JPH03271590A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH03271590A
JPH03271590A JP7048190A JP7048190A JPH03271590A JP H03271590 A JPH03271590 A JP H03271590A JP 7048190 A JP7048190 A JP 7048190A JP 7048190 A JP7048190 A JP 7048190A JP H03271590 A JPH03271590 A JP H03271590A
Authority
JP
Japan
Prior art keywords
vane
roller
leakage
gap
pressure refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7048190A
Other languages
Japanese (ja)
Inventor
Ichiro Morita
一郎 森田
Takao Yoshimura
多佳雄 吉村
Hideji Ogawara
秀治 小川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP7048190A priority Critical patent/JPH03271590A/en
Publication of JPH03271590A publication Critical patent/JPH03271590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To reduce the leakage loss, and improve the efficiency of a compressor by reducing a clearance, between a reciprocating plate and a vane channel, as a flow passage of which leakage quantity is large at some times of a leakage quantity through a clearance between the reciprocating plate and both bearings, and reducing a leakage quantity of the high pressure refrigerant to a suction chamber and a compress space through that clearance. CONSTITUTION:The total force G of the pressing force of a spring 23, which is provided in the back of a second vane 21, working in the direction of a roller 5 and the pressure of the high pressure refrigerant discharged into a closed casing works from the back side of the second vane 21 to the direction of the roller 5. When leakage quantities of the high pressure refrigerant from the back sides of both vanes 20, 21 to a suction chamber 13a and a compress space 13b are compaired with each other, sectional area of a clearance of the latter is larger than that of the former at some times, and a leakage quantity of the high pressure refrigerant of the latter is therefore larger than that of the former at some times. Consequently, when a total leakage quantity from both the clearances between a side face 20b of a first vane 20 and a side face 4b of a vane channel 4a, and between a side face 21b of the second vane 21 and a side face 4c of the vane channel 4a is considered, the total leakage quantity can be reduced remarkably by reducing the space of the latter, of which leakage quantity is larger than that of the former at some times, than reducing the space of the former.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍サイクル等に使用される回転式圧縮機に関
し、特にその漏れ損失の低減に係わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to reducing leakage loss.

従来の技術 従来の構成を第4図、第5図、第6図を用いて説明する
。尚、第6図中の矢印は高圧冷媒の漏れを示し、第5図
中の矢印は作用する力を示す。
Prior Art A conventional configuration will be explained with reference to FIGS. 4, 5, and 6. Note that the arrows in FIG. 6 indicate leakage of high-pressure refrigerant, and the arrows in FIG. 5 indicate acting forces.

1は密閉ケーシング、2は電動機部であシ、シャフト3
を介してシリンダ4.ローラ6、第1往復板6a、第2
往復板eb、主軸受7.副軸受8により構成される機械
部本体9と連結している。
1 is the sealed casing, 2 is the electric motor part, and shaft 3
via cylinder 4. roller 6, first reciprocating plate 6a, second
Reciprocating plate eb, main bearing7. It is connected to a mechanical part main body 9 constituted by a sub-bearing 8.

シャフト3は、主軸3a、副軸3b、クランク3Cよう
なる。捷た第1往復板6a、第2往復板6bは、シリン
ダ4に設けられたベーン溝10に隣接して収納されてい
る。11は第2往復板6bの背面に設けられたスプリン
グである。12はシャフト3と連結する給油機構である
。捷た、13aは吸入室、13bは圧縮室である。14
は吸入管であシ、副軸受8.シリンダ4の吸入孔15を
介して、吸入室13aと連通している。16は吐出孔で
あう吐出弁17を介して密閉ケーシング1内と連通して
いる。18は吐出管であり、密閉ケーシング1内に開放
している。19は潤滑油である。
The shaft 3 includes a main shaft 3a, a sub-shaft 3b, and a crank 3C. The twisted first reciprocating plate 6a and second reciprocating plate 6b are stored adjacent to the vane groove 10 provided in the cylinder 4. 11 is a spring provided on the back surface of the second reciprocating plate 6b. 12 is an oil supply mechanism connected to the shaft 3. 13a is a suction chamber, and 13b is a compression chamber. 14
is the suction pipe, and the secondary bearing 8. It communicates with the suction chamber 13a via the suction hole 15 of the cylinder 4. 16 communicates with the inside of the sealed casing 1 via a discharge valve 17 which is a discharge hole. Reference numeral 18 denotes a discharge pipe, which opens into the sealed casing 1. 19 is lubricating oil.

次に回転式圧縮機の圧縮機構について説明する。Next, the compression mechanism of the rotary compressor will be explained.

冷却システム(図示せず)からの冷媒ガスは、吸入管1
4.吸入孔15より導かれシリンダ4内の吸入室13a
に至る。吸入室13&に至った冷媒ガスは、シャフト3
のクランク3Cに回転自在に嵌合されたローラ5と第1
往復板6aにより仕切られた圧縮室13bで電動機部2
の回転に伴うシャフト3の回転運動により漸次圧縮され
る。圧縮された冷媒ガスは吐出孔16.吐出弁17を介
して密閉ケーシング1内に一旦吐出された後、吐出管1
8を介し冷却システムに吐出される。
Refrigerant gas from the cooling system (not shown) is supplied to the suction pipe 1
4. A suction chamber 13a inside the cylinder 4 led from the suction hole 15
leading to. The refrigerant gas that has reached the suction chamber 13 & is transferred to the shaft 3
The roller 5 rotatably fitted to the crank 3C and the first
The electric motor section 2 is located in the compression chamber 13b partitioned by the reciprocating plate 6a.
It is gradually compressed by the rotational movement of the shaft 3 as the shaft 3 rotates. The compressed refrigerant gas is discharged through the discharge hole 16. Once discharged into the sealed casing 1 via the discharge valve 17, the discharge pipe 1
8 to the cooling system.

又、潤滑油19ば、給油機構12によジシャフト3と主
軸受子、副軸受8等の摺動部に供給される。
Further, lubricating oil 19 is supplied by the oil supply mechanism 12 to the sliding parts such as the shaft 3, the main bearing, and the sub-bearing 8.

ここで第1往復板6aと第2往復板6bの合わせ面は両
往復板ea、ebの板厚は同じで、且つ往復運動する方
向に対して傾斜している。そのため、第2往復板6bの
背面に設けられたスプリング11による押付力及び密閉
ケーシング1内に吐出された高圧冷媒の圧力との総和の
力Fが第2往復板6bの背・面に作用している。そのた
め、第2往復板6bの合わせ面6dにおいて、この合わ
せ面6dと直交する方向に力F1  が作用する。そし
て第2往復板6bには力F1  の分力として往復運動
する方向の力F及び軸方向で且つ力Fに対して垂直方向
の力F2が作用する。そして第2往復板6bは力F2に
よって主軸受側に押しつけられることとなる。また、第
1往復板6aについても反力が作用し、第1往復板6a
は副軸受8側に押しつけられる。このため第1往復板6
aの端面6eと副軸受8間の隙間及び第2往復板らbの
端面6fと主軸受7間の隙間は小さくなる。
Here, the mating surfaces of the first reciprocating plate 6a and the second reciprocating plate 6b have the same plate thickness and are inclined with respect to the direction of reciprocating movement. Therefore, the total force F of the pressing force by the spring 11 provided on the back surface of the second reciprocating plate 6b and the pressure of the high-pressure refrigerant discharged into the sealed casing 1 acts on the back and surface of the second reciprocating plate 6b. ing. Therefore, a force F1 acts on the mating surface 6d of the second reciprocating plate 6b in a direction perpendicular to the mating surface 6d. A force F in the direction of reciprocating movement and a force F2 in the axial direction and perpendicular to the force F act on the second reciprocating plate 6b as a component of the force F1. The second reciprocating plate 6b is then pressed against the main bearing side by the force F2. Further, a reaction force also acts on the first reciprocating plate 6a, and the first reciprocating plate 6a
is pressed against the secondary bearing 8 side. Therefore, the first reciprocating plate 6
The gap between the end surface 6e of a and the sub-bearing 8 and the gap between the end surface 6f of the second reciprocating plate b and the main bearing 7 become smaller.

従って、ベーン溝4a、  シリンダ4などの加工精度
や、組立精度によシ必要以上に上記隙間が出きた状態で
も、圧縮機の運転中には上述のように隙間は小さくなる
。そのため、密閉ケーシング1内の高圧冷媒が端面se
、efと副軸受8.主軸受7間の隙間を介して吸入室1
3a及び圧縮室13b内に漏れ込む量が減り、漏れ損失
を低減できるとの効果があった。
Therefore, even if the gap is larger than necessary due to the machining accuracy of the vane groove 4a, the cylinder 4, etc. or the assembly accuracy, the gap becomes smaller during operation of the compressor as described above. Therefore, the high pressure refrigerant inside the sealed casing 1 is
, ef and secondary bearing 8. Suction chamber 1 through the gap between main bearings 7
3a and the compression chamber 13b was reduced, resulting in an effect that leakage loss could be reduced.

例えば実開昭63−12685号公報にて示される。For example, it is shown in Japanese Utility Model Application Publication No. 63-12685.

発明が解決しようとする課題 しかしながら上記のような構成では、第1及び第2往復
板と、主軸受及び副軸受間の隙間を介して高圧の冷媒が
吸入室、圧縮室に漏れ込む量を低減できるものの、第1
及び第2往復板の側面とベーン溝間の隙間を介する漏れ
量は低減できない。
Problems to be Solved by the Invention However, with the above configuration, the amount of high-pressure refrigerant leaking into the suction chamber and compression chamber through the gap between the first and second reciprocating plates, the main bearing, and the sub-bearing is reduced. The first thing that can be done is
Also, the amount of leakage through the gap between the side surface of the second reciprocating plate and the vane groove cannot be reduced.

一般に往復板の厚さは、往復板の高さ寸法と比べて小さ
いため、往復板と両軸受間の隙間、往復板とベーン溝間
の隙間の両者での漏れ量を比べると、後者の方が数倍多
い。
Generally, the thickness of the reciprocating plate is smaller than the height of the reciprocating plate, so when comparing the amount of leakage in the gap between the reciprocating plate and both bearings and the gap between the reciprocating plate and the vane groove, the latter is more is several times more.

従って、往復板やシリンダのベーン溝の加工精度、そし
て組立精度などのために圧縮機組立時には、往復板とシ
リンダのベーン溝間の隙間はシールするのに最小限必要
な寸法以上の隙間となり、この隙間を介して高圧冷媒が
吸入室や圧縮室に漏れ込む量が多く、漏れ損失が多いと
いう課題があった。また、往復板と両軸受間の隙間及び
往復板とベーン溝間の隙間の両者からの総和の漏れ量を
考えた場合、もともと漏れ量の少ない前者を低減するの
ではその効果が不十分であり、効率向上がち1り図れな
いとの課題があった。
Therefore, due to the machining accuracy of the reciprocating plate and the vane groove of the cylinder, and the assembly accuracy, when assembling the compressor, the gap between the reciprocating plate and the vane groove of the cylinder is larger than the minimum required size for sealing. There was a problem in that a large amount of high-pressure refrigerant leaked into the suction chamber and compression chamber through this gap, resulting in large leakage losses. In addition, when considering the total amount of leakage from both the gap between the reciprocating plate and both bearings and the gap between the reciprocating plate and the vane groove, reducing the former, which has a small amount of leakage to begin with, is insufficiently effective. However, the problem was that it was not possible to improve efficiency at all.

さらに、第1往復板の端面と両軸受間の隙間が主軸受側
に片寄るため、この隙間を介して圧縮室から吸入室への
冷媒の漏れ量が増加するといった課題もあった。
Furthermore, since the gap between the end face of the first reciprocating plate and both bearings is biased toward the main bearing, there is also the problem that the amount of refrigerant leaking from the compression chamber to the suction chamber increases through this gap.

本発明は上記従来例の欠点を解決するものであシ、簡単
な機構により、往復板と両軸受間の隙間を介する漏れ量
よシも数倍多く漏れる流路である往復板とベーン溝間で
の隙間を小さくし、この隙間を介して高圧の冷媒が吸入
室及び圧縮室に漏れ込む量を減らして漏れ損失を低減し
、圧縮機の効率を向上させることを目的としている。
The present invention solves the above-mentioned drawbacks of the conventional example, and uses a simple mechanism to improve the leakage between the reciprocating plate and the vane groove, which is a flow path where leakage is several times larger than the amount of leakage through the gap between the reciprocating plate and both bearings. The objective is to reduce the amount of high-pressure refrigerant leaking into the suction chamber and compression chamber through this gap, thereby reducing leakage loss and improving compressor efficiency.

課題を解決するための手段 本発明は、シリンダと、シリンダの両端に固定された主
軸受および副軸受と、主軸受と副軸受内に一部を収納さ
れたクランクを有するシャフトと、クランクに回転自在
に収納されたローラと、シリンダ内に設けられたベーン
溝内を摺動自在に往・復運動し、先端がローラと当接す
る第1ベーンと、先端がローラと当接しない第2ベーン
とからなり、第1ベーン及び第2ベーンを並設し、この
両ベーンの接触面を往復運動する方向に対して傾斜する
ように板厚を変えてそれぞれ設け、第1ベーンの板厚の
厚い側をローラと当接する側とし、第2ベーンの背面に
第2ベーンをローラの方向に付勢するバネを備えたもの
である。
Means for Solving the Problems The present invention provides a cylinder, a main bearing and a sub-bearing fixed to both ends of the cylinder, a shaft having a crank partially housed in the main bearing and the sub-bearing, and a shaft that is rotated by the crank. A freely housed roller, a first vane that slides back and forth in a vane groove provided in the cylinder, and whose tip comes into contact with the roller, and a second vane whose tip does not come into contact with the roller. A first vane and a second vane are arranged in parallel, and the contact surfaces of both vanes are provided with different plate thicknesses so as to be inclined with respect to the direction of reciprocating movement, and the thicker side of the first vane is is the side that comes into contact with the roller, and a spring is provided on the back surface of the second vane to urge the second vane toward the roller.

作  用 本発明は上記した構成によυ、第2ベーンの背面に設け
られたバネによる押付力及び密閉ケーシング内に吐出さ
れた高圧冷媒の圧力との総和の力Gが第2ベーンの背面
に作用している。そのため、第2ベーンの傾斜した接触
面において、この接触面と直交する方向に力G1が作用
する。そして第2ベーンには力G1の分力として往復運
動する方向の力G及び軸方向で且つ力Gに対して垂直方
向の力G2が作用する。このため、第2ベーンはベーン
溝の側面側に押しつけられることになる。曾た、第1ベ
ーンについても反力が作用し、第1ベーン溝の側面側に
押しつけられる。このため、第1ベーン側面とベーン溝
の側面間の隙間、第2ベーンの側面とベーン溝の側面間
の隙間の両者とも狭くなる。
Function: According to the above-described configuration, the present invention applies a force G, which is the sum of the pressing force by the spring provided on the back surface of the second vane and the pressure of the high-pressure refrigerant discharged into the sealed casing, to the back surface of the second vane. It's working. Therefore, force G1 acts on the inclined contact surface of the second vane in a direction perpendicular to the contact surface. A force G in the reciprocating direction and a force G2 in the axial direction and perpendicular to the force G act on the second vane as components of the force G1. Therefore, the second vane is pressed against the side surface of the vane groove. A reaction force also acts on the first vane, and the first vane is pressed against the side surface of the first vane groove. Therefore, both the gap between the side surface of the first vane and the side surface of the vane groove and the gap between the side surface of the second vane and the side surface of the vane groove become narrow.

従って、第1及び第2ベーンの端面と両軸受間の隙間よ
うも数倍密閉ケーシング内の高圧冷媒が吸入室、圧縮室
に漏れ込む流路である第1及び第2ベーンの両側面とベ
ーン溝間の隙間を小さくできる。そのため吸入室、圧縮
室に漏れ込む高圧の冷媒量が減シ漏れ損失を低減するこ
とができる。
Therefore, the gap between the end surfaces of the first and second vanes and both bearings is several times larger than that between the two side surfaces of the first and second vanes, which are flow paths through which the high-pressure refrigerant in the sealed casing leaks into the suction chamber and the compression chamber. The gap between grooves can be made smaller. Therefore, the amount of high-pressure refrigerant leaking into the suction chamber and compression chamber is reduced, and leakage loss can be reduced.

実施例 以下本発明の一実施例を第1図、第2図、第3図にて説
明する。尚、従来例と同一部分は同一符号を付し説明を
省略する。また図中の矢印は高圧冷媒の漏れを示す。
EXAMPLE An example of the present invention will be described below with reference to FIGS. 1, 2, and 3. Incidentally, the same parts as in the conventional example are given the same reference numerals, and the description thereof will be omitted. Furthermore, the arrows in the figure indicate leaks of high-pressure refrigerant.

4aはベーン溝、20は先端がローラ5に当接した第1
ベーン、21は第2べ〜ンであシ、23は第2ベーン2
1の背面に設けられたバネである。
4a is a vane groove; 20 is a first groove whose tip is in contact with roller 5;
Vane, 21 is the second vane, 23 is the second vane 2
This is a spring provided on the back of 1.

また、20a、21aは往復運動する方向に対して傾斜
するように板厚を変えて設けた第1及び第2ベーン20
.21の接触面、20b、21bは第1及び第2ベーン
20.21の側面20C920dは第1ベーンの端面、
21 C,2odは第2ベーン21の端面である。さら
に4cl、 4cはベーン溝4aの側面でありそれぞれ
第1ベーン2゜の側面20bと第2ベーン21の側面2
1bと対向している。
Further, 20a and 21a are first and second vanes 20 provided with different plate thicknesses so as to be inclined with respect to the direction of reciprocating movement.
.. 21 contact surfaces, 20b and 21b are the side surfaces 20C and 21 of the first and second vanes 20C920d are the end surfaces of the first vane,
21C, 2od is the end face of the second vane 21. Furthermore, 4cl and 4c are the side surfaces of the vane groove 4a, and are respectively the side surface 20b of the first vane 2° and the side surface 2 of the second vane 21.
It faces 1b.

上記構成において、渣ず第2ベーン21に作用する力に
ついて説明する。第2ベーン21の背面に設けられたバ
ネ23によるローラ5の方向に作用する押付力と、密閉
ケーシング1内に吐出された高圧の冷媒の圧力の総和の
力Gが第2ベーン21の背面側からローラ6の方向に作
用している。第1ベーン20と第2ベーン21の接触面
20a。
In the above configuration, the force acting on the second vane 21 will be explained. The total force G of the pressing force acting in the direction of the roller 5 by the spring 23 provided on the back surface of the second vane 21 and the pressure of the high-pressure refrigerant discharged into the sealed casing 1 is applied to the back surface of the second vane 21. It acts in the direction of the roller 6 from there. A contact surface 20a between the first vane 20 and the second vane 21.

21aは往復運動する方向に対して傾斜するように板厚
を変えて設けられているため、第2ベー721の接触面
21bにおいて、この接触面21bと直交する方向に力
G1が作用する。力G1の分力として、往復運動方向の
力Gと、軸方向で且つ力Gに対して垂直方向の力G2が
作用する。筐た第1ベーン2oに作用する力としては、
第2ベーン21に作用する力G、G1.G2のそれぞれ
の反力が作用することになる。この両ペー720゜21
にそれぞれ作用する分力G2によって、第1ペー720
及び第2ベーン21はそれぞれ、ベーン溝4aの側面4
b及び4C側に押し付けられることになる。
Since the plate 21a is provided with a different thickness so as to be inclined with respect to the direction of reciprocating movement, a force G1 acts on the contact surface 21b of the second bee 721 in a direction perpendicular to the contact surface 21b. As components of the force G1, a force G in the reciprocating direction and a force G2 in the axial direction and perpendicular to the force G act. The force acting on the enclosed first vane 2o is:
Force G acting on the second vane 21, G1. Each reaction force of G2 will act. Both pages 720°21
The first page 720 is
and the second vane 21 are respectively attached to the side surface 4 of the vane groove 4a.
It will be pressed against b and 4C sides.

従って、第1ベー720の上下端面20c、20d及び
第2ペー721の上下端面21c、21dと。
Therefore, the upper and lower end surfaces 20c and 20d of the first bay 720 and the upper and lower end surfaces 21c and 21d of the second page 721.

両軸受7,8間の隙間はシリンダ4の高さXと、両ベー
ン20.21の高さyの差(x−y)より小さくはなら
ない。しかしながら、第1ベーン20の側面20bとベ
ーン溝4aの側面4b間の隙間と、第2ベーン21の側
面21bとベーン溝4aの側面4C間の隙間は小さくな
る。前者と後者における両ベーン20.21の背面側か
ら吸入室13a、圧縮室13bへの高圧冷媒の漏れ量を
比べると、両ベーン20,21の高さyは高さ2よシも
数倍大きい(y>z)寸法であり、前者と後者の隙間は
一般に1o/1000〜2o/1oooμmの範囲でほ
ぼ同等であるため隙間の断面積は後者の方が数倍大きく
、そのため高圧冷媒の漏れ量も後者の方が数倍多い。
The gap between both bearings 7 and 8 is not smaller than the difference (xy) between the height X of cylinder 4 and the height y of both vanes 20.21. However, the gap between the side surface 20b of the first vane 20 and the side surface 4b of the vane groove 4a and the gap between the side surface 21b of the second vane 21 and the side surface 4C of the vane groove 4a become smaller. Comparing the amount of high-pressure refrigerant leaking from the back side of both vanes 20 and 21 to the suction chamber 13a and compression chamber 13b in the former and latter, the height y of both vanes 20 and 21 is several times larger than the height 2. (y>z), and the gap between the former and the latter is generally the same in the range of 1o/1000 to 2o/1oooμm, so the cross-sectional area of the latter is several times larger, and therefore the amount of leakage of high-pressure refrigerant The latter is several times more common.

従って、第1ベーン20の側面20bとベーン溝4aの
側面4b間の隙間と、第2ベーン21の側面21bとベ
ーン溝4aの側面40間の隙間の両者からの漏れ量の総
和を考えると、数倍漏れ量の多い後者の隙間を小さくす
ることにより、前者の隙間を小さくするよシも漏れ量の
総和は大幅に低減される。
Therefore, considering the total amount of leakage from both the gap between the side surface 20b of the first vane 20 and the side surface 4b of the vane groove 4a, and the gap between the side surface 21b of the second vane 21 and the side surface 40 of the vane groove 4a, By making the latter gap, which has several times as much leakage, smaller, the total amount of leakage can be significantly reduced compared to making the former gap smaller.

咬た、第1ベーン20及び第2ベーン21の接触面20
a、21 aの傾斜角度θを変えることによシ、両ベー
ン20,21の側面20b、21bをそれぞれベーン溝
4aの側面4b、4cに押し付けるように作用する分力
G2の大きさを自由に変えることができる。具体的には
、傾斜角度θを大きくするほど分力G2は小さくなシ、
逆に傾斜角度θを小さくするほど分力G2は大きくなる
Contact surface 20 of the first vane 20 and the second vane 21
By changing the inclination angle θ of a and 21a, the magnitude of the component force G2 that acts to press the side surfaces 20b and 21b of both vanes 20 and 21, respectively, against the side surfaces 4b and 4c of the vane groove 4a can be freely adjusted. It can be changed. Specifically, the larger the inclination angle θ, the smaller the component force G2.
Conversely, the smaller the inclination angle θ, the larger the component force G2 becomes.

尚、本実施例では、第1ベーン2oをベーン溝4aの圧
縮室13b側の側面4bに押し付けるよう、また第2ベ
ーン21をベーン溝4aの吸入室13a側の側面4Cに
押し付けるように配設したが、これと逆に配設しても同
じ効果が得られることは言う1でもない。
In this embodiment, the first vane 2o is arranged so as to be pressed against the side surface 4b of the vane groove 4a on the compression chamber 13b side, and the second vane 21 is arranged so as to be pressed against the side surface 4C of the vane groove 4a on the suction chamber 13a side. However, it cannot be said that the same effect can be obtained even if the arrangement is reversed.

発明の効果 以上の説明から明らかな様に本発明は、シリンダと、シ
リンダの両端に固定された主軸受および副軸受と、主軸
受と副軸受内に一部を収納されたクランクを有するシャ
フトと、クランクに回転自在に収納されたローラと、シ
リンダ内に設けられたベーン溝内を摺動自在に往復運動
し、先端がローラと尚接する第1ベーンと、先端がロー
ラと当接しない第2ベーンとからfxシ、第1ベーン及
び第2ベーンを並設し、この両ベーンの接触面を往復運
動する方向に対して傾斜するように板厚を変えてそれぞ
れ設け、第1ベーンの板厚の厚い側をローラと当接する
側とし、第2ベーンの背面に第2ベーンを前記ローラの
方向に付勢するバネを備えたものであるから、両ベーン
と両軸受間の隙間よりも高圧の冷媒が吸入室、圧縮室に
漏れ込む量の多い両ベーンとベーン溝側面間の隙間が小
さくなり漏れ損失が低減でき、圧縮機の効率を向上させ
ることができる。
Effects of the Invention As is clear from the above description, the present invention comprises a cylinder, a main bearing and a sub-bearing fixed to both ends of the cylinder, and a shaft having a crank partially housed in the main bearing and the sub-bearing. , a roller rotatably housed in the crank, a first vane that reciprocates slidably in a vane groove provided in the cylinder, and whose tip still contacts the roller, and a second vane whose tip does not come into contact with the roller. From the vane, a first vane and a second vane are arranged in parallel, and the contact surfaces of both vanes are provided with different plate thicknesses so as to be inclined with respect to the direction of reciprocating movement, and the plate thickness of the first vane is The thicker side of the roller is the side that comes into contact with the roller, and the back of the second vane is equipped with a spring that biases the second vane in the direction of the roller, so the pressure is higher than the gap between both vanes and both bearings. The gap between both vanes and the side surface of the vane groove, where a large amount of refrigerant leaks into the suction chamber and the compression chamber, becomes smaller, reducing leakage loss and improving the efficiency of the compressor.

また吸入室と圧縮室を仕切っている第1ベーン及び第2
ベーンの上下端面と両軸受間の上下での隙間を均等に保
つことができるため、この隙間を介して圧縮室から吸入
室に漏れ込む冷媒量も低減でき、圧縮機の効率を向上さ
せることができる。
In addition, the first vane and the second vane that partition the suction chamber and the compression chamber
Since the upper and lower gaps between the upper and lower end surfaces of the vanes and both bearings can be maintained evenly, the amount of refrigerant leaking from the compression chamber to the suction chamber through this gap can also be reduced, improving the efficiency of the compressor. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回転式圧縮機のベーン
近傍の断面図、第2図は第1図の要部拡大図、第3図は
第1図のI−I/線にかける矢視図、第4図は従来の回
転式圧縮機の縦断面図、第6図は第4図における要部拡
大図、第6図は第4図のn−n’線における矢視図であ
る。 3・・・・・・シャフト、3c・・・・・・クランク、
4・・・・・・シリンダ、4a・・・・・ベーン溝、2
0・−・・・・第1ベーン。 20a・・・・・・第1ベーンの傾斜した接触面、21
・・・・・・第2ベーン、21a・・・・・・第2ベー
ンの傾斜した接触面、23・・・・・・バネ。
Fig. 1 is a cross-sectional view of the vicinity of the vane of a rotary compressor showing an embodiment of the present invention, Fig. 2 is an enlarged view of the main part of Fig. 1, and Fig. 3 is taken along the I-I/ line in Fig. 1. 4 is a vertical cross-sectional view of a conventional rotary compressor, FIG. 6 is an enlarged view of the main parts in FIG. 4, and FIG. 6 is a view taken along line n-n' in FIG. 4. It is. 3...Shaft, 3c...Crank,
4...Cylinder, 4a...Vane groove, 2
0.--.First vane. 20a... Slanted contact surface of the first vane, 21
...Second vane, 21a...Slanted contact surface of second vane, 23...Spring.

Claims (1)

【特許請求の範囲】[Claims] シリンダと、前記シリンダの両端に固定された主軸受お
よび副軸受と、前記主軸受と副軸受内に一部を収納され
たクランクを有するシャフトと、前記クランクに回転自
在に収納されたローラと、前記シリンダ内に設けられた
ベーン溝内を摺動自在に往復運動し、先端がローラと当
接する第1ベーンと、先端が前記ローラと当接しない第
2ベーンとからなり、前記第1ベーン及び前記第2ベー
ンを並設し、この両ベーンの接触面を往復運動する方向
に対して傾斜するように板厚を変えてそれぞれ設け、前
記第1ベーンの板厚の厚い側を前記ローラと当接する側
とし、前記第2ベーンの背面に前記第2ベーンを前記ロ
ーラの方向に付勢するバネを備えた回転式圧縮機。
a cylinder, a main bearing and a sub-bearing fixed to both ends of the cylinder, a shaft having a crank partially housed in the main bearing and the sub-bearing, and a roller rotatably housed in the crank; The first vane slideably reciprocates in a vane groove provided in the cylinder, and includes a first vane whose tip abuts the roller, and a second vane whose tip does not abut the roller. The second vanes are arranged in parallel, and the contact surfaces of both vanes are provided with different thicknesses so as to be inclined with respect to the reciprocating direction, and the thicker side of the first vane is in contact with the roller. A rotary compressor, the rotary compressor having a spring on the back side of the second vane that urges the second vane toward the roller.
JP7048190A 1990-03-20 1990-03-20 Rotary compressor Pending JPH03271590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7048190A JPH03271590A (en) 1990-03-20 1990-03-20 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7048190A JPH03271590A (en) 1990-03-20 1990-03-20 Rotary compressor

Publications (1)

Publication Number Publication Date
JPH03271590A true JPH03271590A (en) 1991-12-03

Family

ID=13432758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7048190A Pending JPH03271590A (en) 1990-03-20 1990-03-20 Rotary compressor

Country Status (1)

Country Link
JP (1) JPH03271590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072916A (en) * 2016-03-25 2018-12-21 东芝开利株式会社 Hermetic type rotary compressor and refrigerating circulatory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072916A (en) * 2016-03-25 2018-12-21 东芝开利株式会社 Hermetic type rotary compressor and refrigerating circulatory device

Similar Documents

Publication Publication Date Title
US6142755A (en) Scroll compressor and method of manufacturing same
US20070036666A1 (en) Rotary fluid machine
JP2004225644A (en) Scroll compressor
US8568119B2 (en) Single screw compressor
WO2005010372A1 (en) Scroll compressor
JPH03271590A (en) Rotary compressor
JP2002180980A (en) Scroll type compressor
EP0967392A1 (en) Scroll type compressor in which an oil seal is formed between an involute wall and an end plate confronting with the involute wall in an axial direction
CN107503940A (en) Pump body assembly, fluid machine and heat exchange equipment
US5727934A (en) Scroll type fluid machine having a thin plate for each scroll
JPH0378586A (en) Scroll type fluid device
JPH04179888A (en) Rotary compressor
JPH0443886A (en) Rotary compressor
JP2009108762A (en) Rotary fluid machine
JPS6350696A (en) Rotary compressor
JPH05302584A (en) Rotary compressor
JP3189644B2 (en) Scroll type fluid machine
CN111287968B (en) Compressor and refrigeration equipment
JPH0281984A (en) Rotary compressor
JP4501628B2 (en) Manufacturing method of scroll compressor
JPS647261Y2 (en)
JPH0447187A (en) Rotary compressor
JP2627060B2 (en) Oil-free scroll compressor
JPH0494493A (en) Rotary compressor
CN118499120A (en) Low leakage sealing structure of high-efficiency aviation rotor engine