JPH03272453A - Evaluation of two-layer film medium - Google Patents

Evaluation of two-layer film medium

Info

Publication number
JPH03272453A
JPH03272453A JP7246190A JP7246190A JPH03272453A JP H03272453 A JPH03272453 A JP H03272453A JP 7246190 A JP7246190 A JP 7246190A JP 7246190 A JP7246190 A JP 7246190A JP H03272453 A JPH03272453 A JP H03272453A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetic field
axis direction
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7246190A
Other languages
Japanese (ja)
Inventor
Seiji Yumoto
誠司 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7246190A priority Critical patent/JPH03272453A/en
Publication of JPH03272453A publication Critical patent/JPH03272453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate the magnetic characteristics of a two-layer film medium easily by applying a magnetic field in four specific directions to measure magnetic torque quantities and calculating the magnetization and uniaxial magnetic anisotropy energy density of each layer using a specific calculation formula. CONSTITUTION:The magnetization reversal critical magnetic fields of the respective layers of a two-layer film medium having uniaxial magnetic anisotropy obtained when a magnetic field is applied to the respective layers of the two-layer film medium at an angle of 45 deg. to the magnetization easy axial direction of the respective layers are set to Hx,Hy(Hx<Hy) and a magnetic field H(H<Hy) is applied to the respective layers in four directions forming an angle 45 deg. with respect to the easy axial direction of the respective layers to measure magnetic torque quantities. The magnetic torque quantities of respective axes are determined like formula V and magnetic torque quantities in such a case that the respective layers are set to single layer films are added at every layers according to formulae I, II to calculate values Lx'Ly. Next, the magnetization Mi (i=x,y) and uniaxial magnetic anisotropy energy density Ki (i=x,y) and uniaxial magnetic anisotropy energy density Ki (i=x,y) of each of the layers are calculated according to formulae III, IV [wherein Vi (i=x,y) is the volume of each layer and a and b are the intercepts of the inclinations of graphs of (Li/H)<2> and H<2> and (Li/H)<2>]. By this method, the magnetic characteristics of the two-layer film medium can be easily evaluated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、2層膜媒体の評価方法に関し、特に磁気トル
クを測定することによLy各層の磁化および一軸磁気異
方性エネルギー密度を求めることを特徴とする2層膜媒
体の評価法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for evaluating a two-layer film medium, and in particular to determining the magnetization and uniaxial magnetic anisotropy energy density of each layer of Ly by measuring magnetic torque. The present invention relates to a method for evaluating a two-layer film medium characterized by the following.

(従来の技術) 近年、光磁気記録材料や垂直磁気記録材料として、垂直
磁化膜と面内磁化膜とを組み合わせた2層膜媒体の研究
が盛んに行われている。単層垂直磁化膜においても、成
膜初期層や界面の酸化等により面内磁化成分をもつ2層
構造になっている。これら2層膜媒体の各々の膜の磁気
異方性エネルギー、磁化の評価法としては、従来、別に
底膜した各単層膜を評価する方法や、ESRによる方法
が行われている。
(Prior Art) In recent years, research has been actively conducted on two-layer media in which a perpendicular magnetization film and an in-plane magnetization film are combined as magneto-optical recording materials and perpendicular magnetic recording materials. Even a single-layer perpendicularly magnetized film has a two-layer structure with an in-plane magnetization component due to oxidation of the initial film formation layer or interface. Conventionally, methods for evaluating the magnetic anisotropy energy and magnetization of each film of these two-layer film media include a method of evaluating each single-layer film with a separate bottom film, and a method using ESR.

(発明が解決しようとする課題) しかし、従来の方法では、2層膜媒体をそのまま試料と
して用いることができず、別に試料を用意する必要があ
るという課題があった。本発明は、2層膜状態で各層の
磁気特性を簡便に評価することのできる評価法を提供す
ることにある。
(Problems to be Solved by the Invention) However, in the conventional method, there was a problem in that the two-layer film medium could not be used as a sample as it was, and a sample had to be prepared separately. An object of the present invention is to provide an evaluation method that can easily evaluate the magnetic properties of each layer in a two-layer film state.

(課題を解決するための手段) 本発明は、互いに直交するX軸方向、y軸方向に各々の
一軸磁気異方性を有する2層膜媒体の各層の容易軸方向
に対し45度方向に磁場を印加したときの各々の磁化反
転臨界磁場をHx、Hy(Hx<Hy)とし、この各層
の容易軸方向に対し45度の方向をなす4方向のうち、
各方向に磁場H(H< Hy)を印加し、磁場Hの大き
さに対応した磁気トルク量を測定し、この測定された磁
気トルク量を各々次のように定め、[1,1]軸方向、
0<H<Hyのとき   −A[−1,11軸方向、0
<H<Hxのとき   −C[−1,1]軸方向、HX
<H<Hyのとき   A[−1,−1]軸方向、0<
H<Hxのとき    D[−1,−1]軸方向、Hx
< H< Hyのとき   −B[1,−1]軸方向、
O<H<Hyのとき    Bこれらの磁気トルク量か
ら以下の(1)、(2)式によLy各層を単層膜とした
場合の各層の容易軸方向と45度および135度方向に
磁場を印加した場合の磁気トルク量を各層毎に加えた値
LX、Lyを求め、Lx=A+C=B+D      
        (1)L、=〜A+B=C−D   
        (2)以下の(3)(4)式により各
層の磁化Mi(t = x、y)及び一軸磁気異方性エ
ネルギー密度Ki(i=x、y)を求めることを特徴と
する2層膜媒体の評価方法である。
(Means for Solving the Problem) The present invention provides a magnetic field in a direction of 45 degrees with respect to the easy axis direction of each layer of a two-layer film medium having uniaxial magnetic anisotropy in the X-axis direction and the y-axis direction, which are orthogonal to each other. The critical magnetic fields for magnetization reversal when Hx and Hy (Hx<Hy) are applied, and among the four directions that are 45 degrees to the easy axis direction of each layer,
A magnetic field H (H < Hy) is applied in each direction, the amount of magnetic torque corresponding to the magnitude of the magnetic field H is measured, and the measured amount of magnetic torque is determined as follows, and the [1,1] axis is direction,
When 0<H<Hy -A[-1, 11 axial direction, 0
When <H<Hx -C[-1,1] axial direction, HX
When <H<Hy A[-1,-1] axial direction, 0<
When H<Hx, D[-1,-1] axial direction, Hx
When < H < Hy -B[1,-1] axial direction,
When O<H<Hy B From these magnetic torque amounts, use the following equations (1) and (2) to calculate the magnetic field in the easy axis direction of each layer at 45 degrees and 135 degrees when each layer is a single layer. Calculate the values LX and Ly by adding the amount of magnetic torque for each layer when applying , Lx=A+C=B+D
(1) L, =~A+B=C-D
(2) A two-layer film characterized in that the magnetization Mi (t = x, y) and uniaxial magnetic anisotropy energy density Ki (i = x, y) of each layer are determined by the following equations (3) and (4). This is a method for evaluating media.

Mi : (2bi)” / Vi         
   (3)KH= bi/ (2aH−Vi)   
         (4)(ただし、Vi(i=x、y
)は各層の体積、a、bは(Li/H)2とH2のグラ
フの傾きど(Li / H)2軸の切片である。)また
、測定した磁気トルク量A乃至りがら以下のようにして
磁化Mi(i =x、y)および一軸磁気異方性エネル
ギー密度Ki(i=x、y)を求めることができる。測
定した磁気トルク量から以下の(1)式または(2)式
によLy各層を単層膜とした場各層の容易軸方向と45
度および135度方向に磁場を印加した場合の磁気トル
ク量を各層毎に加えた値LxまたはLyの一方を求め、 Lx=A+C=B+D              (
1)L、= −A+B=C−D           
   (2)以下の(3)式および(4)式によLy求
めたLXまたはり。
Mi: (2bi)” / Vi
(3) KH=bi/(2aH-Vi)
(4) (However, Vi (i=x, y
) is the volume of each layer, and a and b are the slopes of the graphs of (Li/H)2 and H2 and the intercepts of the (Li/H)2 axis. ) Further, the magnetization Mi (i = x, y) and the uniaxial magnetic anisotropy energy density Ki (i = x, y) can be determined from the measured magnetic torque amount A to the measured magnetic torque amount A as follows. From the measured magnetic torque amount, the following equation (1) or (2) is used to calculate the easy axis direction of each layer and the 45
Find one of the values Lx or Ly, which is the sum of the magnetic torque amount for each layer when a magnetic field is applied in the 135° and 135° directions, and Lx=A+C=B+D (
1) L, = -A+B=C-D
(2) LX or Li determined by Ly using the following equations (3) and (4).

に対応する層の磁化Mi(i = x、y)及び一軸磁
気異方性エネルキー密度Ki(i=x、y)を求め、M
i:(2bi)1/2Vi             
 (3)K;=bi/(2aH−Vi)       
     (4)(ただし、V;(i=x、y)は各層
の体積、a、bは(Ly / H)2とH2のグラフの
傾きと(Li/H)2軸の切片である。
Find the magnetization Mi (i = x, y) and uniaxial magnetic anisotropy energy density Ki (i = x, y) of the layer corresponding to M
i: (2bi) 1/2Vi
(3) K;=bi/(2aH-Vi)
(4) (where V; (i=x, y) is the volume of each layer, a, b are the slope of the graph of (Ly/H)2 and H2 and the intercept of the (Li/H) two axes.

)以下の(5)式または(6)式により各層を単層膜と
した場合に、磁化容易軸方向と45度方向に磁場を印加
したとき測定される磁気トルクの磁場依存性Lx45ま
たはLy45を求め、 LX45(H)=(Lx±(MyVyH)2/2KyV
y)/2    (5)Ly45(H)= (Ly±(
MxVxH)2/2KxVx)/2(6)(ただし、V
i(i=x、y)は各層の体積である。)以下の(3)
式および(7)式によLy求めたLx45またはLy4
5に対応する層の磁化Mi(i = x、y)および一
軸磁気異方性エネルギー密度KH(i=x、y)を求め
る。
) The magnetic field dependence Lx45 or Ly45 of the magnetic torque measured when a magnetic field is applied in the direction of 45 degrees from the easy axis direction when each layer is made into a single layer film using the following equation (5) or (6). Find, LX45(H)=(Lx±(MyVyH)2/2KyV
y)/2 (5)Ly45(H)=(Ly±(
MxVxH)2/2KxVx)/2(6) (However, V
i (i=x, y) is the volume of each layer. ) Below (3)
Lx45 or Ly4 obtained by Ly using the formula and formula (7)
The magnetization Mi (i = x, y) and uniaxial magnetic anisotropy energy density KH (i = x, y) of the layer corresponding to No. 5 are determined.

Mi =−(2bi)” / Vi         
  (3)Ki = (bi / Vi) X 1/a
i(7)(ただし、Vi(i=x、y)は各層の体積、
a、bは(Li / H)2とH2のグラフの傾きと(
Li/H)2軸の切片である。)(作用) 測定には、宮島らにより提案された一軸磁気異方性の測
定方法(ジャーナルオファブライドフィジックス4)巻
、4669〜46711976)を利用した。この方法
では、容易軸に対し45度方向に磁場を印加し、磁気ト
ルク量の磁場依存より一軸異方性定数と磁化とを決める
。単層膜の場合には、45度方向はすべて等価となるが
、互いに垂直な2戒分の一軸異方性が共存し、かつ各層
の磁化反転臨界磁場が異なる場合、特定の外部磁場範囲
で、基膜の容易軸方向と45度をなす4方向(第1図参
照)は、等価ではなくなる。基膜の容易軸と45度をな
す等価でない少なくとも2方向での磁気トルクの磁場依
存性を測定し、これらの和、差により各層の磁気トルク
の磁場依存性を分離し、基膜の磁気異方性、磁気を求め
る。
Mi=-(2bi)"/Vi
(3) Ki = (bi / Vi) X 1/a
i (7) (where Vi (i=x, y) is the volume of each layer,
a, b are the slope of the graph of (Li/H)2 and H2 and (
Li/H) biaxial intercept. ) (Function) For the measurement, a method for measuring uniaxial magnetic anisotropy proposed by Miyajima et al. (Journal of Bride Physics, Vol. 4, 4669-46711976) was used. In this method, a magnetic field is applied in a direction of 45 degrees with respect to the easy axis, and the uniaxial anisotropy constant and magnetization are determined from the dependence of the magnetic torque amount on the magnetic field. In the case of a single-layer film, all 45-degree directions are equivalent, but if two mutually perpendicular uniaxial anisotropies coexist and the critical magnetic field for magnetization reversal of each layer is different, then in a specific external magnetic field range , the four directions (see FIG. 1) that form 45 degrees with the easy axis direction of the base membrane are no longer equivalent. The magnetic field dependence of the magnetic torque in at least two non-equivalent directions that are 45 degrees to the easy axis of the base film is measured, and the magnetic field dependence of the magnetic torque of each layer is separated by the sum and difference of these, and the magnetic difference of the base film is determined. Find orientation and magnetism.

(実施例) 2戒分が互いに垂直である場合の一例として、保磁力の
大きな垂直膜(光磁気記録膜)と保磁力が小さい面内膜
(Ni線)との擬似複合2層膜に対する実施例を示す。
(Example) As an example of a case where the two precepts are perpendicular to each other, implementation is performed on a pseudo-composite two-layer film of a perpendicular film (magneto-optical recording film) with a large coercive force and an in-plane film (Ni wire) with a small coercive force. Give an example.

面内方向をX方向、垂直方向をy方向とし、容易磁化方
向に対し45度に磁場を印加したときの面内膜、垂直膜
の磁化反転臨界磁場をHx、Hy(Hx< Hy)とす
る。面内膜、垂直膜を単層膜としたときの面内、垂直磁
化の向きとそれぞれ45度、135度方向に磁場Hを印
加した場合の磁気トルク量の磁場依存性をそれぞれLX
45(H)、LX135(H)。
The in-plane direction is the X direction, the perpendicular direction is the y direction, and when a magnetic field is applied at 45 degrees to the easy magnetization direction, the critical magnetic field for magnetization reversal of the in-plane film and perpendicular film is Hx, Hy (Hx < Hy). . The in-plane and perpendicular magnetization directions when the in-plane film and the perpendicular film are made into single-layer films, and the magnetic field dependence of the magnetic torque amount when the magnetic field H is applied in the directions of 45 degrees and 135 degrees, respectively, are expressed as LX.
45(H), LX135(H).

L、45(H)、L、135(H)とする。初期状態と
して磁化はそれぞれx、y軸歪の方向に向き、右回りの
磁気トルクを正にとると、磁場印加方向と印加磁場領域
により第1表に示す磁気トルクが観測される。ここで、
A = LX45(H) −Ly45(H)、B = 
LX45(H) +Lyxas(H)、C”LX135
(H) + Ly45(H)、D = LX135(H
) −Lyxa5(H)とする。
L, 45 (H), L, 135 (H). In the initial state, the magnetization is oriented in the direction of the x- and y-axis strain, and if the clockwise magnetic torque is positive, the magnetic torque shown in Table 1 is observed depending on the direction of magnetic field application and the applied magnetic field region. here,
A = LX45(H) -Ly45(H), B =
LX45(H) +Lyxas(H), C"LX135
(H) + Ly45(H), D = LX135(H
) -Lyxa5(H).

これよLyLx威成分 第1表 対 し て はA+Cま た はB+D  に よ リ
Lx45(H)+Lx135(HX=Lx)かもとまL
y同様に−A+B、C−DよりL3=45(H) + 
Lyta5(HX = Ly)かもとまる。計算に用い
るA、B、C,Dは、同じ磁場領域を用いる。宮島らの
方法は、L45(H)から計算するが、本発明の方法で
求まるのは2Lx(H)= LX45 + LX135
(H)、または2L、(H) = Ly45 + Ly
135(H)で表される14(i=xまたはy)である
。以下では簡単ため、14(H)=LHと書くことにす
る。Liの磁場依存性より一軸異方性及び磁化を求める
ため、ここでは一軸磁気異方性エネルギーとして2次の
項のみを考慮して計算する。そうすると、LiとHとの
関係は (Li / H)2=((MiVi)4/ 16(Ki
Vi)2)H2+ (MiVi)2/ 2 (8)と表
される。ここで、iは2層構造膜のそれぞれの層を表し
ている。ここでは、i=xは面内磁化層、i=yは垂直
磁化層に対応する。したがって、(Li/H)2とH2
のグラフの傾きaiとy軸切片biよLy各層の磁化M
iおよび一軸磁気異方性エネルギー密度KiがMi: 
(2bi)” / Vi             (
3)Ki=bi/(2ai・V、)         
   (4)としてもとまる。Viは注目する層の体積
である。
This is LyLx Power Component Table 1. For A+C or B+D, LyLx45(H)+Lx135(HX=Lx) or Lx45(H)+Lx135(HX=Lx)
Similarly to y, from −A+B and CD, L3=45(H) +
Lyta5 (HX = Ly) also stops. A, B, C, and D used for calculation use the same magnetic field region. Miyajima et al.'s method calculates from L45(H), but the method of the present invention calculates 2Lx(H) = LX45 + LX135
(H), or 2L, (H) = Ly45 + Ly
14 (i=x or y) represented by 135(H). In the following, for simplicity, it will be written as 14(H)=LH. In order to determine the uniaxial anisotropy and magnetization from the magnetic field dependence of Li, only the second-order term is considered in calculation as the uniaxial magnetic anisotropy energy. Then, the relationship between Li and H is (Li/H)2=((MiVi)4/16(Ki
It is expressed as Vi)2)H2+ (MiVi)2/2 (8). Here, i represents each layer of the two-layer structure film. Here, i=x corresponds to the in-plane magnetization layer, and i=y corresponds to the perpendicular magnetization layer. Therefore, (Li/H)2 and H2
The slope ai and the y-axis intercept bi of the graph of Ly are the magnetization M of each layer.
i and the uniaxial magnetic anisotropy energy density Ki is Mi:
(2bi)” / Vi (
3) Ki=bi/(2ai・V,)
It also stops as (4). Vi is the volume of the layer of interest.

第1表よLyLxの計算には、Q < H< Hzが利
用でき、L、の計算には、o<H<Hyが利用できるこ
とが分かる。y成分の場合には、H7が大きいために、
Hx<H<Hyの領域より−A+BによりLy成分を分
離しく8)および(3)、(4)式から磁気異方性エネ
ルギーに9、磁化M、を求めた。次に、Lx戒分成分場
合X成分の面内異方性として、軟磁性体を利用したため
に、Hxが非常に小さく、この領域ではLXを精度よく
測定できないので、実際にはHくHxの領域は利用でき
ない。そこでHx< H< Hyの領域よLyA+Bに
より軟磁性成分の異方性と磁化とを求めた。この場合に
は、A+B=2Lx45(H) (Ly45(H)−L
yta5(H))となる。計算よりIL/45(H) 
 L、y135(H)l=(M、V、H)2/2KyV
、となLyこの値は、(3)、(4)式より求められる
。また、今回のように、LX45(H)のトルク量が大
きく、しかもy成分の異方性が大きく磁化が小さい場合
には無視することができる。よって、xIfi、分の磁
気異方性、磁化は、今回Lx45(H)より宮島らの方
法により求めた。第2表にこの様にして求めた2層膜の
各成分と各単層膜について測定した結果とを示す。複合
膜の結果が単層膜の結果とよく一致していることが分か
る。
From Table 1, it can be seen that Q < H < Hz can be used to calculate LyLx, and o < H < Hy can be used to calculate L. In the case of the y component, since H7 is large,
From the region of Hx<H<Hy, the Ly component was separated by -A+B, and the magnetic anisotropy energy 9 and magnetization M were determined from equations 8), (3), and (4). Next, in the case of the Lx component, as the in-plane anisotropy of the Area is not available. Therefore, the anisotropy and magnetization of the soft magnetic component were determined using LyA+B in the region Hx<H<Hy. In this case, A+B=2Lx45(H) (Ly45(H)-L
yta5(H)). From calculation IL/45 (H)
L, y135(H)l=(M,V,H)2/2KyV
, and Ly This value is obtained from equations (3) and (4). Further, as in this case, when the torque amount of LX45(H) is large and the anisotropy of the y component is large and the magnetization is small, it can be ignored. Therefore, the magnetic anisotropy and magnetization of xIfi were determined from Lx45(H) by the method of Miyajima et al. Table 2 shows the components of the two-layer film thus determined and the results of measurements for each single-layer film. It can be seen that the results for the composite membrane are in good agreement with the results for the single layer membrane.

第2表  各層の磁気異方性と磁化 (発明の効果) この測定法は、互いに垂直な一軸異方性を有する2層膜
に適用ができ、各層の磁気異方性定数や磁化を簡便に評
価することができる。
Table 2 Magnetic anisotropy and magnetization of each layer (effects of the invention) This measurement method can be applied to two-layer films with mutually perpendicular uniaxial anisotropy, and can easily measure the magnetic anisotropy constant and magnetization of each layer. can be evaluated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、各層の容易軸方向と印加磁場方位の関係を示
す図である。
FIG. 1 is a diagram showing the relationship between the easy axis direction of each layer and the applied magnetic field direction.

Claims (2)

【特許請求の範囲】[Claims] (1)互いに直交するx軸方向、y軸方向に各々の一軸
磁気異方性を有する2層膜媒体の各層の容易軸方向に対
し45度方向に磁場を印加したときの各々の磁化反転臨
界磁場をH_x、H_y(H_x<H_y)とし、この
各層の磁化容易軸方向に対し45度の方向をなす4方向
のうち、各方向に磁場H(H<H_y)を印加し、磁場
Hの大きさに対応した磁気トルク量を測定し、この測定
された磁気トルク量を各々次のように定め、[1、1]
軸方向、0<H<H_yのとき−A[−1、1]軸方向
、0<H<H_xのとき−C[−1、1]軸方向、H_
x<H<H_yのときA[−1、−1]軸方向、0<H
<H_xのときD[−1、−1]軸方向、H_x<H<
H_yのとき−B[1、−1]軸方向、0<H<H_y
のときBこれらの磁気トルク量から以下の(1)、(2
)式により、各層を単層膜とした場合の各層の容易軸方
向と45度および135度方向に磁場を印加した場合の
磁気トルク量を各層毎に平均した値L_x、L_yを求
め、 L_x=A+C=B+D(1) L_y=−A+B=C−D(2) 以下の(3)(4)式により各層の磁化M_i(i=x
、y)及び一軸磁気異方性エネルギー密度K_i(i=
x、y)を求めることを特徴とする2層膜媒体の評価方
法。 M_i=(2b_i)^1^/^2/V_i(3) K_i=b_i/(2a_i^1^/^2・V_i)(
4) (ただし、V_i(i=x、y)は各層の体積、a、b
は(L_i/H)^2とH^2のグラフの傾きと(L_
i/H)^2軸の切片である。)
(1) Each magnetization reversal criticality when a magnetic field is applied in a direction of 45 degrees to the easy axis direction of each layer of a two-layer film medium having uniaxial magnetic anisotropy in the mutually orthogonal x-axis direction and y-axis direction. The magnetic fields are H_x, H_y (H_x<H_y), and the magnetic field H (H<H_y) is applied in each of the four directions forming a 45 degree direction with respect to the easy magnetization axis direction of each layer, and the magnitude of the magnetic field H is Measure the amount of magnetic torque corresponding to
Axial direction, when 0<H<H_y -A[-1, 1] axial direction, when 0<H<H_x -C[-1, 1] axial direction, H_
When x<H<H_y, A[-1, -1] axis direction, 0<H
When <H_x, D[-1, -1] axis direction, H_x<H<
When H_y -B[1, -1] axial direction, 0<H<H_y
When B From these magnetic torque amounts, the following (1), (2
), calculate the average values L_x and L_y of the magnetic torque amount for each layer when a magnetic field is applied in directions of 45 degrees and 135 degrees with respect to the easy axis direction of each layer when each layer is a single layer film, L_x= A+C=B+D (1) L_y=-A+B=C-D (2) Magnetization M_i (i=x
, y) and uniaxial magnetic anisotropy energy density K_i (i=
1. A method for evaluating a two-layer film medium, characterized by determining the values (x, y). M_i=(2b_i)^1^/^2/V_i(3) K_i=b_i/(2a_i^1^/^2・V_i)(
4) (However, V_i (i=x, y) is the volume of each layer, a, b
is the slope of the graph of (L_i/H)^2 and H^2 and (L_
i/H)^ It is an intercept of two axes. )
(2)互いに直交するx軸方向、y軸方向に各々の一軸
磁気異方性を有する2層膜媒体の各層の磁化容易軸方向
に対し45度方向に磁場を印加したときの各々の磁化反
転臨界磁場をH_x、H_y(H_x<H_y)とし、
この各層の容易軸方向に対し45度の方向をなす4方向
のうち、各方向に磁場H(H<H_y)を印加し、磁場
Hの大きさに対応した磁気トルク量を測定し、この測定
された磁気トルク量を各々次のように定め、[1、1]
軸方向、0<H<H_yのとき−A[−1、1]軸方向
、0<H<H_xのとき−C[−1、1]軸方向、H_
x<H<H_yのときA[−1、−1]軸方向、0<H
<H_xのときD[−1、−1]軸方向、H_x<H<
H_yのとき−B[1、−1]軸方向、0<H<H_y
のときBこれらの磁気トルク量から以下の(1)式また
は(2)式により、各層を単層膜とした場合の各層の容
易軸方向と45度および135度方向に磁場を印加した
場合の磁気トルク量を各層毎に平均した値L_xまたは
L_yの一方を求め、 L_x=A+C=B+D(1) L_y=−A+B=C−D(2) 以下の(3)式および(4)式により、求めたL_xま
たはL_yに対応する層の磁化M_i(i=x、y)及
び一軸磁気異方性エネルギー密度K_i(i=x、y)
を求め、 M_i=(2b_i)^1^/^2V_i(3) K_i=b_i/(2a_i^1^/^2・V_i)(
4) (ただし、V_i(i=x、y)は各層の体積、a、b
は(L_i/H)^2とH^2のグラフの傾きと(Li
/H)^2軸の切片である。)以下の(5)式または(
6)式により各層を単層膜とした場合に、磁化容易軸方
向と45度方向に磁場を印加したとき測定される磁気ト
ルクの磁場依存性L_x_4_5またはL_y_4_5
を求め、 L_x_4_5(H)=(L_x±(M_yV_yH)
^2/2K_yV_y)/2(5) L_y_4_5(H)=(L_y±(M_xV_xH)
^2/2K_xV_x)/2(6) (ただし、V_i(i=x、y)は各層の体積である。 )以下の(3)式および(7)式により、求めたL_x
_4_5またはL_y_4_5に対応する層の磁化M_
i(i=x、y)および一軸磁気異方性エネルギー密度
K_i(i=x、y)を求めることを特徴とする2層膜
媒体の評価方法。 M_i=(2b_i)^1^/^2/V_i(3) K_i=(b_i/V_i)×1/a_i(7) (ただし、V_i(i=x、y)は各層の体積、a、b
は(L_i/H)^2とH^2のグラフの傾きと(L_
i/H)^2軸の切片である。)
(2) Each magnetization reversal when a magnetic field is applied in a direction of 45 degrees to the easy magnetization axis direction of each layer of a two-layer film medium having uniaxial magnetic anisotropy in the mutually orthogonal x-axis direction and y-axis direction. Let the critical magnetic field be H_x, H_y (H_x<H_y),
A magnetic field H (H<H_y) is applied in each of the four directions that are oriented at 45 degrees with respect to the easy axis direction of each layer, and the amount of magnetic torque corresponding to the magnitude of the magnetic field H is measured. The magnetic torque amount is determined as follows, [1, 1]
Axial direction, when 0<H<H_y -A[-1, 1] axial direction, when 0<H<H_x -C[-1, 1] axial direction, H_
When x<H<H_y, A[-1, -1] axis direction, 0<H
When <H_x, D[-1, -1] axis direction, H_x<H<
When H_y -B[1, -1] axial direction, 0<H<H_y
When B From these magnetic torque amounts, use the following equation (1) or (2) to calculate the magnetic field when applying a magnetic field in the easy axis direction of each layer, 45 degrees and 135 degrees when each layer is a single layer film. Find either L_x or L_y, which is the average value of the magnetic torque amount for each layer, L_x=A+C=B+D (1) L_y=-A+B=C-D (2) According to the following equations (3) and (4), Magnetization M_i (i=x, y) and uniaxial magnetic anisotropy energy density K_i (i=x, y) of the layer corresponding to the determined L_x or L_y
Find M_i=(2b_i)^1^/^2V_i(3) K_i=b_i/(2a_i^1^/^2・V_i)(
4) (However, V_i (i=x, y) is the volume of each layer, a, b
is the slope of the graph of (L_i/H)^2 and H^2 and (Li
/H)^ It is an intercept of two axes. ) The following equation (5) or (
6) Magnetic field dependence of magnetic torque measured when each layer is a single layer film and a magnetic field is applied in a direction of 45 degrees from the easy magnetization axis direction L_x_4_5 or L_y_4_5
Find L_x_4_5(H)=(L_x±(M_yV_yH)
^2/2K_yV_y)/2(5) L_y_4_5(H)=(L_y±(M_xV_xH)
^2/2K_xV_x)/2(6) (However, V_i (i = x, y) is the volume of each layer.) L_x obtained from the following equations (3) and (7)
Magnetization M_ of the layer corresponding to _4_5 or L_y_4_5
1. A method for evaluating a two-layer film medium, comprising determining i (i=x, y) and uniaxial magnetic anisotropy energy density K_i (i=x, y). M_i=(2b_i)^1^/^2/V_i(3) K_i=(b_i/V_i)×1/a_i(7) (However, V_i(i=x, y) is the volume of each layer, a, b
is the slope of the graph of (L_i/H)^2 and H^2 and (L_
i/H)^ It is an intercept of two axes. )
JP7246190A 1990-03-20 1990-03-20 Evaluation of two-layer film medium Pending JPH03272453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246190A JPH03272453A (en) 1990-03-20 1990-03-20 Evaluation of two-layer film medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246190A JPH03272453A (en) 1990-03-20 1990-03-20 Evaluation of two-layer film medium

Publications (1)

Publication Number Publication Date
JPH03272453A true JPH03272453A (en) 1991-12-04

Family

ID=13489965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246190A Pending JPH03272453A (en) 1990-03-20 1990-03-20 Evaluation of two-layer film medium

Country Status (1)

Country Link
JP (1) JPH03272453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911739B2 (en) * 2008-09-25 2011-03-22 International Business Machines Corporation Writing and reading multi-level patterned magnetic recording media
US8031425B2 (en) 2009-11-10 2011-10-04 International Business Machines Corporation Writing and reading multi-layer continuous magnetic recording media, with more than two recording layers
US8085502B2 (en) 2009-11-10 2011-12-27 International Business Machines Corporation Writing and reading multi-level patterned magnetic recording media, with more than two recording levels
US8107194B2 (en) * 2008-09-24 2012-01-31 International Business Machines Corporation Writing and reading multi-layer continuous magnetic recording media

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107194B2 (en) * 2008-09-24 2012-01-31 International Business Machines Corporation Writing and reading multi-layer continuous magnetic recording media
US8243390B2 (en) 2008-09-24 2012-08-14 International Business Machines Corporation Reading multi-layer continuous magnetic recording media
US7911739B2 (en) * 2008-09-25 2011-03-22 International Business Machines Corporation Writing and reading multi-level patterned magnetic recording media
US8213119B2 (en) 2008-09-25 2012-07-03 International Business Machines Corporation Writing and reading multi-level patterned magnetic recording media
US8031425B2 (en) 2009-11-10 2011-10-04 International Business Machines Corporation Writing and reading multi-layer continuous magnetic recording media, with more than two recording layers
US8085502B2 (en) 2009-11-10 2011-12-27 International Business Machines Corporation Writing and reading multi-level patterned magnetic recording media, with more than two recording levels

Similar Documents

Publication Publication Date Title
Van den Berg et al. GMR angle detector with an artificial antiferromagnetic subsystem (AAF)
Ström et al. Determination of exchange anisotropy by means of ac susceptometry in Co/CoO bilayers
Okamoto A new method for analysis of magnetic anisotropy in films using the spontaneous Hall effect
Osgood et al. Asymmetric magneto-optic response in anisotropic thin films
Farle et al. The temperature dependence of magnetic anisotropy in ultra-thin films
JPH03272453A (en) Evaluation of two-layer film medium
Li et al. Interlayer exchange coupling and magnetic reversal in Co/Pt multilayers
Djega-Mariadassou et al. High field magnetic study of small Fe particles dispersed in an alumina matrix
Siegle Exchange coupling of uniaxial magnetic thin films
Bottoni et al. Distribution of anisotropy field in recording media deduced from the hysteresis curve
Steenbeck et al. Antiferromagnetic energy loss and exchange coupling of IrMn/CoFe films: experiments and simulations
KR101083205B1 (en) Method for calculating thermal stability parameter of nanostructured cell of synthetic ferrimagnet
Masuda et al. Magnetic Coupling between Two Ni-Fe Layers Separated by SiO Intermediate Layer
Jen et al. Piezoresistance characteristics of some magnetic and non-magnetic metal films
Salzmann et al. Local measurement of magnetic anisotropy in metallic glasses
Du et al. An approach to determine the easy axis of magnetic film by anisotropic magnetoresistance measurements
Layadi Determination of magnetic coupling from torque curve
Brown et al. Exchange bias measurements of CoFe/IrMn
Grössinger et al. Accurate measurement of the magnetostriction of soft magnetic materials
Okon et al. Magnetostatic coupling between ferromagnetic sandwich films with nonmagnetic intermediate layer
Jia et al. Phase diagrams of a diluted Ising ferromagnetic film with spin 1 in a transverse field
Svalov et al. MOKE study of Co/Ti/(Gd–Co) multilayers near the magnetic compensation state
Zhang et al. Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Florez et al. Strain-induced resistance changes in CoFe/Cu GMR multilayers
Pan et al. Ferromagnetic resonance in ferromagnetic/antiferromagnetic bilayers under the stress field