JPH0327200B2 - - Google Patents

Info

Publication number
JPH0327200B2
JPH0327200B2 JP15039183A JP15039183A JPH0327200B2 JP H0327200 B2 JPH0327200 B2 JP H0327200B2 JP 15039183 A JP15039183 A JP 15039183A JP 15039183 A JP15039183 A JP 15039183A JP H0327200 B2 JPH0327200 B2 JP H0327200B2
Authority
JP
Japan
Prior art keywords
medium
culture
antibiotic
yellow
brown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15039183A
Other languages
Japanese (ja)
Other versions
JPS6043394A (en
Inventor
Mitsuyasu Okabe
Daisaku Okuyama
Norio Shibamoto
Yasuo Fukagawa
Tomoyuki Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MERUSHAN KK
Original Assignee
MERUSHAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MERUSHAN KK filed Critical MERUSHAN KK
Priority to JP58150391A priority Critical patent/JPS6043394A/en
Publication of JPS6043394A publication Critical patent/JPS6043394A/en
Publication of JPH0327200B2 publication Critical patent/JPH0327200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は抗生物質OA−6129B2の新芏な補造方
法に関し、さらに詳しくは発酵法による䞋蚘匏 で瀺される抗生物質OA−6129B2の遞択的補造方
法に関する。 本発明者らは先に䞋蚘匏 匏䞭、は氎玠原子、−OH又は−OSO3Hã‚’è¡š
わす、 で瀺される䞀連の新芏な抗生物質がストレプトミ
セス・゚スピヌOA−6129埮工研条寄第11号
の発酵により生産されるこずを芋い出し、それぞ
れ抗生物質OA−6129A、OA−6129B1
OH、、−cis䜓、OA−6129B2
OH、、−trans䜓及びOA−6129C
OSO3Hず呜名し提案したペヌロツパ特蚱出
願公開明现曞第48999A1号、特開昭57−62280号
公報、特開昭57−70890号公報及び特開昭57−
95987号公報参照。 䞊蚘生産菌株は抗生物質OA−6129A、OA−
6129B1及びOA−6129B2も生産するが、抗生物質
OA−6129Cを倚く生産する傟向がある。しかし、
䞊蚘匏の化合物をさらに有甚な他の抗生物
質に誘導する堎合には、OSO3Hである堎合
の匏の化合物、即ち抗生物質OA−6129C
よりも、むしろOHである堎合の匏の
化合物、即ち抗生物質OA−6129B1又はOA−
6129B2の方が利甚範囲が倧きいず思われる。 そこで本発明者らは、抗生物質OA−6129B1及
び又はOA−6129B2を遞択的に生産する胜力の
ある菌株を求めお鋭意研究を行な぀た結果、䞊蚘
ストレプトミセス・゚スピヌOA−6129
Soreptomyces sp.OA−6129を倉異凊理しお
埗られるストレプトミセス゚スピヌOA−6129−
3N−504Streptomyces sp.OA−6129−3N−
504が、前蚘匏で瀺される抗生物質OA
−6129B2を遞択的に生産するこずを芋い出し本
発明を完成するに至぀た。 しかしお、本発明によれば、ストレプトミセ
ス・゚スピヌOA−6129−3N−504を栄逊培地で
培逊し、その培逊物から䞋蚘匏 で瀺される抗生物質OA−6129B2を採取するこず
を特城ずする抗生物質OA−6129B2の補造方法が
提䟛される。 本発明の方法においお䜿甚される菌株、ストレ
プトミセス・゚スピヌOA−6129−3N−504は、
埓来の文献に未茉の新芏な菌株であり、その菌孊
的性質を瀺せば次のずおりである。 (1) 圢態 顕埮鏡䞋でよく分枝した基䞭菌糞より、盎状
〜曲状Straight〜flexuousの気菌糞を䌞長
し、茪生枝はみずめられない。成熟した胞子鎖
は10個以䞊の楕円〜円筒圢をした胞子から成
り、胞子のうは認められない。胞子の倧きさは
0.6〜1.0×0.7〜2.5ミクロン䜍で、胞子の衚面
は平滑である。鞭毛胞子はみずめられない。 (2) 各皮培地における生育状態 培逊は特蚘しないかぎり28°〜30℃で行぀た。
たた色調の蚘茉は䞻ずしお゚ツチ・デむ・トレ
スナヌずむヌ・ゞ゚ヌ・バカスH.D.Tresner
and E.J.Backus著、ゞダヌナル・オブ・ア
プラむド・ミクロビオロゞむヌJournal of
Applied Microbiology11巻、号、1963
幎335〜338頁の方法に埓い、〔 〕内に瀺す
笊号〔CHMコヌドcode〕はコンテむナ
ヌ・コヌポレヌシペン・オブ・アメリカのカラ
ヌ・ハヌモニヌ・マニナアルContainer
Corporation of AmericaのColor Harmony
Manualを甚いた。 (1) シナヌクロヌス・硝酞塩寒倩培地 黄灰〔2dc〕〜明るい灰黄茶〔3ge〕の䞭
等床生育䞊に、黄灰〔2dc〕〜灰黄ピンク
〔5dc〕の気菌糞を着生し、溶解性色玠はみ
ずめられない。 (2) グルコヌス・アスパラギン寒倩培地 うす黄〔2db〕明るいオリヌブ茶〔2ge〕
の良奜な生育䞊に、明るい灰〔〕の気菌糞
を着生する。尚この気菌糞はおくれお灰黄ピ
ンク〔5dc〕ずなる。溶解性色玠はみずめら
れない。 (3) グリセリン・アスパラギン寒倩培地ISP
培地− 穏やかな黄ピンク〔4gc〕〜明るい茶
〔4ie〕の良奜な生育䞊に、明るい灰〔〕〜
明るい灰赀茶〔5fe〕の気菌糞を着生する。
溶解性色玠はみずめられない。 (4) スタヌチ無機塩寒倩培地ISP培地−
 うす黄〔2db〕〜灰色〔2fe〕の良奜な生育
䞊に明るい灰〔〕の気菌糞を着生する。溶
解性色玠は生成しない。 (5) チロシン寒倩培地ISP培地− 灰黄〔3ec〕〜明るい茶〔4ie〕の生育䞊
に、明るい灰〔〕〜明るい茶灰〔3fe〕の
気菌糞を着生する。培地は極く僅かに茶色を
垯びる。 (6) 栄逊寒倩培地 うす黄〔2db〕たたは明るい黄〔2fb〕〜
明るいオリヌブ茶〔2ge〕の良奜な生育䞊
に、明るい灰赀茶〔5fe〕の気菌糞を着生す
る。溶解性色玠はみずめられない。 (7) むヌスト゚キス・麊芜゚キス寒倩培地
ISP培地− 穏やかな黄ピンク〔4gc〕〜明るい茶
〔4ie〕の良奜な生育䞊に、灰黄ピンク〔5dc〕
或いはややおくれお明るい灰〔〕の気菌糞
を着生する。溶解性色玠はみずめられない。 (8) オヌトミヌル寒倩培地ISP培地− 灰黄〔3ec〕〜明るいオレンゞ黄〔3ea〕、
或いは明るい灰黄茶〔3ge〕の良奜な生育䞊
に、明るい茶灰〔3fe〕〜明るい灰赀茶
〔5fe〕の気菌糞を着生し、菌集萜の呚蟺の培
地は僅かに耐色を呈す。 (9) リンゎ酞石灰寒倩培地 暗色〜黄灰〔2dc〕の䞭等床の生育䞊に、
明るい灰〔〕〜明るい灰赀茶〔5fe〕の気
菌糞を着生し、溶解性色玠はみずめられな
い。生育菌集萜の呚蟺にカルシりム塩の溶解
垯が芋られる。 (10) ゲルコヌス・ペプトン・ゲラチン培地20
℃培逊 うす黄〔2db〕〜茶色の良奜な生育䞊に癜
色〔〕〜灰黄ピンク〔5cb〕の気菌糞を着
生する。培逊長期玄週間以䞊にわたる
ず耐色の溶解性色玠を生成した。 (3) 生理的性質 (1) 生育枩床範囲 むヌスト゚キス・麊芜゚キス寒倩培地
ISP培地−を甚いお10°、20°、25°、30°、
34°、37°、40°、45°、50℃の各枩床で実隓の
結果、37℃では殆んど発育出来ない。40℃以
䞊では党く発育しない。その他の各枩床では
生育がみずめられた。最適生育枩床範囲は20
〜30℃ず思われる。 (2) ゲラチンの液化液化する。 (3) スタヌチの加氎分解分解する。 (4) 脱脂牛乳の凝固、ペプトン化凝固はしな
いが、ペプトン化する。 (5) メラニン様色玠の生成 ペプトン・むヌスト・鉄寒倩培地ISP培
地−及びトリプトン・むヌスト゚キス・
ブロス培地ISP培地−11ではメラニン様
色玠の生成は認められなか぀た。チロシン寒
倩培地で極く僅かに茶色を呈するも、メラニ
ンの生成は痕跡皋床である。 (4) 各皮炭玠源の同化性プリドハム・ゎトリ
ブ寒倩培地䜿甚 (1) −アラビノヌス  (2) −キシロヌス  (3) −グルコヌス  (4) −フラクトヌス  (5) シナヌクロヌス 疑わしい (6) むノシトヌル − (7) −ラムノヌス  (8) ラフむノヌス − (9) −マンニツト  は同化する、−は同化しない。 以䞊の菌孊的性質よりOA−6129菌株は
Streptomyces属に属する菌株であ぀お、気菌糞
の圢状はセクシペンRFSection Recti‐
lexibilesず考えられ、胞子衚面平滑であ぀た。
気菌糞の色調は倧倚数の培地、即ちオヌトミヌル
寒倩、グリセリン・アスパラギン寒倩、スタヌ
チ・無機塩寒倩等の培地では明るい灰色〔〕
で、灰色系Gray seriesの菌株である。しか
しシナヌクロヌズ・硝酞塩寒倩、むヌスト゚キ
ス・麊芜゚キス寒倩、及びグルコヌス・アスパラ
ギン寒倩培地では培逊時期に䟝぀おは灰黄ピンク
〔5dc〕の赀色系Red seriesを呈する事があ
る。たた、基䞭菌糞の色は培逊初期はいづれの培
地でもうす黄〜灰黄で、培逊を続けるず黄茶〜灰
黄茶或いは茶色の色調を瀺す様になる。メラニン
色玠はペプトン・むヌスト゚キス・鉄寒倩培地䞭
及びトリプトン・むヌスト゚キス・ブロス䞭にみ
ずめられず、たたその他の氎溶性色玠も倚くの培
地で生成しなか぀た。しかしチロシン寒倩培地、
グルコヌス・ペプトン・ゲラチン培地及びオヌト
ミヌル寒倩培地䞭に僅かに茶色の色玠をみずめ
た。 本発明者等は本菌株をストレプトミセス・゚ス
ピヌOA−6129−3N−504Streptomyces sp.OA
−6129−3N−504ずしお、工業技術院埮生物工
業技術研究所に、特蚱手続䞊の埮生物の寄蚗に関
するブタペスト条玄による囜際寄蚗ずしお昭和58
幎月日に埮工研条寄第334号FERM BP−
334ずしお寄蚘した。 本菌株は前述のペヌロツパ特蚱出願公開明现曞
や公開公報に蚘茉され公知のストプトミセス゚ス
ピヌOA−6129の倉異凊理により創補するこずが
できる。以䞋その倉異凊理法に぀いおさらに詳し
く説明する。 すなわち、ストレプトミセス・゚スピヌOA−
6129を玫倖線照射、攟射線照射、化孊倉異誘起剀
凊理等の通垞の倉異誘導方法によ぀お凊理するこ
ずにより、抗生物質OA−6129Cの生合成系が欠
倱し、抗生物質OA−6129B2を遞択的に生産しう
る菌株を取埗するこずができる。ここでは、化孊
倉異誘起剀凊理法のうち、−メチル−N′−ニ
トロ−−ニトロ゜グアニゞンNTGを甚い
た凊理によ぀お倉異を行぀た堎合に぀いお以䞋さ
らに詳现に説明するが、他の倉異誘導方法によ぀
おも目的の倉異菌株を埗るこずができる。 (1) 倉異凊理 むヌスト゚キス・麊芜゚キス寒倩培地ISP
培地−䞊で28℃、週間培逊したストレプ
トミセス ゚スピヌOA−6129の斜面培逊本
の衚面からかきず぀た胞子をPH7.5の0.01Mリ
ン酞ナトリりム緩衝液mlに懞濁し、ガラスフ
むルタヌNo.で過し、この液mlに
mlの前蚘リン酞バツフアヌで垌釈したのち、
NTGを最終濃床1000Όmlになるように添
加し28℃で時間保぀。このずき90の殺胞子
効果があ぀た。NTG凊理胞子液を2500×で
20分間遠心分離し、胞子を0.85生理食塩氎に
懞濁し、適圓に垌釈しお、その胞子懞濁垌釈液
をISP培地−䞊に塗垃し、28℃でないし、
週間培逊を行いコロニヌを圢成させた。 (2) 倉異菌株の単離法 䞊蚘の劂くISP培地−䞊に圢成したコロニ
ヌを捚い、ISP培地−斜面培地䞊に移し28℃
で週間培逊を行぀た。これらの各菌株の斜面
培地から癜金耳をSE−皮母培地〔牛肉゚
キス0.3、バクトトリプトン0.5、グルコヌ
ス0.1、可溶性でんぷん2.4、酵母゚キス0.5
、炭酞カルシりム0.4、倧豆粉味の玠(æ ª)
補ミヌト特等0.5、PH7.0〕mlを含む詊隓
管培地ぞ接皮し、28℃で日間振ずう培逊し
た。぀ぎにこの培逊液0.5mlをG.M.培地倧豆
粉4.5、グリセリン10、K2HPO40.2、
MgSO4・7H2O0.1、CaCO30.3、CoCl25r
ml、PH7.010mlを含む250ml䞉角フラスコに接
皮し、28℃でロヌタリヌシ゚ヌカヌ䞊日間培
逊した。 この培逊䞊柄みを5Όシリカゲル60F254メ
ルク瀟にスポツトし、真空デシケヌタヌ䞭で
箄10分間也燥したのち、クロロホルムメタノ
ヌル100リン酞緩衝液PH7.5
の展開溶媒で展開埌、冷颚で溶媒を陀去
したのち゚ヌルリツヒ詊薬にひたし、105℃で
分間加熱しお発色させ、抗生物質OA−
6129Cのスポツトが消倱し、抗生物質OA−
6129B2のスポツトを瀺した倉異菌株を分離し
た。 これにより、圓業者は本発明の目的に適合し
た埮生物を容易に怜玢するこずができる。 本発明の方法によれば、抗生物質OA−6129B2
は、䞊蚘菌株ストレプトミセス ゚スピヌ
OA6129−3N−504の胞子たたは菌糞を栄逊源含
有培地に接皮しお、奜気的に増殖させるこずによ
぀お生産させる。 その栄逊源ずしおは、攟線菌の栄逊源ずしお通
垞䜿甚されるもの、䟋えば炭氎化物、窒玠源、無
機塩などの同化できる栄逊源を䜿甚できる。䟋え
ば、ぶどう糖、グリセリン、麊芜糖、蔗糖、糖
蜜、デキストリン、テンプンなどの炭氎化物や、
倧豆油、萜花生油、ラヌドなどの油脂、脂肪類の
劂き炭玠源ペプトン、肉゚キス、倧豆粉、綿実
粉、也燥酵母、コヌンスチヌプリカヌ、酵母゚キ
ス、脱脂乳、カれむン、硝酞ナトリりム、硝酞ア
ンモニりム、硫酞アンモニりムなどの窒玠源燐
酞二カリりム、食塩、炭酞カルシりム、硫酞マグ
ネシりムなどの無機塩が䜿甚でき、必芁により埮
量金属䟋えばコバルト、マンガンなどを添加する
こずができる。栄逊源ずしおは、その他、抗生物
質OA−6129B2の生産を阻害しないものであれ
ば、いずれの栄逊源でも䜿甚でき、公知の攟線菌
の培逊材料はいずれも䜿甚できる。たた、加熱殺
菌時及び培逊䞭における発泡を抑えるため、シリ
コン、怍物油などの消泡剀を添加するこずもでき
る。 䞊蚘の劂き栄逊源の配合割合は特に制玄される
ものではなく、広範囲に亘぀お倉えるこずがで
き、䜿甚する前蚘菌株にず぀お奜適な栄逊源の組
成及び配合割合は、圓業者であれば簡単な小芏暡
実隓により容易に決定するこずができる。 たた、栄逊培地は培逊に先立ち殺菌するこずが
でき、この殺菌の前又は埌で、培地のPHを〜
の範囲、特にPH〜の範囲に調節するのが有利
である。 かかる栄逊培地でのストレプトミセス゚スピヌ
OA−6129−3N−504の培逊は原則的には、䞀般
の攟線菌による抗生物質の補造においお通垞䜿甚
されおいる方法に準じお行なうこずができる。通
垞奜気的条件䞋に培逊するのが奜適であり、通垞
撹拌しながら及び又は通気しながら行なうこず
ができる。たた、培逊方法ずしおは静眮培逊、振
盪培逊、通気撹拌をずもなう液内培逊のいずれも
䜿甚可胜であるが、液内培逊で有利である。 䜿甚しうる培逊枩床は菌株OA−6129−3N−
504の発育が実質的に阻害されず抗生物質OA−
6129B2を生産し埗る範囲であれば特に制限され
るものではないが、䞀般に20〜40℃奜たしくは25
〜35℃の範囲内の枩床が奜適である。 たた、培逊を奜適に行なうため、必芁に応じ
お、培逊䞭に培逊物のPHを〜、特に〜の
範囲に調節するこずができる。 倧芏暡な倧量培逊の堎合、適宜皮母培逊を行な
い、これを栄逊培地に接皮し、液䜓培逊するのが
有利である。 培逊は通垞抗生物質OA−6129B2が充分に蓄積
するたで継続するこずができる。その培逊時間
は、培地の組成や培逊枩床、䜿甚生産株等により
異なるが、通垞30〜90時間の範囲である。 培逊䞭の抗生物質OA−6129B2の蓄積量は前述
のシリカゲルを甚いる薄局クロマトグラフむヌに
より定量するこずができ、それにより最適蓄積量
を容易に知るこずができる。 かくしお、培逊物䞭に蓄積された抗生物質OA
−6129B2は氎溶性であり、䞻ずしお菌䜓倖に存
圚するので、有利には、培逊埌、過、遠心分
離、抜出などのそれ自䜓公知の分離法によ぀お菌
䜓を陀去し、その液、䞊柄液、抜出液などより
回収される。 回収はそれ自䜓公知の皮々の方法で行なうこず
ができ、特にカルボン酞型抗生物質の回収のため
に屡々利甚される方法が有利に適甚される。䟋え
ば、䜎PHにおける酢酞゚チル、−ブタノヌル等
での溶媒抜出及びその溶媒局から高PH氎局ぞの転
溶掻性炭、アンバヌラむトXADロヌム・アン
ド・ハヌス瀟補、ダむダむオンHP−20䞉菱化
成瀟補等による吞着ず、メタノヌル氎、アセト
ン氎等による溶出ダり゚ツクス×ダりケ
ミカル瀟補、QAE−セフアデツクス−25フ
アルマシア瀟補、DEAE−セルロヌズワツトマ
ンDE−32ワツトマン瀟補、DEAE−セフアデ
ツクス−25フアルマシア瀟補等のむオン亀
換暹脂による吞着及び溶出セフアデツクス−
10フアルマシア瀟補、バむオ・ゲル−バ
むオ・ラツド瀟補、等によるゲル過セルロ
ヌズ、アビセルSFアメリカン・ビスコヌス瀟
補等のカラムクロマトグラフむヌアセトン等
の溶剀添加による匷制沈殿法凍結也燥法、等を
それぞれ単独で或いは適宜組合せお、さらに堎合
によ぀おは反埩しお䜿甚される。 回収粟補工皋䞭の抗生物質OA−6129B2の挙動
もたた、前述の薄局クロマトグラフむヌにより定
量枬定するこずができ、かくしお、抗生物質OA
−6129B2が埗られる。 本発明の方法によれば、培逊条件によ぀お、培
逊物䞭に抗生物質OA−6129Aが少量生産される
こずもあるが、抗生物質OA−6129B1やOA−
6129Cは実際䞊生産されるこずがなく、抗生物質
OA−6129B2が遞択的に生産される。 本抗生物質OA−6129B2は、䞀般に遊離圢のも
のよりも塩の圢の方がより安定であるから、埌述
する医薬甚途に䜿甚したり、さらに誘導䜓に転換
する堎合の䞭間䜓ずしお䜿甚したり、或いは前蚘
した粟補工皋に付する堎合等においおは、塩の圢
で凊理するこずが奜適である。 抗生物質OA−6129B2のその塩圢ぞの転化はそ
れ自知の方法に埓い、該抗生物質OA−6129B2を
無機又は有機の塩基で凊理するこずにより行なう
こずができる。この造塩反応に䜿甚し埗る無機又
は有機の塩基ずしおは、䟋えば、氎酞化ナトリり
ム、氎酞化カリりム、氎酞化リチりムの劂きアル
カリ金属の氎酞化物氎酞化カルシりム、氎酞化
マグネシりムの劂きアルカリ土類金属の氎酞化
物モノ゚チルアミン、ゞメチルアミン、トリメ
チルアミン、モノ゚タノヌルアミン、ゞ゚タノヌ
ルアミン、ベンザチン、プロカむンの劂き第䞀
玚、第二玚又は第䞉玚の有機アミン等が挙げられ
る。 本発明の方法により補造される抗生物質OA−
6129B2は、前述のペヌロツパ特蚱出願公開明现
曞に蚘茉されおいるように広範囲の抗菌掻性を有
しおおり抗菌剀ずしおの甚途が考えられるず共
に、さらに有甚な抗生物質に誘導䜓に導くための
合成䞭間䜓ずしおの甚途も考えられる。 次に実斜䟋により本発明をさらに説明する。な
お、以䞋の実斜䟋においお甚いる抗菌掻性物質の
定量分析は、それ自䜓公知の抗生物質を指暙ずし
お、前述の薄局クロマトグラフむヌにより行぀
た。 実斜䟋 〔〕 500ml容゚ルレンマむダヌ・フラスコに
100mlの䞋蚘組成の皮母培地SE−を入
れ、垞法により、121℃で15分間殺菌した。䞀
方、ストレプトミセス・゚スピヌOA−6129
Streptomyces sp.OA−6129FERM BP−
11から埗られた倉異株3N−504株FERM
BP−334を胞子を充分着生させ、この癜金
耳を䞊蚘皮母培地に接皮し、28℃で48時間ロヌ
タリヌシ゚ヌカヌ200rpm、振幅cmで振
ずう培逊した。この皮母培地100mlを、䞋蚘組
成の生産培地GM−5.0を入れた10
容ゞダヌ・フアヌメンタヌに接皮し、溶存酞玠
蚈で培逊液䞭の溶存酞玠濃床飜和が10
以䞋ずならぬように回転数を制埡しお、通気量
min、枩床28℃で90時間通気撹拌培逊し
た。消泡剀ずしおシリコンKM−75〔信越化孊
(æ ª)補〕を0.1䜿甚した。経時的に培逊液をサ
ンプリングし、遠心分離した䞊柄液に぀いお抗
生物質OA−6129化合物の定量を前述の薄局ク
ロマトグラフむヌを䜿぀おおこな぀た。各培逊
時間における分析結果を䞋蚘の衚に瀺す。
The present invention relates to a new method for producing antibiotic OA- 6129B2 , and more specifically, the following method using fermentation method. The present invention relates to a method for selectively producing the antibiotic OA-6129B 2 . The present inventors previously calculated the following formula In the formula, R represents a hydrogen atom, -OH or -OSO3H .
It was discovered that the antibiotics OA-6129A (R=H) and OA-6129B 1 were produced by fermentation of
(R=OH, 5,6-cis body), OA-6129B 2 (R=
OH, 5,6-trans body) and OA-6129C (R=
OSO 3 H) was proposed (European Patent Application Publication No. 48999A1, JP-A-57-62280, JP-A-57-70890 and JP-A-57-
(See Publication No. 95987). The above production strains are antibiotic OA-6129A, OA-
6129B 1 and OA-6129B 2 are also produced, but antibiotics
There is a tendency to produce a lot of OA-6129C. but,
When the compound of formula () above is further derived into other useful antibiotics, the compound of formula () when R=OSO 3 H, i.e. antibiotic OA-6129C
rather than the compound of formula () when R=OH, i.e. the antibiotic OA-6129B 1 or OA-
6129B 2 seems to have a wider range of use. Therefore, the present inventors conducted intensive research in search of a strain capable of selectively producing the antibiotic OA-6129B 1 and/or OA-6129B 2 , and as a result, the above-mentioned Streptomyces sp. OA-6129
Streptomyces sp. OA-6129- obtained by mutation treatment of (Soreptomyces sp. OA-6129)
3N−504 (Streptomyces sp. OA−6129−3N−
504) is an antibiotic OA represented by the above formula ()
-6129B 2 was discovered to be selectively produced, and the present invention was completed. According to the present invention, Streptomyces sp. OA-6129-3N-504 is cultured in a nutrient medium, and the following formula is obtained from the culture. Provided is a method for producing antibiotic OA-6129B 2 , which comprises collecting antibiotic OA-6129B 2 represented by: The strain used in the method of the present invention, Streptomyces sp. OA-6129-3N-504, is
This is a new strain that has not been described in conventional literature, and its mycological properties are as follows. (1) Morphology Under a microscope, straight to flexible aerial hyphae are elongated from well-branched basal hyphae, and whorled branches are not observed. A mature spore chain consists of ten or more oval to cylindrical spores, and no sporangia are observed. The size of the spores
The surface of the spore is smooth, measuring approximately 0.6-1.0 x 0.7-2.5 microns. Flagellated spores are not observed. (2) Growth conditions in various media Cultivation was performed at 28° to 30°C unless otherwise specified.
In addition, descriptions of color tones are mainly based on HDTresner and E.G. Bakas.
and EJBackus), Journal of Applied Microbiology
Applied Microbiology) Volume 11, No. 4, (1963
According to the method on pages 335-338 (2013), the codes in [ ] [CHM codes] are based on the Container Corporation of America's Color Harmony Manual (Container Corporation of America).
Color Harmony by Corporation of America
Manual) was used. (1) Seuculose/nitrate agar medium: Aerial mycelium of yellow ash [2 dc] to gray yellow pink [5 dc] grows and dissolves on medium growth of yellow ash [2 dc] to light gray yellow brown [3 ge]. No sex pigments are observed. (2) Glucose-asparagine agar medium: light yellow [2db] bright olive brown [2ge]
Bright gray [d] aerial mycelium grows on top of the good growth. This aerial mycelium later becomes grayish-yellow-pink [5 dc]. No soluble pigments are observed. (3) Glycerin-asparagine agar medium (ISP
Medium-5): Good growth of gentle yellow pink [4gc] to light brown [4ie], with light gray [d] to
Propagates bright grayish-reddish brown [5fe] aerial mycelium.
No soluble pigments are observed. (4) Starch inorganic salt agar medium (ISP medium-
4): Light gray [d] aerial mycelia are attached to the light yellow [2db] to gray [2fe] growth. No soluble dyes are produced. (5) Tyrosine agar medium (ISP medium-7): Aerial mycelium of light gray [d] to light brown gray [3fe] grows on gray-yellow [3ec] to light brown [4ie] growth. The medium will have a very slight brown tinge. (6) Nutrient agar medium: light yellow [2db] or bright yellow [2fb] ~
Aerial mycelium of light gray-reddish brown [5fe] grows on the good growth of light olive brown [2ge]. No soluble pigments are observed. (7) Yeast extract/malt extract agar medium (ISP medium-2): Gentle yellow-pink [4gc] to bright brown [4ie] with good growth, gray-yellow-pink [5dc]
Or, slightly later, bright gray [d] aerial mycelium grows. No soluble pigments are observed. (8) Oatmeal agar medium (ISP medium-3): gray-yellow [3ec] to bright orange-yellow [3ea],
Alternatively, on the good growth of light gray-yellow-brown [3ge], aerial mycelium of light brown-gray [3fe] to light gray-reddish-brown [5fe] grows, and the medium around the fungal colony takes on a slightly brown color. (9) Malate lime agar medium: dark to yellow gray [2dc] medium growth;
Aerial mycelia of light gray [d] to light gray reddish brown [5fe] are attached, and no soluble pigments are observed. A dissolution zone of calcium salts can be seen around the growing bacterial colonies. (10) Gelcose peptone gelatin medium (20
℃ culture) White [B] to gray-yellow pink [5CB] aerial mycelia grow on the pale yellow [2dB] to brown good growth. When cultured for a long period of time (about 3 weeks or more), a brown soluble pigment was produced. (3) Physiological properties (1) Growth temperature range: 10°, 20°, 25°, 30°, using yeast extract/malt extract agar medium (ISP medium-2).
As a result of experiments at temperatures of 34°, 37°, 40°, 45°, and 50°C, almost no growth occurred at 37°C. It does not grow at all above 40℃. Growth was observed at all other temperatures. The optimal growth temperature range is 20
It seems to be ~30℃. (2) Liquefaction of gelatin: Liquefaction. (3) Starch hydrolysis: decomposes. (4) Coagulation and peptonization of skim milk: It does not coagulate, but it converts into peptonization. (5) Production of melanin-like pigments: Peptone yeast iron agar medium (ISP medium-5) and tryptone yeast extract
No production of melanin-like pigment was observed in the broth medium (ISP medium-11). Although it shows a very slight brown color on tyrosine agar medium, there is only a trace of melanin production. (4) Assimilation of various carbon sources (using Pridham-Gotrib agar medium) (1) L-arabinose + (2) D-xylose + (3) D-glucose + (4) D-fructose + (5) Seuculose Doubtful (6) Inositol - (7) L-rhamnose + (8) Raffinose - (9) D-mannite ++ is assimilated, - is not assimilated. Based on the above mycological properties, the OA-6129 strain is
It is a strain belonging to the genus Streptomyces, and the shape of the aerial hyphae is Section Recti-RF (Section Recti-RF).
lexibiles), and the spore surface was smooth.
The color of aerial mycelia is light gray on most media, such as oatmeal agar, glycerin/asparagine agar, starch/inorganic salt agar, etc.
It is a strain of the Gray series. However, depending on the culture period, a red series of gray-yellow-pink [5 dc] may be exhibited on seurose/nitrate agar, yeast extract/malt extract agar, and glucose/asparagine agar media. In addition, the color of the basal hyphae is light yellow to grayish yellow in any medium at the initial stage of culture, and as the culture continues, the color becomes yellowish brown to grayish yellowish brown or brown. Melanin pigment was not observed in peptone/yeast extract/iron agar medium or tryptone/yeast extract/broth, and other water-soluble pigments were not produced in many media. However, tyrosine agar medium,
A slight brown pigment was observed in the glucose-peptone-gelatin medium and oatmeal agar medium. The present inventors have identified this strain as Streptomyces sp. OA-6129-3N-504 (Streptomyces sp.
-6129-3N-504) and was deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology as an international deposit pursuant to the Budapest Treaty on the Deposit of Microorganisms for the Purposes of Patent Procedures.
On August 5th, FERM BP-
334). This strain can be created by mutagenesis of the known Stoptomyces sp. OA-6129, which is described in the European Patent Application Publications and Publications mentioned above. The mutation processing method will be explained in more detail below. That is, Streptomyces sp. OA−
By treating 6129 with conventional mutation induction methods such as ultraviolet irradiation, radiation irradiation, and treatment with chemical mutagenic agents, the biosynthesis system of antibiotic OA-6129C was deleted, and antibiotic OA-6129B 2 was selected. It is possible to obtain a strain that can produce the desired result. Here, among the chemical mutagen treatment methods, we will explain in more detail the case in which mutation is carried out by treatment using N-methyl-N'-nitro-N-nitrosoguanidine (NTG), but other methods The desired mutant strain can also be obtained by the mutation induction method described above. (1) Mutation treatment Yeast extract/malt extract agar medium (ISP
Spores scraped from the surface of one slanted culture of Streptomyces sp. OA-6129 cultured on medium-2) at 28°C for 2 weeks were suspended in 9 ml of 0.01M sodium phosphate buffer (PH7.5) and filtered through a glass filter. (No. 2) and add 9% to 1 ml of this liquid.
After diluting with ml of the above phosphate buffer,
Add NTG to a final concentration of 1000 ÎŒg/ml and keep at 28°C for 1 hour. At this time, the sporicidal effect was 90%. NTG treated spore liquid at 2500×g
Centrifuge for 20 minutes, suspend the spores in 0.85% physiological saline, dilute appropriately, apply the diluted spore suspension on ISP medium-2, and incubate at 28°C for 2 to 30 minutes.
Culture was performed for 3 weeks to form colonies. (2) Isolation method of mutant strain Discard the colonies formed on ISP medium-2 as described above and transfer them to ISP medium-2 slant medium at 28°C.
Culture was carried out for two weeks. One platinum loop from the slant culture medium of each of these strains was added to the SE-4 seed mother medium [0.3% beef extract, 0.5% bactotryptone, 0.1% glucose, 2.4% soluble starch, 0.5% yeast extract.
%, calcium carbonate 0.4%, soy flour (Ajinomoto Co., Inc.)
The mixture was inoculated into a test tube medium containing 3 ml of 0.5% PH7.0, and cultured with shaking at 28°C for 2 days. Next, 0.5ml of this culture solution was mixed with GM medium (soybean flour 4.5%, glycerin 10%, K 2 HPO 4 0.2%,
MgSO 4 7H 2 O 0.1%, CaCO 3 0.3%, CoCl 2 5r/
ml, pH7.0) in a 250 ml Erlenmeyer flask, and cultured on a rotary shaker at 28°C for 4 days. This culture supernatant was spotted on 5Ό silica gel 60F 254 (Merck) and dried in a vacuum desiccator for about 10 minutes, followed by chloroform:methanol:M/100 phosphate buffer (PH7.5) = 8:
After developing with a 6:1 developing solvent, remove the solvent with cold air, soak in Ehrrich reagent, heat at 105°C for 5 minutes to develop color, and remove antibiotic OA-
6129C spots disappeared and antibiotics OA-
A mutant strain showing 6129B 2 spots was isolated. This allows those skilled in the art to easily search for microorganisms suitable for the purpose of the present invention. According to the method of the invention, antibiotic OA-6129B 2
is the above-mentioned strain Streptomyces sp.
It is produced by inoculating OA6129-3N-504 spores or mycelia into a nutrient-containing medium and growing aerobically. As the nutrient source, those normally used as a nutrient source for actinomycetes, such as assimilable nutrient sources such as carbohydrates, nitrogen sources, and inorganic salts, can be used. For example, carbohydrates such as glucose, glycerin, maltose, sucrose, molasses, dextrin, and starch;
Carbon sources such as oils and fats such as soybean oil, peanut oil, and lard; peptone, meat extract, soybean flour, cottonseed flour, dried yeast, corn steep liquor, yeast extract, skim milk, casein, sodium nitrate, ammonium nitrate, Nitrogen sources such as ammonium sulfate: inorganic salts such as dipotassium phosphate, common salt, calcium carbonate, and magnesium sulfate can be used, and if necessary, trace metals such as cobalt and manganese can be added. As the nutrient source, any other nutrient source can be used as long as it does not inhibit the production of the antibiotic OA-6129B 2 , and any known culture material for actinomycetes can be used. Further, in order to suppress foaming during heat sterilization and culturing, an antifoaming agent such as silicone or vegetable oil may be added. The blending ratio of the nutrient sources as described above is not particularly restricted and can be varied over a wide range, and those skilled in the art can easily determine the composition and blending ratio of the nutrient source suitable for the strain used. This can be easily determined by small-scale experiments. In addition, the nutrient medium can be sterilized prior to cultivation, and the pH of the medium can be adjusted to 4 to 9 before or after sterilization.
It is advantageous to adjust the pH to a range of , especially a pH of 6 to 8. In such a nutrient medium, Streptomyces sp.
In principle, culturing of OA-6129-3N-504 can be carried out according to methods commonly used in the production of antibiotics using general actinomycetes. It is usually preferable to culture under aerobic conditions, which can usually be carried out with stirring and/or with aeration. Further, as a culture method, any of static culture, shaking culture, and submerged culture with aeration and agitation can be used, but submerged culture is advantageous. The culture temperature that can be used is strain OA-6129-3N-
Antibiotic OA− without substantially inhibiting the growth of 504
There is no particular restriction as long as 6129B 2 can be produced, but generally the temperature is 20 to 40℃, preferably 25℃.
Temperatures in the range ˜35° C. are preferred. Moreover, in order to carry out the culture suitably, the pH of the culture can be adjusted to a range of 4 to 9, particularly 6 to 8, during the culture, if necessary. In the case of large-scale mass cultivation, it is advantageous to perform a seed culture as appropriate, inoculate it into a nutrient medium, and perform liquid culture. Cultivation can normally be continued until sufficient antibiotic OA-6129B 2 has accumulated. The culture time varies depending on the composition of the medium, culture temperature, production strain used, etc., but is usually in the range of 30 to 90 hours. The amount of antibiotic OA-6129B 2 accumulated during culture can be quantified by thin layer chromatography using silica gel as described above, and thereby the optimal amount of accumulation can be easily determined. Thus, the antibiotic OA accumulated in the culture
Since −6129B 2 is water-soluble and mainly exists outside the bacterial cells, it is advantageous to remove the bacterial cells after culturing by a separation method known per se, such as filtration, centrifugation, or extraction. , supernatant liquid, extract liquid, etc. Recovery can be carried out by various methods known per se, and in particular methods often used for recovery of carboxylic acid type antibiotics are advantageously applied. For example, solvent extraction with ethyl acetate, n-butanol, etc. at low pH and transfer of the solvent layer to high pH water layer; activated carbon, Amberlite XAD (manufactured by Rohm and Haas), Diaion HP-20 (manufactured by Mitsubishi Kasei Corporation), etc., and elution with methanol water, acetone water, etc.; Dowex 1x2 (manufactured by Dow Chemical Company), QAE-Sephadex A-25 (manufactured by Pharmacia), DEAE-Cellulose Watman DE- Adsorption and elution using ion exchange resins such as 32 (manufactured by Watmann) and DEAE-Sephadex A-25 (manufactured by Pharmacia); Cephadex G-
Gel filtration with 10 (manufactured by Pharmacia), Bio-Gel P-2 (manufactured by Bio-Rad), etc.; column chromatography with cellulose, Avicel SF (manufactured by American Viscose); addition of solvents such as acetone A forced precipitation method; a freeze-drying method, etc. may be used alone or in appropriate combinations, and may be used repeatedly in some cases. The behavior of antibiotic OA-6129B 2 during the recovery and purification process can also be quantitatively determined by thin layer chromatography as described above, thus showing that antibiotic OA-6129B 2
−6129B 2 is obtained. According to the method of the present invention, depending on the culture conditions, a small amount of antibiotic OA-6129A may be produced in the culture, but antibiotics OA-6129B 1 and OA-
6129C is virtually never produced and is an antibiotic.
OA-6129B 2 is selectively produced. Since the salt form of this antibiotic OA-6129B 2 is generally more stable than the free form, it can be used for the pharmaceutical purposes described below, or as an intermediate for further conversion into derivatives. , or when subjecting it to the above-mentioned purification steps, it is preferable to treat it in the form of a salt. Conversion of the antibiotic OA-6129B 2 into its salt form can be carried out according to known methods by treating the antibiotic OA-6129B 2 with an inorganic or organic base. Inorganic or organic bases that can be used in this salt-forming reaction include, for example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkaline earth bases such as calcium hydroxide and magnesium hydroxide; Metal hydroxides include primary, secondary, or tertiary organic amines such as monoethylamine, dimethylamine, trimethylamine, monoethanolamine, diethanolamine, benzathine, and procaine. Antibiotic OA- produced by the method of the present invention
6129B 2 has a wide range of antibacterial activity as described in the European patent application publication mentioned above, and can be used as an antibacterial agent. It can also be used as an intermediate. Next, the present invention will be further explained by examples. The quantitative analysis of the antibacterial active substances used in the following examples was carried out by the above-mentioned thin layer chromatography using a known antibiotic as an indicator. Example [A] In a 500ml Erlenmeyer flask
100 ml of a seed culture medium (SE-4) having the following composition was added and sterilized at 121°C for 15 minutes by a conventional method. On the other hand, Streptomyces sp. OA−6129
(Streptomyces sp. OA−6129) (FERM BP−
11) mutant strain 3N-504 strain (FERM
BP-334) was allowed to fully adhere to spores, and one platinum loop was inoculated into the seed medium and cultured at 28° C. for 48 hours with shaking in a rotary shaker (200 rpm, amplitude 7 cm). 100ml of this seed medium was added with 5.0% of the production medium (GM-3) with the following composition.
The dissolved oxygen concentration (% saturation) in the culture medium is 10% using a dissolved oxygen meter.
The aeration and agitation culture was carried out for 90 hours at a temperature of 28° C. with an aeration rate of 5/min while controlling the rotation speed so as not to exceed the rotation speed. Silicone KM-75 as an antifoaming agent [Shin-Etsu Chemical]
Co., Ltd.] was used at 0.1%. The culture solution was sampled over time, and the antibiotic OA-6129 compound was quantified in the centrifuged supernatant using the thin layer chromatography described above. The analysis results for each culture time are shown in the table below.

【衚】 皮母培地SE−の組成  グルコヌス 0.1 可溶性柱粉 2.4 牛肉゚キス 0.3 ミヌト 0.5 バクトトリプトン 0.5 CaCO3 0.2 氎道氎 生産培地GM−の組成 グリセリン 8.0 倧豆粉 3.0 台湟酵母 1.0 MgSO4 0.2 K2HPO4 0.2 CaCO3 0.3 CoCl2 5Όml 〔〕 䞊蚘〔〕で埗られた90時間培逊埌の発
酵液4.5に氎道氎を加えお6.0ずし、トプコ
パヌラむトNo.34東興パヌラむト(æ ª)補を添加
したのち、ヌツチ゚で固型物を分離し、4.0
の液を埗た。次いで固型物を再び氎道
氎に溶かしお4.0ずし、ヌツチ゚で過をし
お2.0の液を埗た。液ず
をあわせ、ダむダむオンHP20レゞンを
400ml充おんしたガラスカラム40mm×320mm
に通液速床400mlhrの速床で吞着させた。400
mlの蒞留氎でカラムを氎掗したのち、
、10及び15
のアセトン氎で段階的にアセトン濃床をあげな
がら溶出した。区分を15mlずし、その溶出液
を分画し、薄局クロマトグラフむヌ法で分析し
おOA−6129B2を䞻ずする画分33〜画分57の区
分を集め430mlを埗た。OA−6129B2ず共に少
量生産されたOA−6129Aは画分59から画分66
に含有されおいた。 次に前蚘OA−6129B2画分を予め0.01Mのリ
ン酞緩衝液PH8.0で平衡化したダむダむオ
ンPA306Sを充填したカラム17.5mm×250mm
に吞着させ、100mlの蒞留氎で充分氎掗したの
ち、食塩濃床がからたで盎線的に倉化す
る食塩氎合蚈1.0で溶出した。区分をml
ずしお分画した。各画分を薄局クロマトグラフ
むヌ法で分析し、OA−6129B2を含有する画分
33から画分55たでを集め130mlを埗た。この画
分を0.01Mリン酞緩衝液PH8.0で予め平衡
化したダむダむオンPH20カラム15.0mm×430
mmに吞着させ、この溶出液をアセトン濃床が
から20たで盎線的に倉化するアセトン氎合
蚈600mlで溶出した。区分をmlずしお、そ
の溶出液を分画した。各分画を薄局クロマトグ
ラフむヌ法で分析し、OA−6129B2を含有する
画分41から画分61たでの画分を集め200mlを埗
た。これを垞法に埓぀お凍結也燥し、180mgの
淡黄色粉末を埗た。この粉末の玔床は薄局クロ
マトグラフむヌ法で51であ぀た。 〔〕 前蚘〔〕で埗た凍結也燥品のうち150
mgを玄10mlの蒞留氎にずかしたのち、予め、
0.01Mリン酞緩衝液で平衡化したQAEセフア
デツクスA25レゞンカラム10mm×900mmに
吞着させた。蒞留氎玄100mlで氎掗したのち、
食塩濃床がからたで盎線的に倉化する食
塩氎合蚈600mlで溶出した。区分をmlづ぀
分画し、その溶出液を分画した。各画分を薄局
クロマトグラフむヌ法で分析するこずにより、
画分37から画分47たでのOA−6129B2画分100
mlを埗た。このOA−6129B2画分を予め0.01M
リン酞緩衝液PH8.0で平衡化したダむダむ
オンCHP20カラム10mm×90mmに吞着させ、
カラムを少量の蒞留氎で掗぀たのち、アセトン
濃床がから10たで盎線的に倉化するアセト
ン氎、合蚈800mlで溶出した。区分をmlづ
぀分画し、その溶出液を分画した。各画分を薄
局クロマトグラフむヌ法で分析し、゚ヌリツヒ
詊薬で発包する画分89〜画分119あわせお180ml
を埗た。これを凍結也燥し、39mgの淡黄色粉末
を埗た。この粉末は、バむオオヌトグラフむヌ
及び䞋蚘のNMR、UV、IRの枬定倀より、抗
生物質OA−6129B2であるこずを確認した。な
お、UVの吞光床から求めたこの物質の玔床は
箄98であ぀た。 NMRスペクトル溶媒D2O、内郚暙準
DSS 〓ppm 0.873H、、
[Table] Composition of seed medium (SE-4): (w/v) Glucose 0.1% Soluble starch 2.4% Beef extract 0.3% Meat 0.5% Bactotryptone 0.5% CaCO 3 0.2% Tap water production medium (GM-3 ) Composition: Glycerin 8.0% Soy flour 3.0% Taiwanese yeast 1.0% MgSO 4 0.2% K 2 HPO 4 0.2% CaCO 3 0.3% CoCl 2 5 ÎŒg/ml [B] After 90 hours of culture obtained in [A] above Tap water was added to the fermentation solution 4.5 to make it 6.0, and Topcoperlite No. 34 (manufactured by Toko Perlite Co., Ltd.) was added, and the solid matter was separated using Nutsuchie to make it 4.0.
A liquid () was obtained. Next, the solid substance was dissolved in tap water again to give a concentration of 4.0, and was filtered through a Nuttsuie to obtain a liquid (2.0). Combine liquids () and () and apply Diamond Ion HP20 resin.
Glass column filled with 400ml (40mm x 320mm)
The liquid was adsorbed at a rate of 400 ml/hr. 400
After washing the column with ml of distilled water, 5%
(v/v), 10% (v/v) and 15% (v/v)
It was eluted with acetone water while increasing the acetone concentration stepwise. Each fraction was 15 ml, and the eluate was fractionated and analyzed by thin layer chromatography to collect fractions 33 to 57, which mainly contained OA-6129B 2 , to obtain 430 ml. OA-6129A, which was produced in small quantities along with OA-6129B 2, has fractions 59 to 66.
was contained in. Next, a column (17.5 mm x 250 mm) packed with Diaion PA306S in which the two OA-6129B fractions were equilibrated with 0.01 M phosphate buffer (PH8.0).
After adsorption and sufficient washing with 100 ml of distilled water, the solution was eluted with a total of 1.0 saline solution in which the salt concentration varied linearly from 0 to 4%. 5ml per section
It was fractionated as Each fraction was analyzed by thin layer chromatography, and the fraction containing OA-6129B 2
Fractions 33 to 55 were collected to obtain 130 ml. This fraction was pre-equilibrated with 0.01M phosphate buffer (PH8.0) on a Diaion PH20 column (15.0mm x 430mm).
mm), and the eluate was eluted with a total of 600 ml of acetone water whose acetone concentration varied linearly from 0 to 20%. The eluate was fractionated, each section containing 5 ml. Each fraction was analyzed by thin layer chromatography, and the fractions containing OA-6129B 2 from fraction 41 to fraction 61 were collected to obtain 200 ml. This was freeze-dried according to a conventional method to obtain 180 mg of pale yellow powder. The purity of this powder was 51% by thin layer chromatography. [C] 150 of the freeze-dried products obtained in [B] above
After dissolving mg in about 10ml of distilled water,
It was adsorbed onto a QAE Sephadex A25 resin column (10 mm x 900 mm) equilibrated with 0.01M phosphate buffer. After washing with about 100ml of distilled water,
Elution was carried out with a total of 600 ml of saline solution whose salt concentration varied linearly from 0 to 2%. Each section was fractionated into 5 ml portions, and the eluate was fractionated. By analyzing each fraction using thin layer chromatography,
OA-6129B 2 fractions 100 from fraction 37 to fraction 47
Got ml. This OA−6129B 2 fraction was added to 0.01M in advance.
Adsorb onto a Diaion CHP20 column (10 mm x 90 mm) equilibrated with phosphate buffer (PH8.0),
After washing the column with a small amount of distilled water, it was eluted with a total of 800 ml of acetone water whose acetone concentration varied linearly from 0 to 10%. Each section was fractionated into 5 ml portions, and the eluate was fractionated. Each fraction was analyzed using thin layer chromatography, and a total of 180 ml of fractions 89 to 119 were packaged using Ehritzch reagent.
I got it. This was freeze-dried to obtain 39 mg of pale yellow powder. This powder was confirmed to be antibiotic OA-6129B 2 based on bioautography and the following NMR, UV, and IR measurement values. The purity of this substance determined from UV absorbance was approximately 98%. NMR spectrum (solvent: D 2 O, internal standard
DSS) 〓ppm: 0.87 (3H, s,

【匏】、 0.923H、、【formula】), 0.92 (3H, s,

【匏】、 1.283H、、7.0Hz、【formula】), 1.28 (3H, d, J = 7.0Hz,

【匏】、 2.452H、、6.5Hz、NH−CH2−CH2−
CO、 2.75−3.6011H、、−4H2、−6H、 −CH2−CH2−NH、NH−CH2−CH2−
CO、
[Formula]), 2.45 (2H, t, J=6.5Hz, NH−CH 2 −CH 2 −
CO), 2.75-3.60 (11H, m, C- 4H2 , 4-6H, S- CH2 - CH2 -NH, NH- CH2 - CH2-
C.O.

【匏】、 3.941H、、【formula】), 3.94 (1H, s,

【匏】、 3.95−4.352H、、−5H、
[Formula]), 3.95-4.35 (2H, m, C-5H,

【匏】。 UV吞収スペクトル 0.01Mリン酞緩衝液PH8.4 max ε3005400 IR吞収スペクトルΜKBy naxcm-1 1760β−ラクタム 1660アミド 1600ガルボキシレヌト【formula】). UV absorption spectrum 0.01M phosphate buffer (PH8.4) max nm (ε) = 300 (5400) IR absorption spectrum Îœ KBy nax cm -1 1760 (β-lactam) 1660 (amide) 1600 (galboxylate)

Claims (1)

【特蚱請求の範囲】  ストレプトミセス・゚スピ−OA−6129−3N
−504を栄逊培地で培逊し、その培逊物から䞋蚘
匏 で瀺される抗生物質OA−6129B2を採取するこず
を特城ずする抗生物質OA−6129B2の補造方法。
[Claims] 1. Streptomyces sp. OA-6129-3N
-504 was cultured in a nutrient medium, and the following formula was obtained from the culture: A method for producing antibiotic OA-6129B 2 , which comprises collecting antibiotic OA-6129B 2 shown in .
JP58150391A 1983-08-19 1983-08-19 Preparation of antibiotic oa-6129b2 Granted JPS6043394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150391A JPS6043394A (en) 1983-08-19 1983-08-19 Preparation of antibiotic oa-6129b2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150391A JPS6043394A (en) 1983-08-19 1983-08-19 Preparation of antibiotic oa-6129b2

Publications (2)

Publication Number Publication Date
JPS6043394A JPS6043394A (en) 1985-03-07
JPH0327200B2 true JPH0327200B2 (en) 1991-04-15

Family

ID=15495963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150391A Granted JPS6043394A (en) 1983-08-19 1983-08-19 Preparation of antibiotic oa-6129b2

Country Status (1)

Country Link
JP (1) JPS6043394A (en)

Also Published As

Publication number Publication date
JPS6043394A (en) 1985-03-07

Similar Documents

Publication Publication Date Title
JPH0115491B2 (en)
JPS6348520B2 (en)
JPS6261037B2 (en)
JPH0327200B2 (en)
EP0253413B1 (en) New antibiotics called "mureidomycins a, b, c and d" a process for their preparation and their therapeutic use
JPS6334157B2 (en)
JP2795489B2 (en) New substance DC115A compound
US5213974A (en) Fermentation process for preparing antibiotics mureidomycins A, B, C and D
JPH0321158B2 (en)
JPH0328435B2 (en)
JP3327982B2 (en) New antibiotic MI481-42F4-A related substance
US4201769A (en) Antibiotic substances No. 17927A1 and No. 17927A2 and process for producing the same
JPH0429356B2 (en)
JPS62174040A (en) 3"-hydroxy-ml-234b derivative and production thereof
JP3067322B2 (en) Method for producing 3'-hydroxybenanomycin A, an antifungal antibiotic
JPS6320431B2 (en)
JPS59173091A (en) Ruzopeptine e2
JPH0349909B2 (en)
JPS6330915B2 (en)
JPS6332792B2 (en)
JPS6363550B2 (en)
JPS6334156B2 (en)
JPH04633B2 (en)
JPH0372236B2 (en)
JPH0538283A (en) New microorganism