡大により、製作時間の短縮等が図れる半
導体レーザモジュールを提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor laser module that can shorten the manufacturing time by reducing the difficulty in adjusting the optical axis of a Faraday rotator during manufacturing and increasing the degree of freedom. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、半導体レーザと、この半導体レーザから出射
されるレーザ光を所定の直径の平行光に変換する第1の
レンズと、平行光の一部を反射戻り光として分離する直
角プリズムと、異常光の移動距離が平行光の所定の直径
以上となる複屈折材料を用いた偏光子と、回転角を変更
する手段を備えたファラデー回転子と、偏向面が偏光子
のそれに対して略45°傾いた検光子と、平行光を収束
する第2のレンズと、収束光が出射される光ファイバと
、直角プリズムで分離された反射戻り光をモニタする手
段とを備え、これによりファラデー回転子の光軸の調整
難度を低減できると共に、フィードバック制御が実現で
き、上述した目的を達成するもである。
The present invention provides a semiconductor laser, a first lens that converts laser light emitted from the semiconductor laser into parallel light of a predetermined diameter, a right-angle prism that separates a part of the parallel light as reflected return light, and an abnormality. A polarizer using a birefringent material that allows light to travel a distance equal to or greater than a predetermined diameter of parallel light, a Faraday rotator equipped with means for changing the rotation angle, and a polarizer whose polarization plane is approximately 45 degrees with respect to that of the polarizer. It includes an inclined analyzer, a second lens that converges parallel light, an optical fiber from which the converged light is emitted, and a means for monitoring the reflected return light separated by a right-angle prism. The degree of difficulty in adjusting the optical axis can be reduced, feedback control can be realized, and the above-mentioned objects can be achieved.

なお、ファラデー回転子の回転角を変更する手段はコイ
ルとされる。
Note that the means for changing the rotation angle of the Faraday rotator is a coil.

また、直角プリズムで分離された反射戻り光をモニタす
る手段は、フォトダイオードとされる。
Further, the means for monitoring the reflected return light separated by the right-angle prism is a photodiode.

〔実施例〕〔Example〕

以下、本発明に係わる半導体レーザモジュールの一実施
例を第1図を参照して説明する。
Hereinafter, one embodiment of a semiconductor laser module according to the present invention will be described with reference to FIG.

本実施例の半導体レーザモジュールは、半導体レーザ1
1と、この半導体レーザ11から出射されるレーザ光を
所定の直径の平行光に変換する第1のレンズ12と、直
角プリズム13と、異常光の移動距離が平行光の所定の
直径以上となる複屈折材料を用いた偏光子14と、ファ
ラデー回転子15と、偏向面が偏光子14のそれに対し
て略45°傾いた検光子16と、平行光を収束する第2
のレンズ17と、光ファイバ18と、直角プリズム13
からの反射光をモニタし、その反射光に応じた光電流を
発生させるフォトダイオード19と、ファラデー回転子
15に巻かれ、フォトダイオード19からの光電流に応
じて直流電流rが流され直流磁界Hを励起するコイル2
0とによって構成されている。
The semiconductor laser module of this embodiment has a semiconductor laser 1
1, a first lens 12 that converts the laser light emitted from the semiconductor laser 11 into parallel light having a predetermined diameter, and a right angle prism 13, so that the traveling distance of the extraordinary light is equal to or greater than the predetermined diameter of the parallel light. A polarizer 14 using a birefringent material, a Faraday rotator 15, an analyzer 16 whose polarization plane is inclined at approximately 45 degrees with respect to that of the polarizer 14, and a second polarizer that converges parallel light.
lens 17, optical fiber 18, and right angle prism 13
A photodiode 19 that monitors the reflected light from the photodiode 19 and generates a photocurrent according to the reflected light; and a photodiode 19 that is wound around the Faraday rotator 15 and receives a direct current r in accordance with the photocurrent from the photodiode 19 to generate a direct current magnetic field. Coil 2 that excites H
0.

しかし、半導体レーザ11の出射光は、第1のレンズ1
2により平行光に変換された後、直角プリズム13を通
過して、偏光子14およびファラデー回転子15を経て
、検光子16を通過し、第2のレンズ17で収束され、
光ファイバ18に入射される。その際、ファラデー回転
子15には、直流電流Iを流すとiII流磁界Hを励起
するコイル20が巻かれているので、この直流電流■を
制御し、直流磁界Hを変化させると、ファラデー回転子
15のファラデー回転角θは次の(1)式の関係を満足
して変化することが可能である。
However, the light emitted from the semiconductor laser 11 is transmitted through the first lens 1.
2, the light passes through a right-angle prism 13, passes through a polarizer 14 and a Faraday rotator 15, passes through an analyzer 16, and is converged by a second lens 17.
The light is input into the optical fiber 18. At this time, since a coil 20 is wound around the Faraday rotator 15, which excites an III-flow magnetic field H when a DC current I is passed through it, when this DC current ■ is controlled and the DC magnetic field H is changed, the Faraday rotation The Faraday rotation angle θ of the child 15 can be changed while satisfying the relationship of the following equation (1).

θ=VH・1 ・・・・・・(1) (v:ベルデ定数、1:ファラデー回転子15の長さ) いま、偏光子14の前方(出射側)に反射点があり、反
射光が戻ってくるものとすると、反射光は直角プリズム
13にて、半導体レーザ11に入射されずフォトダイオ
ード19に入射され、フォトダイオード19に入射され
た反射光に応じた光電流が発生する。この光電流を外部
にてモニタし、その平均値を検出する回路を外部に設け
、またその検出電圧を電流に変換する制御回路をモジュ
ール外部に設け、ファラデー回転子15にフィードバッ
クする構成とすると、反射戻り光がなくなるようにファ
ラデー回転子15の回転角を自動的に最適に合わせ込む
ように動作する。
θ=VH・1 (1) (v: Verdet constant, 1: length of Faraday rotator 15) Now, there is a reflection point in front of the polarizer 14 (output side), and the reflected light Assuming that the reflected light returns, the reflected light is not incident on the semiconductor laser 11 but is incident on the photodiode 19 at the right angle prism 13, and a photocurrent corresponding to the reflected light incident on the photodiode 19 is generated. If a circuit is provided externally to monitor this photocurrent and detect its average value, and a control circuit is provided externally to the module to convert the detected voltage into a current, and is fed back to the Faraday rotator 15, The rotation angle of the Faraday rotator 15 is automatically adjusted to the optimum value so that reflected return light is eliminated.

したがって、従来ではマグネット等により半固定状態で
、光学面の調整等の難度が高く、何等かの外部要因で軸
がずれても補償する手段がなかったのに対し、本実施例
では、反射戻り光のモニタが可能で、かつファラデー回
転子15の回転角を連続的に変化可能としたので、製造
時のファラデー回転子の光軸の調整難度を低減できると
共に、フィードバック制御が実現でき、自由度の大きい
半導体レーザダイオードが実現できるようになる。
Therefore, in the past, the optical surface was semi-fixed using magnets, etc., making it difficult to adjust the optical surface, and there was no way to compensate for axis deviation due to some external factor. Since the light can be monitored and the rotation angle of the Faraday rotator 15 can be changed continuously, the difficulty in adjusting the optical axis of the Faraday rotator during manufacturing can be reduced, and feedback control can be realized, increasing the degree of freedom. This makes it possible to realize semiconductor laser diodes with large diameters.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、モジュール内に前方の反
射戻り光のモニタができる直角プリズムとフォトダイオ
ード等とを設けると共に、光アイソレータのファラデー
回転子にコイル等を巻いた構成としたことで、ファラデ
ー回転子の光軸の調整難度を低減できると共に、フィー
ドバック制御が実現でき、自由度の大きい半導体レーザ
ダイオードが実現できるようになるという優れた効果が
奏される。
As described above, according to the present invention, a rectangular prism, a photodiode, etc. that can monitor the forward reflected return light are provided in the module, and a coil etc. is wound around the Faraday rotator of the optical isolator. , the difficulty in adjusting the optical axis of the Faraday rotator can be reduced, feedback control can be realized, and a semiconductor laser diode with a large degree of freedom can be realized, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は従来
例を示す構成図である。 11・・・・・・半導体レーザ、12・・・・・・レン
ズ、13・・・・・・直角プリズム、14・・・・・・
偏光子、15・・・・・・ファラデー転子、16・・・
・・・検光子、17・・・・・・レンズ、 18・・・・・・光ファイバ、 19・・・フォトダイオード、 20・・・・・・コイル。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional example. 11... Semiconductor laser, 12... Lens, 13... Right angle prism, 14...
Polarizer, 15... Faraday trochanter, 16...
...Analyzer, 17...Lens, 18...Optical fiber, 19...Photodiode, 20...Coil.

Claims (1)

【特許請求の範囲】 1、半導体レーザと、 この半導体レーザから出射されるレーザ光を所定の直径
の平行光に変換する第1のレンズと、平行光の一部を反
射戻り光として分離する直角プリズムと、 異常光の移動距離が平行光の所定の直径以上となる複屈
折材料を用いた偏光子と、 回転角を変更する手段を備えたファラデー回転子と、 偏向面が前記偏光子のそれに対して略45゜傾いた検光
子と、 平行光を収束する第2のレンズと、 収束光が出射される光ファイバと、 前記直角プリズムで分離された反射戻り光をモニタする
手段 とを具備することを特徴とする半導体レーザモジュール
。 2、ファラデー回転子の回転角を変更する手段はコイル
であることを特徴とする請求項1記載の半導体レーザモ
ジュール。 3、直角プリズムで分離された反射戻り光をモニタする
手段は、フォトダイオードであることを特徴とする請求
項1記載の半導体レーザモジュール。
[Claims] 1. A semiconductor laser, a first lens that converts the laser light emitted from the semiconductor laser into parallel light of a predetermined diameter, and a right angle lens that separates a part of the parallel light as reflected return light. a prism; a polarizer using a birefringent material such that the travel distance of the extraordinary light is equal to or greater than a predetermined diameter of the parallel light; a Faraday rotator having a means for changing the rotation angle; The analyzer is provided with an analyzer tilted at approximately 45 degrees with respect to the analyzer, a second lens that converges parallel light, an optical fiber from which the converged light is emitted, and means for monitoring reflected return light separated by the right angle prism. A semiconductor laser module characterized by: 2. The semiconductor laser module according to claim 1, wherein the means for changing the rotation angle of the Faraday rotator is a coil. 3. The semiconductor laser module according to claim 1, wherein the means for monitoring the reflected return light separated by the right-angle prism is a photodiode.
JP7206890A 1990-03-23 1990-03-23 Semiconductor laser module Pending JPH03273208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7206890A JPH03273208A (en) 1990-03-23 1990-03-23 Semiconductor laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7206890A JPH03273208A (en) 1990-03-23 1990-03-23 Semiconductor laser module

Publications (1)

Publication Number Publication Date
JPH03273208A true JPH03273208A (en) 1991-12-04

Family

ID=13478716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7206890A Pending JPH03273208A (en) 1990-03-23 1990-03-23 Semiconductor laser module

Country Status (1)

Country Link
JP (1) JPH03273208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030205A1 (en) * 1997-12-09 1999-06-17 Samsung Electronics Co., Ltd. Optical attenuator using isolator and optical communications system including the same
DE10001389B4 (en) * 1999-01-14 2004-12-30 Samsung Electronics Co., Ltd., Suwon Optical attenuation isolator
CN103364894A (en) * 2012-03-30 2013-10-23 富士通株式会社 Optical transmitter, optical module, and optical connector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030205A1 (en) * 1997-12-09 1999-06-17 Samsung Electronics Co., Ltd. Optical attenuator using isolator and optical communications system including the same
US6441944B1 (en) 1997-12-09 2002-08-27 Samsung Electronics Co., Ltd. Optical attenuator using isolator and optical communications system including the same
AU751728B2 (en) * 1997-12-09 2002-08-29 Samsung Electronics Co., Ltd. Optical attenuator using isolator and optical communications system including the same
DE10001389B4 (en) * 1999-01-14 2004-12-30 Samsung Electronics Co., Ltd., Suwon Optical attenuation isolator
CN103364894A (en) * 2012-03-30 2013-10-23 富士通株式会社 Optical transmitter, optical module, and optical connector

Similar Documents

Publication Publication Date Title
US4886334A (en) Optical amplifying repeater
US5107512A (en) Frequency stabilization of a laser beam by using a birefrigent body
US4329659A (en) Feedback control of lasers in fiber optic systems
JP2943436B2 (en) Semiconductor laser module
JPH03273208A (en) Semiconductor laser module
US5978535A (en) Semiconductor laser module, optical fiber amplifier and optical transfer system
JP2822387B2 (en) Semiconductor laser module
JP2930431B2 (en) Polarization-independent optical isolator
JPH01303777A (en) Semiconductor laser module
US7043101B1 (en) Integrated optical pump module
US20040252376A1 (en) Beam converter for enhancing brightness of polarized light sources
JPS6346784A (en) Led stabilized light source
US5731871A (en) Light quantity measuring device that can accurately measure quantity regardless of polarization of measured light
JP2734552B2 (en) Semiconductor laser module
JPS6136976Y2 (en)
JPH01243599A (en) Semiconductor laser module
JPH04323608A (en) Semiconductor laser module
JPS62147423A (en) Optical isolator
JPH09269428A (en) Reflective return light compensation circuit
RU2011163C1 (en) Device for measuring roughness of article surface
JPH06118235A (en) Multi-core optical isolator
JPH05291701A (en) Semiconductor laser device equipped with optical isolator
JPH0561000A (en) Optical isolator
JPH06132600A (en) Semiconductor laser system
JP2508228B2 (en) Optical module unit