JPH0327225A - Novel test animal and production thereof - Google Patents

Novel test animal and production thereof

Info

Publication number
JPH0327225A
JPH0327225A JP1245727A JP24572789A JPH0327225A JP H0327225 A JPH0327225 A JP H0327225A JP 1245727 A JP1245727 A JP 1245727A JP 24572789 A JP24572789 A JP 24572789A JP H0327225 A JPH0327225 A JP H0327225A
Authority
JP
Japan
Prior art keywords
ngf
conjugate
hippocampus
cholinergic neurons
diphtheria toxin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1245727A
Other languages
Japanese (ja)
Inventor
Masaya Toyama
正彌 遠山
Sadao Shiosaka
貞夫 塩坂
Koji Kudo
幸司 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP1245727A priority Critical patent/JPH0327225A/en
Publication of JPH0327225A publication Critical patent/JPH0327225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE:To obtain test animal useful for judging effect of remedy drug for Alzheimer type dementia by administering combined body of nerve growing factor and nerve cell toxin to brain cortex and/or hippocampus of mammal other than human and selectively destroying cholinergic neuron. CONSTITUTION:1.5-3 molecules of nerve growing factor (e.g. 2.5S.NGF) are reacted with a molecule of nerve cell toxin (e.g. diphtheria toxin) in the presence of water-soluble condensation agent [e.g. 1-ethyl-3-(3-L-dimethylaminopropyl) carbodiimide] in a solvent (e.g. water) at pH5.5-8.0 to obtain combined body of the nerve growing factor and nerve cell toxin. Next, 0.5-30mug said combined body is administered to brain cortex and/or hippocampus of mammal (e.g. rat) other than human and the mammal is bred for 3-7 day to selectively destroy cholinergic neuron projected to brain cortex from Meynert nucleus or bottom part of fore-brain and/or cholinergic neuron projected from septal body.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、痴呆動物モデルとして有用な新規実験動物お
よびその作製方法に関する. 〔従来技術〕 日本人の平均寿命は世界のトップレベルにあり、全人口
に占める高齢者の割合は、年ごとに増加しているが、こ
れに伴い、老人性痴呆、いわゆるアルツハイマ−( A
lzheia+er )型痴呆、の患者数も増大の一途
をたどっている。このアルツハイマー型痴呆は、病理学
的には、脳基底部のマイネル} ( Meyner t
)核におけるコリン作動性ニューロン( Cholin
ergic neuron )が顕著に脱落している点
に特徴がある. このようなアルツハイマー型痴呆を治療する医薬品を開
発するためには、薬効を判定するための病態動物モデル
が必要であり、これまでに、霊長類のマイネルト核に相
当する前脳基底部を電気的に破壊した動物やカイニン酸
やイボテン酸、エチルコリン・マスタード・アジりジニ
ウムイオン(AF64A )などの毒物を投与して、前
脳基底蔀を破壊した動物などが知られている. しかしながら、電気的に破壊した動物やカイニン酸やイ
ボテン酸を投与した動物モデルはいずれも非コリン作動
性ニューロンや通過繊維(passingfibers
)等のコリン作動性ニューロン以外の神経系も破壊され
ており、またAF64Aを投与した動物モデルはマイネ
ルト核から大脳皮質へ投射するコリン作動性ニューロン
以外のコリン作動性ニューロンも無差別に障害されてい
るため、これら既知の動物モデルはいずれも薬効を判定
するための動物モデルとしては、必ずしも適したものと
は言い難いものであった. 〔発明の構戒及び効果〕 本願発明者らは、痴呆実験動物、殊にアルツハイマー型
痴呆の動物モデルを創製すべく、鋭意研究を重ねた結果
、これまで知られていなかった神経成長因子(NGF)
と神経細胞毒との結合体を動物の大脳皮質に投与すれば
、該結合体は大脳皮質にあるコリン作動性ニューロンの
軸索末端から取り込まれて、マイネルト核(霊長類の場
合)又は前脳基底部(霊長類以外の動物の場合)から大
脳皮質へ投射しているコリン作動性ニューロンが選択的
に破壊されること、またこの破壊の程度はNGFと神経
細胞毒との結合体の投与量と用量依存関係にあり、投与
量を調節することにより破壊の程度をコントロールしう
ることを見出した.更に、本発明者らは上記結合体を動
物の海馬に投与すれば、中隔核から海馬へ投射している
コリン作動性ニューロンが選択的に、且つ用量依存的に
破壊されることも見出した。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a novel experimental animal useful as a dementia animal model and a method for producing the same. [Prior art] The average life expectancy of the Japanese people is among the highest in the world, and the proportion of elderly people in the total population is increasing year by year.
The number of patients with dementia of the lzheia + er ) type is also increasing. Pathologically speaking, this Alzheimer's type dementia is characterized by Meyner's dementia at the base of the brain.
) cholinergic neurons (Cholin) in the nucleus
It is characterized by a significant loss of ergic neuron. In order to develop drugs to treat Alzheimer's type dementia, pathological animal models are needed to determine drug efficacy. It is known that the basal forebrain has been destroyed by administering poisonous substances such as kainic acid, ibotenic acid, and ethylcholine mustard aziridinium ion (AF64A). However, both electrically disrupted animals and animal models treated with kainic acid or ibotenic acid do not contain non-cholinergic neurons or passing fibers.
) and other nervous system neurons other than cholinergic neurons are also destroyed, and in animal models administered with AF64A, cholinergic neurons other than cholinergic neurons that project from Meynert's nucleus to the cerebral cortex are also damaged indiscriminately. Therefore, none of these known animal models are necessarily suitable as animal models for determining drug efficacy. [Structure and Effects of the Invention] The present inventors have conducted extensive research in order to create experimental animals with dementia, especially animal models of Alzheimer's disease. )
When a conjugate of cholinergic neurons and a neurotoxin is administered to the cerebral cortex of an animal, the conjugate is taken up from the axon terminals of cholinergic neurons in the cerebral cortex, and is transferred to Meynert's nucleus (in primates) or the forebrain. Selective destruction of cholinergic neurons projecting from the basal region (in animals other than primates) to the cerebral cortex, and the extent of this destruction depends on the dose of the NGF-neuronotoxin conjugate. It was found that there is a dose-dependent relationship between the two, and that the degree of destruction can be controlled by adjusting the dose. Furthermore, the present inventors have also found that when the above conjugate is administered to the hippocampus of animals, cholinergic neurons projecting from the septal nucleus to the hippocampus are selectively and dose-dependently destroyed. .

かかる知見に基づく本発明はマイネルト核もしくは前脳
基底部から大脳皮質へ投射するコリン作動性ニューロン
又は/及び中隔核から海馬へ投射するコリン作動性ニュ
ーロンが選択的に破壊されたヒト以外の哺乳動物及びそ
の作製方法である。
Based on such findings, the present invention provides a method for producing non-human mammals in which cholinergic neurons projecting from Meynert's nucleus or the basal forebrain to the cerebral cortex and/or cholinergic neurons projecting from the septal nucleus to the hippocampus have been selectively destroyed. An animal and its production method.

本発明の対象となる哺乳動物は、例えば、サルなどの霊
長類、ラット、マウス、モルモットなどの囓歯動物、イ
ヌ、ネコなどがあげられ、とりわけラット、マウスなど
の唱歯動物が好ましい。
Mammals to which the present invention is applied include, for example, primates such as monkeys, rodents such as rats, mice, and guinea pigs, dogs, and cats, and especially preferred are rodents such as rats and mice.

本発明の動物は、上記哺乳動物の大脳皮質又は/及び海
馬にNGFと神経細胞毒との結合体を投与して、マイネ
ルト核もしくは前脳基底部から大脳皮質へ投射するコリ
ン作動性ニューロン又は/及び中隔核から海馬に投射す
るコリン作動性ニューロンを選択的に破壊することによ
り作製することができる. NGFと神経細胞毒との結合体は、NGFと神経細胞毒
を反応させることにより調製することができる. NGFとしては、ヒト胎vINGF,マウス顎下It,
9NCF,ヘビ毒NGF,モルモット前立腺NGF1ウ
サギ前立腺NGF,ウシ前立腺NGF,ウシ精液NGF
,ジャコウネズミ顎下腺NGFを用いることができ、と
りわけマウス顎下腺NGFの7S・NGF,β一NGF
,2.5 3−NGFなどを好適に用いることができる
The animal of the present invention is produced by administering a conjugate of NGF and a neuronal cytotoxin to the cerebral cortex and/or hippocampus of the above mammal to induce cholinergic neurons that project from Meynert's nucleus or the basal forebrain to the cerebral cortex. It can be created by selectively destroying cholinergic neurons that project from the septal nucleus to the hippocampus. A conjugate of NGF and a neuronal cytotoxin can be prepared by reacting NGF and a neuronal cytotoxin. NGF includes human fetal vINGF, mouse submandibular It,
9NCF, snake venom NGF, guinea pig prostate NGF1 rabbit prostate NGF, bovine prostate NGF, bovine semen NGF
, musk rat submandibular gland NGF can be used, especially mouse submandibular gland NGF 7S・NGF, β-NGF.
, 2.5 3-NGF, etc. can be suitably used.

また、神経細胞毒としては、例えばジフテリアトキシン
、コレラトキシン、リシンなどの蛋白質1・キシンを好
適に用いることができる。これらの蛍白質トキシンは、
通常、A鎖とB鎖のサブユニットからなっているが、本
発明においては、Aimを含むものであれば、いずれで
あっても用いることができる。
Further, as the nerve cytotoxin, for example, protein 1 toxin such as diphtheria toxin, cholera toxin, and ricin can be suitably used. These fluorescent white matter toxins are
Usually, it consists of A chain and B chain subunits, but in the present invention, any one containing Aim can be used.

上記反応は適当な溶媒中、縮合剤の存在丁に容易に実施
することができる。反応に際しては、反応終了後に未反
応の神経細胞毒が残存しないよ・う、NGFを神経細胞
毒に対して過剰屋用いるのが好ましく、例えば神経細胞
毒1分子に対してNGF 1.5  〜3分子を用いる
のが好ましい。
The above reaction can be easily carried out in a suitable solvent in the presence of a condensing agent. During the reaction, it is preferable to use an excess amount of NGF relative to the neuronal cytotoxin so that no unreacted neuronal cytotoxin remains after the reaction is complete; for example, 1.5 to 3 NGF per molecule of neuronal cytotoxicity. Preferably, molecules are used.

縮合剤としてはベグチド合成に用いられる縮合剤を使用
することができ、例えば、1−エチル−3(3−L−ジ
メチルアミノプロビル)カルボジイミド、N−シクロへ
キシルーN゛−モルホリノカルボジイ處ドなどの水溶性
縮合剤を好適に用いることができる。また、反応溶媒と
しては水が好ましい。反応は室温で好適に進行するが、
反応に際し、リン酸緩衝液など適当な緩衝液を使用し、
反応液のpHを約5.5〜8.0に維持してお《のが好
ましい。
As the condensing agent, condensing agents used in begutide synthesis can be used, such as 1-ethyl-3(3-L-dimethylaminopropyl)carbodiimide, N-cyclohexyl-N'-morpholinocarbodiimide, Water-soluble condensing agents such as these can be suitably used. Furthermore, water is preferred as the reaction solvent. The reaction proceeds suitably at room temperature, but
During the reaction, use an appropriate buffer such as phosphate buffer,
It is preferable to maintain the pH of the reaction solution at about 5.5 to 8.0.

反応終了後、透析、ゲル濾過など、この分野で常用され
る方法を用いて、生或した結合体を精製するのが望まし
い。
After completion of the reaction, it is desirable to purify the resulting conjugate using methods commonly used in this field, such as dialysis and gel filtration.

かくして得られたNGFと神経細胞毒との結合体の大脳
皮質又は海馬への投与は、常法により行うことができ、
例えば頭盈骨を穿孔し、この穿孔部から投与するればよ
い。より具体的には、頭盈骨の穿孔部から大脳皮質に投
与する場合には、2頭蓋骨の十字縫合部を中心に各大脳
半球あたり1へ・数箇所穿孔して、この穿孔部から結合
体をマイクロシリンジを用いて注入することにより好適
に実施できる。また、海馬に投与する場合も、各大脳半
球あたり1〜数箇所穿孔し、この穿孔部から結合体を前
記と同様にして注入すればよい。
The thus obtained conjugate of NGF and neuronal cytotoxin can be administered to the cerebral cortex or hippocampus by a conventional method,
For example, a hole may be made in the cephalic bone and the drug may be administered through this hole. More specifically, when administering to the cerebral cortex from the perforated part of the cephalic bone, several perforations are made in each cerebral hemisphere, centering around the cruciate suture of the two cranial bones, and the conjugate is administered from the perforated part to the cerebral cortex. This can be suitably carried out by injecting using a microsyringe. Furthermore, when administering to the hippocampus, one to several holes may be made in each cerebral hemisphere, and the conjugate may be injected through these holes in the same manner as described above.

大脳皮質への投与部位は、ラットの場合であれば、例え
ばバキシノス( Faxinos )及びワトソン( 
Hatson )の脳図譜Cザ・ラット・ブレイン・イ
ン・ステレオタキシック・コーディネイツ・アカデミッ
ク・プレス・シドニイ(1986) )の゛ノロンタル
・コルテックス、バリエタル・コルテックス、オクシビ
タル・コルテックスの範囲、また海馬への投与部位はC
AI ,CAz 、CA3の範囲で適宜選択すればよい
In the case of rats, the administration site to the cerebral cortex is, for example, as described by Faxinos and Watson (
The range of the ``norontal cortex, varietal cortex, and occivital cortex'' in ``The Rat Brain in Stereotaxic Coordination'' Academic Press Sydney (1986), and The site of administration to the hippocampus is C.
It may be selected as appropriate within the range of AI, CAz, and CA3.

結合体の投与量は、動物の種類により若干変動するが、
概ね1個体当たり、約0.5〜30μgの範囲であれば
よく、例えばラッ]・やマウスの大脳皮質に投与する場
合には、ラット又はマウス1匹に約0.5〜6μg投与
するのが適当である。この範囲において投与鼠を適宜増
減することによりコリン作動性ニューロンの破壊の程度
を調整することができる, 投与後、約3〜7日間通常飼育を行うことにより、本発
明の実験動物をえることができる。
The dosage of the conjugate varies slightly depending on the type of animal, but
In general, it is sufficient that the amount is in the range of about 0.5 to 30 μg per individual. For example, when administering to the cerebral cortex of a rat or mouse, it is recommended to administer about 0.5 to 6 μg per rat or mouse. Appropriate. The degree of destruction of cholinergic neurons can be adjusted by appropriately increasing or decreasing the number of mice administered within this range. After administration, the experimental animals of the present invention can be obtained by normal breeding for about 3 to 7 days. can.

なお、NGFと神経細胞毒との結合体を、直接、マイネ
ルト核もしくは前脳基底部又は/及び中隔核に投与して
も本願実験動物を作製することができる。
Note that the experimental animal of the present invention can also be produced by directly administering a conjugate of NGF and neuronal cytotoxin to Meynert's nucleus, basal forebrain, and/or septal nucleus.

か《して得られる本発明の哺乳動物は、マイネル1・核
もしくは前脳基底部から大脳皮質へ投射するコリン作動
性ニューlコン又は/及び中隔核から海馬へ投射するコ
リン作動性ニューロンが選択的に破壊されているので、
アルツハイマー型痴呆の実験モデルとして、或いは前脳
基底部及び中隔核コリン作動性ニューロンの機能を調べ
るための実験動物として使用することができる。
The mammal of the present invention thus obtained has cholinergic neurons that project from the Mynell 1 nucleus or the basal forebrain to the cerebral cortex and/or cholinergic neurons that project from the septal nucleus to the hippocampus. Because it is selectively destroyed,
It can be used as an experimental model of Alzheimer's type dementia or as an experimental animal to investigate the function of basal forebrain and septal nucleus cholinergic neurons.

以下、本発明を実施例により、更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 (1)NGFと神経細胞毒どの結合体の調製2.5S−
NGF(コラボ【/イティブ リサーチ社製)10μg
を0.(12Mリン酸緩衝生理食塩水40μlに溶解し
、これにジフテリアl・キシン(分子量約62000、
和光純薬社製)22。3μRを0.(12Hリン酸緩衝
生理食塩水40μlに溶解した溶液を加える。ついで、
この混合液に1−エヂル−3−(3−1,−ジメチルア
ミノプロビル)カルボジイミド・塩酸塩の蒸留水溶液(
100mg/ IIdl)80 μlを加え、時々ふり
まぜながら、室温でIO時間、静置する。
Example 1 (1) Preparation of conjugate of NGF and neuronal cytotoxin 2.5S-
NGF (Collaboration/Manufactured by Etive Research) 10μg
0. (Dissolved in 40 μl of 12M phosphate buffered saline and added diphtheria l.
(manufactured by Wako Pure Chemical Industries) 22.3μR to 0. (Add a solution dissolved in 40 μl of 12H phosphate buffered saline. Then,
Add to this mixture a distilled aqueous solution of 1-edyl-3-(3-1,-dimethylaminopropyl)carbodiimide hydrochloride (
Add 80 μl of 100 mg/IIdl) and let stand at room temperature for IO hours while stirring occasionally.

ついで、反応液を0.(12Mリン酸緩衝生理食塩水中
4゜Cで一夜透析する。かくして、2.5S・NGF−
ジフテリアトキシン結合体を含む透析液を得る。この透
析液の一部を取り、SOS−ポリアクリルアミドゲル電
気泳動により、結合体のバンド(分子1 71000付
近)があること、及びジフテリアトキシンのA鎖のバン
ド(分子i1 21000付近)とB鎖のバンド(分子
1 37000付近)がないことを確認した。
Then, the reaction solution was reduced to 0. (dialyzed overnight at 4°C in 12M phosphate-buffered saline. Thus, 2.5S.NGF-
A dialysate containing a diphtheria toxin conjugate is obtained. A portion of this dialysate was taken and subjected to SOS-polyacrylamide gel electrophoresis, which revealed that there was a band of the conjugate (molecule 1, around 71,000), a band of the A chain of diphtheria toxin (molecule i1, around 21,000), and a band of the B chain of diphtheria toxin. It was confirmed that there was no band (around molecule 137,000).

(2)結合体の投与 ラット(ウィスタ一系、雄、体重約150g )をベン
トバルビタールナトリウム(40■/ kg腹腔内投与
)麻酔下に、脳定位固定装置(或茂科学製)に固定する
。ついで、頭頂部の皮膚を正中線に沿って切開し、頭蓋
骨を露出させ、十字縫合の■前方2.5mm,側方2.
5開、■後方0.5mm,側方2.5ram、■後方3
.5mm、側方3.0開の両側の頭蓋骨を穿孔する。
(2) Administration of conjugate A rat (Wista strain, male, weighing approximately 150 g) was fixed in a stereotaxic apparatus (manufactured by Orimo Kagaku) under anesthesia with bentobarbital sodium (40 μg/kg intraperitoneally administered). Next, the skin on the top of the head is incised along the midline to expose the skull, and the skull is opened 2.5 mm anterior and 2.5 mm lateral to the cruciate suture.
5 open, ■ Rear 0.5 mm, Side 2.5 ram, ■ Rear 3
.. A 5 mm, 3.0 lateral opening is drilled into the skull on both sides.

上記(1)で得た、2.5S・NGF−ジフテリアトキ
シン結合体含有透析液をマイクロシリンジにとり、大脳
皮質の深さ0 . 5011lにlpl宛注入する。
The dialysate containing the 2.5S·NGF-diphtheria toxin conjugate obtained in (1) above was taken into a microsyringe, and the dialysis solution was poured into the cerebral cortex at a depth of 0. Inject to lpl into 5011l.

投与後、3日間通常飼育することにより、前脳基底部か
ら大脳皮質へ投射するコリン作動性ニューロンが選択的
に破壊されたラットを得る。
After administration, rats are kept under normal conditions for 3 days to obtain rats in which cholinergic neurons projecting from the basal forebrain to the cerebral cortex are selectively destroyed.

(3)  C h A T陽性細胞の観察上記で得られ
たラットをベントバルビタールナトリウム(40■/ 
kg腹腔内投与)麻酔下に開胸し、左心室を介して左大
動脈にカテーテルを挿入し、生理的食塩水100成、つ
いでザンボニ( Zamboni)?ffl(4%バラ
ホルムアルデヒド−0.2zビクリン酸の混液)  5
00dで潅流した後、脳を摘出しザンボニ液に一昼夜浸
漬して固定する。
(3) Observation of C h A T-positive cells The rats obtained above were treated with bentobarbital sodium (40 μ/
kg intraperitoneal administration) Under anesthesia, the chest was opened, a catheter was inserted into the left aorta through the left ventricle, and 100ml of physiological saline was added, followed by Zamboni? ffl (mixture of 4% rose formaldehyde and 0.2z bicric acid) 5
After perfusion with 00d, the brain is removed and fixed by immersion in Zamboni solution overnight.

得られた脳標本を3(12シュークロース液に一昼夜浸
漬した後、ドライアイスで急速に凍結し、クリオスタッ
ト(守安製作所〉で30μmの厚さの切片を作威し、こ
れを0.(12Mリン酸緩衝生理食塩水に浸漬する. この脳切片を、抗コリンアセチルトランスフエラーゼ抗
体溶液(0.5μg/rrdl、ラットーマウス来、ベ
ーリンガーマンハイム社製〉に一昼夜浸漬した後、間接
蛍光抗体法により、顕微鏡下にコリン作動性ニューロン
の指標としてコリンアセチルトランスフエラーゼ( C
h/IT )陽性細胞を調べた。
The obtained brain specimen was immersed in 3 (12M) sucrose solution for a day and night, then quickly frozen on dry ice, cut into 30 μm thick sections using a cryostat (Moriyasu Seisakusho), and The brain sections were immersed in an anti-choline acetyltransferase antibody solution (0.5 μg/rrdl, rat mouse, manufactured by Boehringer Mannheim) overnight, and then analyzed by indirect fluorescent antibody method. Under the microscope, choline acetyltransferase (C) was detected as an indicator of cholinergic neurons.
h/IT ) positive cells were examined.

その結果、大脳皮質へ投射する両側前脳基底部のコリン
作動性ニューロンの選択的減少(コリンアセチルトラン
スフエラーゼ陽性細胞の減少)及び免疫反応性の低下が
61認された。
As a result, a selective decrease in cholinergic neurons in the basal forebrain on both sides that project to the cerebral cortex (a decrease in choline acetyltransferase-positive cells) and a decrease in immunoreactivity were observed.

実施例2 実施例1−(2)と同様にしてラット(ウィスター系、
雄、体重約150g )の頭蓋骨を露出させ、十字縫合
の■後方5 . 5mm、側方4.O amの両側の頭
蓋骨を穿孔する。実施例1−(1)で得た、2.5S・
NGF−ジフテリアトキシン結合体含有透析液をマイク
ロシリンジにとり、大脳皮質の深さ4mmに1μl宛注
入する。投与後、3日間通常飼育することにより、中隔
核から海馬へ投射するコリン作動性ニューロンが選択的
に破壊されたラットを得る.実験例l 2.5S・NGF−ジフテリアトキシン結合体溶液をラ
ットの一例大脳皮質のみに0.5μl宛注入する以外は
、実施例1と同様に処理し、前脳基底部のコリンアセチ
ルトランスフエラーゼ陽性細目包を調べた.その結果は
第1図の通りである。
Example 2 Rats (Wistar strain,
The skull of a male male, weighing approximately 150 g) was exposed and placed 5. 5mm, lateral 4. Puncture the skull on both sides of the O am. 2.5S・obtained in Example 1-(1)
The dialysate containing the NGF-diphtheria toxin conjugate is taken into a microsyringe and 1 μl is injected into the cerebral cortex at a depth of 4 mm. After administration, rats are raised normally for 3 days to obtain rats in which cholinergic neurons projecting from the septal nucleus to the hippocampus are selectively destroyed. Experimental Example 1 The same procedure as in Example 1 was carried out except that 0.5 μl of the 2.5S NGF-diphtheria toxin conjugate solution was injected only into the cerebral cortex of a rat. The positive minutiae were examined. The results are shown in Figure 1.

第1図の写真(A,Cは投与側、B,Dは非投与側)か
ら投与側のコリンアセチルトランスフエラーゼ陽性細胞
及び免疫反応性が、非投与のそれに較べて顕著に減少し
ており、このことから、NGF−ジフテリアトキシン結
合体の投与により、前脳基底部から大脳皮質へ投射する
コリン作動性ニューロンが選択的に破壊されることがわ
かる。
The photographs in Figure 1 (A and C are the administered side, B and D are the non-administered side) show that choline acetyltransferase-positive cells and immunoreactivity on the administered side have significantly decreased compared to those on the non-administered side. This shows that administration of the NGF-diphtheria toxin conjugate selectively destroys cholinergic neurons that project from the basal forebrain to the cerebral cortex.

実験例2 く実験目的〉 2.5S・NGF−ジフテリアトキシン結合体溶液を投
与したマウスを用いて、投与後3日目に記憶獲得試験を
行い、更に8日目に記憶保持試験を実施して、2.5S
・NGF−ジフテリアトキシン結合体の投与によって、
記憶獲得および記憶保持能力が、どのように阻害される
か調べた。
Experimental Example 2 Experimental Purpose> Using mice administered with 2.5S・NGF-diphtheria toxin conjugate solution, a memory acquisition test was conducted on the 3rd day after administration, and a memory retention test was further conducted on the 8th day. , 2.5S
・By administration of NGF-diphtheria toxin conjugate,
We investigated how memory acquisition and memory retention abilities are inhibited.

く実験方法〉 ■ 体重26−30 gの6週令S 1e:ddY系の
マウスを1群29匹とし、投与群には、頭部両側の前頭
皮質および頭頂皮質の側方約1.5 ram 、深さ0
63−0。5間に2.5S・NGF−ジフテリア1ヘキ
シン結合体溶液を0.2μl宛、ハミル1・ンシリンジ
を使用してエーテル麻酔下に投与した。また対照群には
、同容量の生理的食塩水を上記と同様にして投与した. ■ 投与後3目目に、マウスを中央に通路を設&ノた明
暗2室からなるステソプスルー型装置の明室に、尾部が
通路側になるように、静かにおいた後、マウスの全身が
暗室に入った時点で、電気ショッカー/スクランブラー
( RBS製、LVE−11 ’)を用いて電気ショッ
ク (交流、0.5mA 、3秒間)を与え、暗室回避
の記憶を獲得させた。
Experimental Method> ■ Groups of 29 6-week-old S1e:ddY mice weighing 26-30 g, and the administration group had approximately 1.5 ram lateral areas of the frontal cortex and parietal cortex on both sides of the head. , depth 0
63-0.5, 0.2 μl of 2.5S NGF-diphtheria 1 hexine conjugate solution was administered under ether anesthesia using a Hamill 1 syringe. In addition, the same volume of physiological saline was administered to the control group in the same manner as above. ■ On the third day after administration, place the mouse gently in the light chamber of a stethops-through type device, which consists of two light and dark chambers with a passage in the center, with the tail facing the passage. When the animals entered the room, an electric shock (alternating current, 0.5 mA, 3 seconds) was given using an electric shocker/scrambler (RBS, LVE-11') to make them acquire the memory of avoiding the dark room.

■ 連続120秒以上明室に留まった場合に回避記憶を
獲得したものと判定し、記憶獲得に到るまでの被ショッ
ク回数を指標と17で記憶獲得の程度を調べた。
■ It was determined that avoidance memory had been acquired if the subject remained in the bright room for 120 consecutive seconds or more, and the degree of memory acquisition was examined using the number of times of shock exposure until memory acquisition as an index.

く結果〉 結果は下記第1表に示す通りである。Results〉 The results are shown in Table 1 below.

第  1  表 上記表から、2.5S・NGF−ジフテリア1・キシン
結合体を投与したマウスは記憶獲得までに、対照群より
もより多いショックを受けており、記憶獲得能力が障害
されていることがわかる。
Table 1 From the table above, it can be seen that the mice administered the 2.5S・NGF-diphtheria 1・xin conjugate received more shocks than the control group before memory acquisition, and their memory acquisition ability was impaired. I understand.

(2)記弧送丑弧基 上記(1)の記憶獲得試験において記憶獲得がなされた
動物を、8目目に上記と同様、ステップスルー型装置の
明室に、尾部が通路側になるように、静かにおき、当該
動物の第一腰椎(L,)に付&ノたマーカーと両後肢が
完全に暗室に入るまでの時間、およびマーカーと両後肢
が完全に暗室に入るまでに300秒以上を要した個体数
を指標として、8日前に獲得された記憶の保持の程度を
調べた。
(2) Recording and transporting the animal that has acquired memory in the memory acquisition test in (1) above. On the 8th day, as above, place the animal in the bright room of the step-through device with its tail facing the passageway. Place the marker on the first lumbar vertebra (L,) of the animal and wait 300 seconds for the marker and both hind legs to completely enter the dark room. Using the number of individuals that required the above as an index, the degree of retention of memories acquired 8 days earlier was examined.

〈慧果〉 結果は下記第2表に示す通りである。<Keika> The results are shown in Table 2 below.

第 2 表(a) 第 2 表(b) 上記表から、2.5S・NGF−ジフテリア1・キシン
結合体を投与したマウスは、暗室に入るまでの平均所要
時間が対照群よりも顕著に短く、8口前に獲得された暗
室回避の記憶の保持が対照群に比べて劣っていること、
すなわち記憶保持能力が障害されていることがわかる。
Table 2 (a) Table 2 (b) From the above table, it can be seen that the average time required for the mice treated with the 2.5S・NGF-diphtheria 1・xin conjugate to enter the dark room was significantly shorter than that of the control group. , poorer retention of darkroom avoidance memory acquired 8 sips ago compared to the control group;
In other words, it can be seen that memory retention ability is impaired.

また、晴室に入るまでに300秒以上を要したマウス数
も投与群の方が対照群よりも顕著に少なく2.5S・N
GF−ジフテリアトキシン結合体による記憶保持能力の
障害がわかる。
In addition, the number of mice that took more than 300 seconds to enter the sunny room was significantly lower in the treated group than in the control group (2.5S・N).
Impairment of memory retention ability due to GF-diphtheria toxin conjugate can be seen.

従って、2.5S・NGF−ジフテリアトキシン結合体
はマウスの記憶獲得および記憶保持の両能力を障害する
ことが明らかである。
Therefore, it is clear that the 2.5S NGF-diphtheria toxin conjugate impairs both memory acquisition and memory retention abilities in mice.

実験例3 〈実駄目的〉 記憶獲得直後のマウスに2.5S・NGF−ジフテリア
1−キシン結合体溶液を投与し、8日目に記憶保持試験
を実施して、2。5S−NGF−ジフテリアトキシン結
合体溶液の投与によって、獲得された記憶の保持能力が
どのように障害されるか調べた. 〈実験方法〉 実験例2と同様にして実施した記憶獲得試験において、
暗室回避記憶を獲得したと判定されるマウス(休電26
−30 g 、6週令S le:ddY系)を1群26
匹とし、記憶獲得直後に実験例2と同様に投与群には2
.5S・NGF−ジフテリアトキシン結合体溶液を、ま
た対照群には生理的食塩水を投与した。
Experimental Example 3 (No practical purpose) A 2.5S-NGF-diphtheria 1-xin conjugate solution was administered to mice immediately after memory acquisition, and a memory retention test was conducted on the 8th day. We investigated how the ability to retain acquired memories is impaired by administration of a toxin conjugate solution. <Experimental Method> In a memory acquisition test conducted in the same manner as Experimental Example 2,
Mouse determined to have acquired darkroom avoidance memory (power outage 26)
-30 g, 6 weeks old S le:ddY strain) in 1 group 26
Immediately after memory acquisition, the administration group received 2 mice as in Experiment 2.
.. A 5S NGF-diphtheria toxin conjugate solution was administered to the mice, and a control group received physiological saline.

ついで、8日目に実験例2と同様に記憶保持試験を実施
し、8日前に獲得された記憶が保持されいるかどうかを
調べた。
Then, on the 8th day, a memory retention test was conducted in the same manner as in Experimental Example 2 to examine whether the memories acquired 8 days earlier were retained.

〈猪来〉 結果は下記第3表に示す通りである。<Iro> The results are shown in Table 3 below.

第 3 表(a) 第 3 表(b) 上記表から、2.55−NGF−ジフテリアトキシン結
合体を投与したマウスは、暗室に入るまでの平均所要時
間が対照群よりも顕著に短く、8日前に獲得された暗室
回避の記憶の保持が対照群に比べて劣っていること、す
なわち記憶保持能力が障害されていることがわかる。
Table 3 (a) Table 3 (b) From the above table, it can be seen that the mice treated with the 2.55-NGF-diphtheria toxin conjugate had a significantly shorter average time to enter the dark room than the control group; It can be seen that the retention of memory for darkroom avoidance acquired a day earlier was inferior compared to the control group, that is, the memory retention ability was impaired.

また、暗室に入るまでに300秒以上を要したマウス数
も、投与群の方が対照群よりも顕著に少なく、2.5S
・NGF−ジフテリアトキシン結合体による記憶保持能
力の障害がわかる。
Additionally, the number of mice that took more than 300 seconds to enter the dark room was significantly lower in the treated group than in the control group.
- Impairment of memory retention ability due to NGF-diphtheria toxin conjugate can be seen.

従って、2.5S・NGF−ジフテリアトキシン結合体
は一旦獲得されたマウスの記憶保持能力を障害すること
が明らかである。
Therefore, it is clear that the 2.5S.NGF-diphtheria toxin conjugate impairs the memory retention ability of mice once acquired.

実験例4 コ1ンアセチル ーンスフエー−ゼ  のく実験方法〉 ラット(ウィスク一系、雄、体重約150g )を6〜
7匹l群とし、投与群には実施例lと同様にして調製し
た2.5S・NGF−ジフテリアトキシン結合体溶液を
頭部両側の前頭皮質および頭頂皮質の側方約1.51m
m、深さ0.3−0.5 mmに0.2uf宛、ハミル
トンシリンジを使用してベントバルビタールナトリウム
( 40mg/kg , III腔内投与)麻酔下に投
与した。
Experimental Example 4 Experimental method for co-1 acetyl sulfase
There were 1 group of 7 animals, and for the administration group, a 2.5S NGF-diphtheria toxin conjugate solution prepared in the same manner as in Example 1 was applied to the frontal cortex and parietal cortex on both sides of the head, approximately 1.51 m lateral.
Bentobarbital sodium (40 mg/kg, intracavitary administration III) was administered under anesthesia using a Hamilton syringe to a depth of 0.3-0.5 mm at a dose of 0.2 uf.

また、対照群には生理的食塩水を同様にして投与した。In addition, physiological saline was administered to the control group in the same manner.

投与後5日間通常飼育した後、動物を断頭して大脳を取
り出し、重量測定後直ちに頭頂葉皮質および前脳基底部
を採取した。組織を20倍の容量の100mM−トリス
ーEDTA液(pH7.4)中でホモジナイズし、その
うちのlOμlをコリンアセチルトランスフエラーゼ活
性測定用、残りの一部を蛋白定量用とした。コリンアセ
チルトランスフェラーゼ活性はフォヌン( Fonum
 )の方法〔ジャーナル オブ ニューロケミストリー
( J.Neurochem.)  24巻、407−
409 (1975))により、また、蛋白濃度は、日
本バイオランドラボラトリー株式会社のプロテインアッ
セイ試薬(日本バイオランドラボラトリー製)を用いて
、それぞれ測定し、蛋白1■当たりの活性を算出した。
After being kept normally for 5 days after administration, the animals were decapitated, the cerebrum was removed, and the parietal cortex and basal forebrain were immediately collected after weight measurement. The tissue was homogenized in 20 times the volume of 100 mM Tris-EDTA solution (pH 7.4), of which 10 μl was used for measuring choline acetyltransferase activity and the remaining part was used for protein quantification. Choline acetyltransferase activity is determined by Fonum.
) method [Journal of Neurochemistry (J. Neurochem.) Vol. 24, 407-
409 (1975)), and the protein concentration was measured using a protein assay reagent (manufactured by Japan Bioland Laboratory), and the activity per protein was calculated.

〈結果〉 結果は下記第4表に示す通りである。<result> The results are shown in Table 4 below.

上記表から、投与群の大脳皮質および前脳基底部におけ
るコリンアセチルトランスフェラーゼ活性は、対照群に
較べて約10χおよび9z低下していることが明らかで
ある。
From the above table, it is clear that the choline acetyltransferase activity in the cerebral cortex and basal forebrain of the administered group was reduced by about 10χ and 9z compared to the control group.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実験例1で大脳一側に2.5S・’NGF−
ジフテリアトキシン結合体溶液を投与したラットの前脳
基底部切片(生物の形態)の顕微鏡写真であり、A,C
は投与側、B,Dは非投与側を示す。 A(X i O O) Ill (X I Q (J ) 、8+
Figure 1 shows that in Experimental Example 1, 2.5S·'NGF-
Micrographs of basal forebrain sections (biological form) of rats administered with diphtheria toxin conjugate solution; A, C
indicates the administration side, and B and D indicate the non-administration side. A(X i O O) Ill (X I Q (J), 8+

Claims (14)

【特許請求の範囲】[Claims] (1)マイネルト核もしくは前脳基底部から大脳皮質へ
投射するコリン作動性ニューロン又は/及び中隔核から
海馬に投射するコリン作動性ニューロンが選択的に破壊
されたヒト以外の哺乳動物。
(1) A non-human mammal in which cholinergic neurons projecting from Meynert's nucleus or the basal forebrain to the cerebral cortex and/or cholinergic neurons projecting from the septal nucleus to the hippocampus have been selectively destroyed.
(2)哺乳動物が囓歯動物、イヌ又はネコである請求項
1記載の動物。
(2) The animal according to claim 1, wherein the mammal is a rodent, a dog, or a cat.
(3)囓歯動物がラットである請求項2記載の動物。(3) The animal according to claim 2, wherein the rodent is a rat. (4)大脳皮質へ投射するコリン作動性ニューロンが選
択的に破壊されたラット。
(4) Rats with selective destruction of cholinergic neurons that project to the cerebral cortex.
(5)海馬へ投射するコリン作動性ニューロンが選択的
に破壊されたラット。
(5) Rats in which cholinergic neurons projecting to the hippocampus were selectively destroyed.
(6)ヒト以外の哺乳動物の大脳皮質又は/及び海馬に
神経成長因子と神経細胞毒素の結合体を投与して、マイ
ネルト核もしくは前脳基底部から大脳皮質へ投射するコ
リン作動性ニューロン又は/及び中隔核から海馬に投射
するコリン作動性ニューロンを選択的に破壊させること
を特徴とする動物モデルの作製方法。
(6) By administering a conjugate of nerve growth factor and neuronal cytotoxin to the cerebral cortex and/or hippocampus of a non-human mammal, cholinergic neurons or/ and a method for producing an animal model, which comprises selectively destroying cholinergic neurons that project from the septal nucleus to the hippocampus.
(7)哺乳動物が囓歯動物、イヌ又はネコである請求項
6記載の方法。
(7) The method according to claim 6, wherein the mammal is a rodent, dog, or cat.
(8)囓歯動物がラットである請求項7記載の方法。(8) The method according to claim 7, wherein the rodent is a rat. (9)神経成長因子が2.5S・NGF、β−NGF又
は7S・NGFである請求項6記載の方法。
(9) The method according to claim 6, wherein the nerve growth factor is 2.5S*NGF, β-NGF, or 7S*NGF.
(10)神経細胞毒がジフテリアトキシン、コレラトキ
シン又はリシンである請求項6記載の方法。
(10) The method according to claim 6, wherein the neurocytotoxin is diphtheria toxin, cholera toxin, or ricin.
(11)結合体が2.5S・NGFとジフテリアトキシ
ンの結合体である請求項8記載の方法。
(11) The method according to claim 8, wherein the conjugate is a conjugate of 2.5S·NGF and diphtheria toxin.
(12)ラットの大脳皮質に神経成長因子とジフテリア
トキシンとの結合体を投与して、前脳基底部から大脳皮
質へ投射するコリン作動性ニューロンを選択的に破壊す
ることを特徴とする動物モデルの作製方法。
(12) An animal model characterized by administering a conjugate of nerve growth factor and diphtheria toxin to the cerebral cortex of rats to selectively destroy cholinergic neurons that project from the basal forebrain to the cerebral cortex. How to make
(13)ラットの海馬に神経成長因子とジフテリアトキ
シンとの結合体を投与して、中隔核から海馬へ投射する
コリン作動性ニューロンを選択的に破壊することを特徴
とするモデル動物の作製方法。
(13) A method for producing a model animal, which comprises administering a conjugate of nerve growth factor and diphtheria toxin to the hippocampus of a rat to selectively destroy cholinergic neurons that project from the septal nucleus to the hippocampus. .
(14)神経成長因子とジフテリアトキシンの結合体。(14) Conjugate of nerve growth factor and diphtheria toxin.
JP1245727A 1989-02-17 1989-09-21 Novel test animal and production thereof Pending JPH0327225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245727A JPH0327225A (en) 1989-02-17 1989-09-21 Novel test animal and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3900389 1989-02-17
JP1-39003 1989-02-17
JP1245727A JPH0327225A (en) 1989-02-17 1989-09-21 Novel test animal and production thereof

Publications (1)

Publication Number Publication Date
JPH0327225A true JPH0327225A (en) 1991-02-05

Family

ID=26378313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245727A Pending JPH0327225A (en) 1989-02-17 1989-09-21 Novel test animal and production thereof

Country Status (1)

Country Link
JP (1) JPH0327225A (en)

Similar Documents

Publication Publication Date Title
Blok et al. Ultrastructural evidence for a paucity of projections from the lumbosacral cord to the pontine micturition center or M‐region in the cat: a new concept for the organization of the micturition reflex with the periaqueductal gray as central relay
Syková Glial diffusion barriers during aging and pathological states
Hoskin et al. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism
Hermanson et al. Subnuclear localization of FOS‐like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation
Born et al. Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal
Reid et al. Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine
Mitrofanis et al. Development of the thalamic reticular and perireticular nuclei in rats and their relationship to the course of growing corticofugal and corticopetal axons
Sladek Jr et al. Fetal dopamine neural grafts: extended reversal of methylphenyltetrahydropyridine-induced parkinsonism in monkeys
Zettel et al. Calbindin‐like immunoreactivity in the central auditory system of the mustached bat, Pteronotus parnellii
Nacimiento et al. Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study
Kageyama et al. Laminar and cellular localization of cytochrome oxidase in the cat striate cortex
Rose et al. White‐matter dendrites in the upper cervical spinal cord of the adult cat: A light and electron microscopic study
Loy et al. Ontogeny of the noradrenergic innervation of the rat hippocampal formation
Ruigrok et al. Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy
Ruggiero et al. Adrenaline‐synthesizing neurons in the medulla of the cat
Beracochea et al. Effects of mammillary body and mediodorsal thalamic lesions on elevated plus maze exploration
Fréchette et al. Developmental forebrain cholinergic lesion and environmental enrichment: behaviour, CA1 cytoarchitecture and neurogenesis
Moore et al. Lateral superior olive projections to the inferior colliculus in normal and unilaterally deafened ferrets
Donga et al. Evidence that the masticatory muscles receive a direct innervation from cell group k in the rabbit
JPH0327225A (en) Novel test animal and production thereof
Savage et al. Brain damage and emotional behaviour: the effects of scrapie on the emotional responses of mice
Mihaly et al. Neuropathological alterations in the neocortex of rats subjected to focal aminopyridine seizures
FR2649308A1 (en) ANIMAL EXPERIENCE, METHOD FOR PRODUCING THE SAME, AND CONJUGATE USING THE SAME
Bernardo et al. In vitro labeling of axonal projections in the mammalian central nervous system
Kurokawa et al. Aminergic cellular organization in the gills of Aplysia species