JPH03272562A - Battery and its manufacture - Google Patents

Battery and its manufacture

Info

Publication number
JPH03272562A
JPH03272562A JP2071600A JP7160090A JPH03272562A JP H03272562 A JPH03272562 A JP H03272562A JP 2071600 A JP2071600 A JP 2071600A JP 7160090 A JP7160090 A JP 7160090A JP H03272562 A JPH03272562 A JP H03272562A
Authority
JP
Japan
Prior art keywords
thin film
constituent material
film electrode
electrode constituent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2071600A
Other languages
Japanese (ja)
Inventor
Kazuo Murata
村田 和雄
Hiroshi Imachi
宏 井町
Shuichi Ido
秀一 井土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2071600A priority Critical patent/JPH03272562A/en
Publication of JPH03272562A publication Critical patent/JPH03272562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To achieve a battery with uniform quality, good producibility, and excellent high-rate discharging performance by laminating component material for an electrode of thin film type, and forming the electrode in multiple layers. CONSTITUTION:Using a gravure printing machine 1, a continuous type pos. electrode electricity collector 7 is coated with methylethylketone mixture 3 as component material for a thin film type electrode, and after the solvent has volatilized, movement is made in the direction of arrow so that the coated part mates with the irradiation position of an ultraviolet lamp 2. In Ar gas atmosphere, irradiation is made with this ultraviolet lamp 2 to form a thin layer 3'. After the thin layer 3' has hardened, the mixture 3 is again applied over this hardened thin layer 3', followed by hardening process. This cycle is further repeated two times to achieve a pos. electrode layer having a uniform thickness. Thereby the battery as object is equipped with electrode in the form of multiple layers having uniform thickness, with uniform quality, and enhanced high-rate discharging performance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、偏平型電池とその製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a flat battery and a method for manufacturing the same.

従来技術とその問題点 従来の偏平型電池の電極は集電体上【−層のV−)状の
電極材料層を形成したものであり、その製造方法は集電
体上に電極材料をコーティングまたはプレス等によって
塗布し、硬化する方法であった・ 鎖方法によると、数10声濁オーダーの電極を形成する
には、次の様な問題点を有していた。
Conventional technology and its problems The electrodes of conventional flat batteries have a [- layer V-] shaped electrode material layer formed on the current collector, and the manufacturing method is to coat the electrode material on the current collector. Alternatively, it was applied using a press or the like and cured.According to the chain method, the following problems were encountered in forming electrodes on the order of several tens of scales.

すなわちコーティングすると電極材料層の中央部で厚く
、側縁部では薄くなり、均一な厚みを有する電極材料層
を得ることが出来なかった0またプレスする方法は表面
に凸凹を有する電極材料を圧縮するため電板材料層の密
度が不均一なものとなった。
In other words, when coating, the electrode material layer becomes thick at the center and thinner at the side edges, making it impossible to obtain an electrode material layer with a uniform thickness.In addition, the pressing method compresses the electrode material that has uneven surfaces. Therefore, the density of the electric board material layer became non-uniform.

また、電極材料として固体電解質材料に電気化学反応物
質を混ぜて使用したものに光または電離性放射線を当て
硬化させることによりV−ト状の電極材料層を形成させ
る場合、酸化物などの電気化学反応物質が、光線類を遮
ぎるために、数10p講以上の厚い電極材料層では硬化
速度が極端に遅くなり生産性が劣るという欠点を有して
いた。
In addition, when forming a V-shaped electrode material layer by hardening a solid electrolyte material mixed with an electrochemical reactant and curing it with light or ionizing radiation, electrochemical Since the reactant blocks light rays, a thick electrode material layer of several tens of micrometers or more has the disadvantage that the curing speed is extremely slow and productivity is poor.

また、電極材料層に含まれるMnO2は・集電体から遠
い程集電体までの電子伝導経路が長くなり、高率放電の
際の利用率を高めるために多くの導電性カーボンを必要
とするが、集電体に近いものではそれ程多くの導電性カ
ーボンが必要としないことが知られているが、従来の電
極の電極材料層は一層であったため、MnO2の充填量
を変えないで層内の導電性カーボンの量を集電体に近い
部分ては少なく遠い部分では多くすることは不可能であ
った。
Additionally, the further the MnO2 contained in the electrode material layer is from the current collector, the longer the electron conduction path to the current collector, and a large amount of conductive carbon is required to increase the utilization rate during high rate discharge. However, it is known that a large amount of conductive carbon is not required in areas close to the current collector, but since the electrode material layer of conventional electrodes was one layer, the amount of MnO2 filled in the layer could not be changed. It was impossible to increase the amount of conductive carbon in the areas near the current collector, while it was small in the areas far from the current collector.

発明の目的 本発明は上記問題点を解消したもので、品質が一定で、
生産性のよい高率放電性能の優れた電池とその製造法を
提供することを目的とする。
Purpose of the Invention The present invention solves the above-mentioned problems, and the quality is constant.
The purpose of the present invention is to provide a battery with good productivity and excellent high rate discharge performance, and a method for manufacturing the same.

発明の構成 本発明は、複数の薄膜電極構成材料層を重ねて多層状に
した電極を備えた電池である。
DESCRIPTION OF THE INVENTION The present invention is a battery including an electrode formed by stacking a plurality of thin film electrode constituent material layers to form a multilayered structure.

そして、硬化速度を速めるために前記薄膜電極構成材料
層の厚さを30μm以下望ましくは20ptll以下と
することが好ましい。
In order to increase the curing speed, the thickness of the thin film electrode constituent material layer is preferably 30 μm or less, preferably 20 ptll or less.

また、前記薄膜電極構成材料層は電気化学反応物質、電
子伝導体物質、イオン伝導体物質、バインダー物質の単
独または混合物で形成することができる。
In addition, the thin film electrode constituent material layer may be formed of an electrochemical reactant, an electron conductor material, an ion conductor material, and a binder material alone or in combination.

別 また)前記イオン伝導体物質は溶済または高分子固体電
解質または塩を含むものである。
Alternatively, the ion conductor material includes a dissolved or polymeric solid electrolyte or a salt.

また、電池の高率放電性能を改善するために、前記複数
の薄膜電極構成材料層の各層の組成を異なるものにする
ことが好ましい。
Further, in order to improve the high rate discharge performance of the battery, it is preferable that each layer of the plurality of thin film electrode constituent material layers has a different composition.

さらに、本発明の電池の製造法は、集電体上に印刷機に
より薄膜電極構成材料を塗布することCよって薄膜電極
構成材料層を形成する第一工程と、 前記薄膜電極構成材料層上に印刷機により薄膜電極構成
材料を塗布することによって薄膜電極構成材料層を形成
する第二工程と・ 前記第二工程を繰り返し複数の薄膜電極構成材料層を重
ねて多層状にした電極を形成する第三工程とからなるも
のである。
Furthermore, the method for manufacturing a battery of the present invention includes a first step of forming a thin film electrode constituent material layer by applying a thin film electrode constituent material onto a current collector using a printing machine; A second step of forming a thin film electrode constituent material layer by applying the thin film electrode constituent material using a printing machine; A second step of repeating the second step to form a multilayered electrode by stacking a plurality of thin film electrode constituent material layers; It consists of three steps.

また本発明の他の電池の製造法は、集電体上に薄膜電極
構成材料を光または電離性放射11により硬化すること
によって薄膜電極構成材料層を形成する第一工程と、 前記薄膜電極構成材料層上に薄膜電極構成材料を塗布し
、光または電離性放射線により硬化することによって薄
膜電極構成材料層を形成する第二工程と、 第二工程を繰り返し高分子固体電解質からなる薄膜電極
構成材料層を多数積重ねて多層状にした電極を形成する
第三工程からなるものである・ 実施例 本発明の実施例を、第1図乃至第4図に基づいて、以下
#C説明する。
Another method of manufacturing a battery according to the present invention includes a first step of forming a thin film electrode constituent material layer on a current collector by curing the thin film electrode constituent material with light or ionizing radiation 11; and the thin film electrode structure. A second step of forming a thin film electrode constituent material layer by coating the thin film electrode constituent material on the material layer and curing it with light or ionizing radiation, and repeating the second step A thin film electrode constituent material made of a polymer solid electrolyte. It consists of a third step of forming a multilayered electrode by stacking a large number of layers.Example An example of the present invention will be described below with reference to FIGS. 1 to 4.

〔実施例1〕 第1図に示すように、幅5cmの連続した正値集電体7
に、10重量部のMnO2,2重量部の導電性カーボン
、1重量部のポリエチVングリコー〃アクリル酸エステ
Iv(平均分子量1000)、o、 o o s重量部
のベンゾフェノン、1.2重量部の分散剤、4重量部の
トルエン、8重量部のメチρエチρケトンの混合物3を
、グラビア印刷機1で塗布し、溶剤(トルエン、メチp
エチμケトン)の揮発後、塗布部が紫外線ランプ(40
0W)2の照明位置に合うように第1図の矢印方向に移
動させ、アμゴンガス雰囲気下で紫外線ランデ2を15
11の距離から10秒間照射して、10声調の薄層31
を形成した。前記薄層3′が硬化した後、さらにもう−
度グフビア印刷1111に、移動させ、硬化した薄層3
′上に*llIwa混合物3を塗布し、硬化させるとい
う工程をさらに連続して2回纏り返し、均一なSO声欝
の厚さを有する正極層を得た。
[Example 1] As shown in FIG. 1, a continuous positive current collector 7 with a width of 5 cm
10 parts by weight of MnO2, 2 parts by weight of conductive carbon, 1 part by weight of polyethylene glycol acrylate ester IV (average molecular weight 1000), o, o o s parts by weight of benzophenone, 1.2 parts by weight. A mixture 3 of a dispersant, 4 parts by weight of toluene, and 8 parts by weight of methi-ρ-ethyl-ketone was applied using a gravure printing machine 1, and a mixture 3 of a dispersant (toluene, methi-p
After volatilization of the ethiμ ketone), the applied area was exposed to an ultraviolet lamp (40
Move in the direction of the arrow in Figure 1 to match the illumination position of 0W) 2, and turn on the ultraviolet light 2 at
Irradiate for 10 seconds from a distance of 11 to create a thin layer of 10 tones 31
was formed. After the thin layer 3' has hardened, further -
Transferred and hardened thin layer 3 to Goufbia printing 1111
The process of applying *llIwa mixture 3 on top and curing was repeated two more times in succession to obtain a positive electrode layer having a uniform SO thickness.

〔実施例2〕 実施例1の操作1回て得られる10’pvsの薄膜3′
をグラビア印刷114に一移動させ、10重量部の導電
性カーボン、5重量部のポリエチレングリコ−μアクリ
P酸エステμ、0.025重■部のベンゾフェノン、0
.1重量部の分散剤、8重量部のトルエン、16重量部
のメチμエチ〃ケトンの混合物6を前記薄層3′上に塗
布し、紫外線ランプ5に移動させ、実施例1と同様にし
て硬化させ1;211mの厚さを有する二層構造の薄層
な形成した。同様の工程をさらに1回半繰り返し、層内
にカーボン層6′を2層持つ均一な34p解の厚さを有
する第2図の様な正極層を得た。
[Example 2] Thin film 3' of 10'pvs obtained by one operation of Example 1
was transferred to the gravure printing 114, and 10 parts by weight of conductive carbon, 5 parts by weight of polyethylene glyco-μ acrylic acid ester μ, 0.025 parts by weight of benzophenone, 0
.. A mixture 6 of 1 part by weight of dispersant, 8 parts by weight of toluene and 16 parts by weight of methi-μ-ethyketone was applied onto the thin layer 3', transferred to the ultraviolet lamp 5 and carried out as in Example 1. After curing, a two-layer thin layer having a thickness of 1:211 m was formed. The same process was repeated one and a half more times to obtain a positive electrode layer as shown in FIG. 2 having two carbon layers 6' and a uniform thickness of 34p.

〔実施例3〕 *施例1の混合物3に代えて、10重量部のMnO2、
Q、2重量部のポリエチレングリコ−ρアタリμ酸エス
テル(平均分子量1000)、Q、02重量部の過塩素
酸リチウム、0.001重量部のベンゾフェノン、1.
2重量部の分散剤、1重量部のトルエン%2重量部のメ
チμエチ〃ケトンの混合物をグツビア印刷機1で、正極
集電体7上に塗布し、実施例1と同様に硬化させ、5層
wiの厚さを有するMnO2の薄層8(第3図参照)を
形成した。このM102層8をグラビア印刷機2に移動
させ、10重量部の導電性カーボン、5重量部のポリエ
チレングリコ−ρアクリtv@エステv、0.025重
量部のベンゾフェノン、0.1重量部の分散剤、8重量
部のトルエン、16重量部のメチμエチルケ)ンの混合
物を前記MnO2層8上に塗布し、紫外線ランデ5に移
動させ、硬化させることによって、1声鱈の厚さを有す
るカーボン層?(第5図参照)を形成した。同様の工程
を連続してB回半繰り返し、均一な53pwrの厚さを
有する第3図の様な正極層を得た。
[Example 3] *In place of mixture 3 of Example 1, 10 parts by weight of MnO2,
Q, 2 parts by weight of polyethylene glyco-ρ atarimu acid ester (average molecular weight 1000), Q, 02 parts by weight of lithium perchlorate, 0.001 parts by weight of benzophenone, 1.
A mixture of 2 parts by weight of a dispersant, 1 part by weight of toluene, and 2 parts by weight of methi-μ-ethyketone was applied onto the positive electrode current collector 7 using a Gutsubia printer 1, and cured in the same manner as in Example 1. A thin layer 8 of MnO2 (see FIG. 3) with a thickness of 5 layers wi was formed. This M102 layer 8 was transferred to the gravure printing machine 2, and 10 parts by weight of conductive carbon, 5 parts by weight of polyethylene glyco-ρacrytv@este v, 0.025 parts by weight of benzophenone, and 0.1 parts by weight of dispersion. A mixture of 8 parts by weight of toluene and 16 parts by weight of methane is coated on the MnO2 layer 8, and the mixture is transferred to an ultraviolet lamp 5 and cured to form a carbon material having a thickness of 1 mm. layer? (See Figure 5) was formed. The same process was repeated B and a half times in succession to obtain a positive electrode layer having a uniform thickness of 53 pwr as shown in FIG. 3.

〔実施例4〕 輻5c11の連続した正極集電体7jC,10重量部の
MnO2,1,6重量部の導電性カーボン、0.6重量
部のポリエチレングリコ−Pアク9A’酸エステル、Q
、005重量部のベンゾフェノン、Q、6重量部の分散
剤、4重量部のトルエン、8重量部のメチμエチμケト
ンの混合物を、グラビア印刷111で塗布し、実施例1
と同様にして硬化させ10711111の薄層10(第
4図参照)を得た。
[Example 4] Continuous positive electrode current collector 7jC with radius 5c11, 10 parts by weight of MnO2, 1.6 parts by weight of conductive carbon, 0.6 parts by weight of polyethylene glyco-Pac9A' acid ester, Q
, 005 parts by weight of benzophenone, Q, 6 parts by weight of dispersant, 4 parts by weight of toluene, 8 parts by weight of methy μ ethi μ ketone were applied by gravure printing 111, and Example 1
It was cured in the same manner as above to obtain a thin layer 10 of 10711111 (see FIG. 4).

この薄層10をグラビア印刷112に移動させ、10重
量部のMnO2,1,7重量部の導電性カーボン、0.
7重量部のポリエチレングリコ−μアクリμ酸エステ〜
、o、oos重量部のベンゾフェノン・0.7重量部の
分散剤、4重量部のトルエン、8重量部のメチ〃エチμ
ケトンの混合物を塗布し、紫外線ランデ2で実施例1と
同様にして硬化させ、15PImの二層構造の薄層を得
た。
This thin layer 10 is transferred to a gravure print 112, containing 10 parts by weight of MnO2, 1.7 parts by weight of conductive carbon, 0.5 parts by weight of conductive carbon,
7 parts by weight of polyethylene glyco-μ acrylic acid ester
, o, oos parts by weight of benzophenone, 0.7 parts by weight of dispersant, 4 parts by weight of toluene, 8 parts by weight of methyethyl μ
The mixture of ketones was applied and cured as in Example 1 under UV Lande 2 to obtain a two-layer thin layer of 15 PIm.

同様にして1層ごとに導電性カーボンを0.1重量部ず
つ増やした組成にしながら、この工程をさらに繰り返し
、上層はどカーボン組成の多い均一な厚さを有する30
p解の第4図の様な正極層を得た。
In the same way, this process is repeated while increasing the conductive carbon by 0.1 part by weight for each layer, and the upper layer has a uniform thickness of 30% with a high carbon composition.
A positive electrode layer as shown in FIG. 4 of the p solution was obtained.

本実施例では集電体7に近い薄層10の導電性カーボン
の比率を減らすことにより、MnO2の充填量を増やす
ことが出来、集電体から遠い薄層になるに従い、導電性
カーボンの比率をあげることによって、集電体から遠い
薄層のMnO2の高率放電性能の低下を訪いでいる。
In this example, by reducing the ratio of conductive carbon in the thin layer 10 close to the current collector 7, the filling amount of MnO2 can be increased, and as the thin layer becomes farther from the current collector, the ratio of conductive carbon As a result, the high rate discharge performance of the thin MnO2 layer far from the current collector deteriorates.

〔実施例5〕 幅5c′111の連続した正極集電体N:!l!施例1
と同様の混合物5を隙間間隔2Qpwsのドクターブレ
ードで塗布し、溶剤(ト〃エン、メチ〃エチ〃ケトン)
の揮発後、塗布部が紫外線ランプの照射位置に合うよう
に移動させ、アルゴンガス雰囲気下で紫外線ランプ(4
00W)を15cIlの距離から10秒間照射して10
pHlの薄層を得た。
[Example 5] Continuous positive electrode current collector N with a width of 5c'111:! l! Example 1
Apply the same mixture 5 with a doctor blade with a gap spacing of 2Qpws, and apply the solvent (toene, methiethieketone).
After volatilization, move the applied part so that it matches the irradiation position of the ultraviolet lamp, and heat it with an ultraviolet lamp (4
00W) from a distance of 15cIl for 10 seconds.
A thin layer of pHl was obtained.

この薄層上に前記と同様の工程を繰り返し10pHの薄
層を5層形威し、60#解の厚さを有する正極層を得た
The same process as above was repeated to form 5 thin layers of 10 pH on this thin layer to obtain a positive electrode layer having a thickness of 60#.

本実施例は次に示す比較例1より硬化時間を著しく短縮
することが出来た・ 〔比較例1〕 幅5C111の連続した正極集電体に実施例1と同様の
混合物3を、隙間間隔100p調のドクターグレードで
塗布し、溶剤(トμエン、メチ〃エチPケトン)の揮発
後、塗布部が紫外線ランプの照射位置に合うように移動
させ、アルゴンガス雰囲気下で紫外線ランプ(400W
)を15CIIの距離から8分間照射して、正板層を得
た。この正極層は、中央部の厚さが65Pf1g、側縁
部の厚さが42声清であり、均一な厚さでなかった。
This example was able to significantly shorten the curing time compared to Comparative Example 1 shown below. [Comparative Example 1] Mixture 3 similar to Example 1 was applied to a continuous positive electrode current collector with a width of 5C111 with a gap of 100p. After the solvent (to-ene, methylethyl-P-ketone) has evaporated, the applied part is moved to match the irradiation position of the ultraviolet lamp, and the UV lamp (400W) is applied under an argon gas atmosphere.
) was irradiated for 8 minutes from a distance of 15 CII to obtain a positive plate layer. This positive electrode layer had a thickness of 65Pf1g at the center and 42Pf1g at the side edges, and was not uniform in thickness.

尚、前記実施例1〜5は正値集電体上に正板層を形成す
る方法を記載したが、訳方法により置板集電体上に置板
層を形成しても同様の効果が得られた。
In addition, although the above-mentioned Examples 1 to 5 describe a method of forming a positive plate layer on a positive value current collector, the same effect can be obtained even if a placing plate layer is formed on a placing plate current collector using the translation method. Obtained.

発明の効果 以上述べたように本発明は、厚さが均一な多層状の電板
を備えているため、品質が均一な偏平型電池を得ること
ができる。また、複数の薄膜電極構成材料層の各層の組
成を異なるものにすることによって電池の高率放電性能
を向上することができる。
Effects of the Invention As described above, since the present invention includes a multilayer electric plate having a uniform thickness, it is possible to obtain a flat battery with uniform quality. Further, by making each layer of the plurality of thin film electrode constituent material layers different in composition, the high rate discharge performance of the battery can be improved.

さらに、本発明の製造法によれば厚さが均一な多層状の
電極を能率良く生産することができる。
Furthermore, according to the manufacturing method of the present invention, multilayer electrodes with uniform thickness can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造法の一実施例を示す説明図、1g
2図は本発明の実施例2を示す電極の断面図、第3図は
本発明の実施例3を示す電極の断面図、@4図は本発明
の実施例4を示す電極の断面図である。 1.4・・・印刷機     2,5・・・紫外線ラン
プ3.6・・・薄膜電極構成材料の混合物 5’、 6’、 8.9.10・・・薄膜電極構成材料
層7・・・集電体
FIG. 1 is an explanatory diagram showing an example of the manufacturing method of the present invention, 1g
Figure 2 is a cross-sectional view of an electrode showing Example 2 of the present invention, Figure 3 is a cross-sectional view of an electrode showing Example 3 of the present invention, and Figure @4 is a cross-sectional view of an electrode showing Example 4 of the present invention. be. 1.4... Printing machine 2,5... Ultraviolet lamp 3.6... Mixture of thin film electrode constituent materials 5', 6', 8.9.10... Thin film electrode constituent material layer 7...・Current collector

Claims (7)

【特許請求の範囲】[Claims] (1)複数の薄膜電極構成材料層を重ねて多層状にした
電極を備えたことを特徴とする電池。
(1) A battery characterized by comprising a multilayered electrode formed by stacking a plurality of thin film electrode constituent material layers.
(2)前記薄膜電極構成材料層は、厚さが30μm以下
であることを特徴とする請求項(1)記載の電池。
(2) The battery according to claim 1, wherein the thin film electrode constituent material layer has a thickness of 30 μm or less.
(3)前記薄膜電極構成材料層は、電気化学反応物質、
電子伝導体物質、イオン伝導体物質、バインダー物質の
単独または混合物よりなることを特徴とする請求項(1
)記載の電池。
(3) The thin film electrode constituent material layer comprises an electrochemically reactive substance,
Claim (1) characterized in that it consists of an electron conductor substance, an ion conductor substance, and a binder substance alone or in a mixture.
) Batteries listed.
(4)前記イオン伝導体物質は、高分子固体電解質を含
むことを特徴とする請求項(3)記載の電池。
(4) The battery according to claim (3), wherein the ion conductor material includes a solid polymer electrolyte.
(5)前記複数の薄膜電極構成材料層の各層は、組成が
異なることを特徴とする請求項(1)記載の電池。
(5) The battery according to claim 1, wherein each layer of the plurality of thin film electrode constituent material layers has a different composition.
(6)集電体上に印刷機により薄膜電極構成材料を塗布
することによって薄膜電極構成材料層を形成する第一工
程と、 前記薄膜電極構成材料層上に印刷機により 薄膜電極構成材料を塗布することによつて薄膜電極構成
材料層を形成する第二工程と、 前記第二工程を繰り返し、請求項(1)記載の電極を形
成する第三工程とからなることを特徴とする、 電池の製造法。
(6) A first step of forming a thin film electrode constituent material layer by applying a thin film electrode constituent material onto the current collector using a printing machine; and applying the thin film electrode constituent material onto the thin film electrode constituent material layer using a printing machine. A second step of forming a thin film electrode constituent material layer by repeating the second step, and a third step of forming the electrode according to claim (1) by repeating the second step. Manufacturing method.
(7)集電体上に薄膜電極構成材料を光または電離性放
射線により硬化することによって薄膜電極構成材料層を
形成する第一工程と、 前記薄膜電極構成材料層上に薄膜電極構成 材料を塗布し、光または電離性放射線により硬化するこ
とによって薄膜電極構成材料層を形成する第二工程と、 第二工程を繰り返し、請求項(1)記載の電極を形成す
る第三工程とからなることを特徴とする、 電池の製造法。
(7) A first step of forming a thin film electrode constituent material layer on the current collector by curing the thin film electrode constituent material with light or ionizing radiation; and applying the thin film electrode constituent material on the thin film electrode constituent material layer. and a second step of forming a thin film electrode constituent material layer by curing with light or ionizing radiation, and a third step of repeating the second step to form the electrode according to claim (1). Features: Battery manufacturing method.
JP2071600A 1990-03-20 1990-03-20 Battery and its manufacture Pending JPH03272562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2071600A JPH03272562A (en) 1990-03-20 1990-03-20 Battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2071600A JPH03272562A (en) 1990-03-20 1990-03-20 Battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH03272562A true JPH03272562A (en) 1991-12-04

Family

ID=13465312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2071600A Pending JPH03272562A (en) 1990-03-20 1990-03-20 Battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH03272562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077707A1 (en) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター Method of manufacturing lithium rechargeable battery, method of manufacturing stacked battery, and method of manufacturing complex

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077707A1 (en) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター Method of manufacturing lithium rechargeable battery, method of manufacturing stacked battery, and method of manufacturing complex
CN102687333A (en) * 2010-12-08 2012-09-19 财团法人三重县产业支援中心 Method of manufacturing lithium rechargeable battery,method of manufacturing stacked battery,and method of manufacturing complex
KR101384073B1 (en) * 2010-12-08 2014-04-09 공익재단법인 미에켄 산업지원 센터 Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body
JP5554400B2 (en) * 2010-12-08 2014-07-23 公益財団法人三重県産業支援センター Method for producing lithium secondary battery and method for producing laminated battery
US9039789B2 (en) 2010-12-08 2015-05-26 Mie Industry And Enterprise Support Center Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body

Similar Documents

Publication Publication Date Title
CA2380268C (en) Technique for rapid cured electrochemical apparatus component fabrication
US5616366A (en) Method for producing low porosity electrode
JP3046323B2 (en) Solid-state layered electrochemical cell
KR101728875B1 (en) Compressed powder 3d battery electrode manufacturing
KR0131460B1 (en) Radiation cured solid electrolytes and electrochemical devices employing the same
JPH03129665A (en) Manufacture of solid state electrochemical thin layer cell
US8920522B2 (en) Battery manufacturing method and battery
RU2295803C2 (en) Storage battery electrode
JPH0541247A (en) Battery
JP5785030B2 (en) Manufacturing method of all solid state battery
JPH09185960A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacture
CA2684916C (en) Conductive ink and conductor
JPH03272562A (en) Battery and its manufacture
DE102004053589A1 (en) Fuel cell with a stack structure
EP1570113A1 (en) Method for producing drawn coated metals and use of said metals in the form of a current differentiator for electrochemical components
JP7151425B2 (en) Method for producing porous layer, porous layer and electrode
JP7200603B2 (en) Method for producing porous layer, porous layer and electrode
JPH0434871A (en) Manufacture of battery
CN116529900A (en) Double slit die for simultaneous electrode slurry coating and insulating solution coating and coating method using the same
JP2004047455A (en) Manufacturing method of fuel cell electrode
JPH10270023A (en) Manufacture of electrode for nonaqueous electrolyte secondary battery
JP2002056841A (en) Method of manufacturing electrode
JP4790205B2 (en) Battery electrode
JP2003229141A (en) Manufacturing method of fuel cell electrode structure
JP2004164865A (en) Laminated body for all-solid polymer battery, its manufacturing method, all-solid polymer battery, and its manufacturing method